
PHYSICAL REVIE% A VOLUME -24, NUMBER 6 DECEMBER 1981
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Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and

the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms

using the Hasse variational approach. The polarizabilities a{t) and a(l) for the two spin directions have been

obtained for the electric field both parallel and perpendicular to the magnetic field H, in the weak-field {ygl),
intermediate-field (y-l), and strong-field (y&1) limits, where y = (e'R'H, /m~'e'c), with e a static dielectric

constant and m ~ an isotropic effective mass. The results for hydrogen atoms (e = 1 and m * = m) in the weak-field

limit yield [a(l) —a(f)]/a(0)-2. 31af',y (a„= 1/137) with a negligible anisotropy. In the strong-field limit

[a,(j) —a,(f)] falls precipitously while [a ~~(l)
—a t~(t)] continues to increase up to at least y = 10', but more slowly

than linearly with y. The spin-independent quantities [a~~(l)+a~~(t')] and [a,(l)+a,(f)] are discussed in the

intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The

implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom

atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic

shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction

are also discussed.

I. INTRODUCTION

Interest in the effect of very large magnetic
fields on the energy levels of atoms and on atomic
spectroscopy has been revived in recent years by
spectroscopic measurements on highly excited
atoms (for example, barium) and by the discovery
of very large magnetic fields associated with
white dwarf stars and neutron stars. This topic
has recently been reviewed by Garstang. ' Since
the pioneering work of Yafet, Keyes, and Adams'
there has been substantial interest in the effect
of large magnetic fields on transport properties
in semiconductors' and on the energy levels of
shallow donors and excitons and magnetic field-
induced shifts of various spectrscopic transi-
tions. ' There have been many calcula, tions' "of
energie's of hydrogenic systems (applicable to H

atoms, shallow donors, and excitons) in both weak
and strong magnetic fields. More recently there
has been a number of calculations"'" made for
arbitrary magnetic field strength which address
the more difficult intermediate-field regime. De-
spite substantial interest in the effect of large
magnetic fields on spectroscopy and also on trans-
port properties in semiconductors there has been
surprising little work done on the effect of a
magnetic field H, on the electrical. polarizability
of atoms (in their ground state) Since th. e magne-
tic field effect on ground states is much less than
on excited states this may simply reflect the fact
that magnetic fields available to date in terres-
trial laboratories have been too small to make
pertinent measurements feasible. However, sev-

eral calculations of the polarizability a(H, ) for
hydrogenic"'" and nearly hydrogenic"'" atoms
have recently been carried out utilizing variational
and numerical approaches.

In connection with studies of the dielectric ano-
maly" "in n-type semiconductors doped below
the critical concentration N, for the insulator-
metal transition, we have made magnetocapacit-
ance measurements" on n-type Si and Ge samples
in the liquid He temperature range in magnetic
fields up to 18 T. In the past the shrinkage of
shallow-donor impurity wave functions in large
magnetic fields has been inferred from magneto-
resistance results. " Qn the insulating side
(H & N, } of the insulator-metal transition the
magnetic field reduces the hopping matrix ele-
ments (because of decreased overlap resulting
from shrinkage of the wave function), but can also
increase the hopping activation energy. " Qn the
other hand, at sufficiently low temperatures that
hopping processes make a negligible contribution
to the dielectric constant of the sample, the mag-
netocapacitance data" lead to a determination of
the shallow-donor polarizability a~(H, ) and a
direct measure of the shrinkage of the donor
ground-state wave function with increasing
magnetic field. The experimental results exhibit
an unexplained, somewhat Curie-type, tempera-
ture dependence of the effective donor polariz-
ability nay, , t (HD H T} in the temperature range
4.2 to 1.1 K. This, temperature dependence has
led us to consider the possible spin dependence
of the electrical polarizability of hydrogenic
atoms.
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A variational calculation of a(H, ) performed by
one of us" (DLD) utilizing the Hasse approach"
has been carried out in the weak-field limit, where
the calculation can be performed analytically.
The weak-field limit is that for which the diamag-
netic energy is much less than the Coulomb energy,
i.e., y'«1, where

~'h'H,
m~ ce'

Here e is the (assumed scalar) static dielectric
constant and m~ is the (assumed scalar) effective
mass of the electron (in Ref. 20 y was denoted by
Iz). For y= 1 the diamagnetic energy is twice the
hydrogenic atom Rydberg, which corresponds to
a magnetic field of 2.35 x 10' T for a free hydro-
gen atom. A numerical calculation" has also been
carried out for donor impurities in Si from the
weak-field regime up to y=1. In this donor calcu.-
lation a semiphenomenological potential was used
in an attempt to take into account the "chemical
shifts" of donor impurities, i.e. , the different
binding energies of the P, As, and Sb impurities.
This is a much more difficult problem in prin-
ciple because of the many-valley band structure
and anisotropic mass tensor. "

In the present paper we attempt to calculate
a(H, ) for hydrogenic atoms from the weak-field
limit up to y= 104. Those terms in the "nonrela-
tivistic" Hamiltonian coupling the electron spin
and the orbital motion (diagonal contribution) lead
to spin-dependent polarizabilities a(H„t) and

a(H„ t}. Although the spin dependence a(H„ t)
—,a(H„N) is expected to be small, a major pur-
pose of this work is to determine reliably its
magnitude. The spin dependence was included in
Ref. 20, where it was shown to be negligibly
small for weak fields (y « I); however a rela-
tivistic correction to the Zeeman energy, ~ fre-
quently ignored in many treatises, of the same
order of magnitude as the field-dependent spin-
orbit interaction considered, was combined with
the latter in a way which is inadequate for large
y. Not only do we obtain the spin dependence of
a(H, ), but: in the process we determine approxi-

mate spin-dependent ground-state eigenvalues
and eigenfunctions of a convenient analytic form.
The variational calculation is performed numeri-
cally to high precision and leads to reliable re-
sults for a(H„t) and a(H„4) for the electric
field applied both parallel and perpendicular to
the magnetic field.

II. SPIN-DEPENDENT NONRELATIVISTIC
HAMILTONIAN AND WAVE FUNCTION

The one-electron atomic nonrelativistic Hamil-
tonian with magnetic field and electron spin ef-
fects included (however with nuclear spin effects
neglected), obtained utilizing the canonical trans-
formation of Foldy and %outhuysen" is frequently
given by (see, for example Zeiger and Pratt, "
Eq. 1.48a)

1 t' eA ' eS - eAH= ~p+ ——eV—,, S VVx p+-
2ppt ( c 2m c c

el'
+ g S (vxA) ', , v'V,

2m c 8m'c' (2)

where we have omitted a relativistic P' term be-
cause it generally makes no significant contribu-
tion to magnetic field effects (see the discussion
in Sec. 1.13 by Zeiger and Pratt"). In Eq. (2)
V(r) is the electrostatic potential seen by the
atomic electron, S is the electron spin, g, is the
free-electron g value [g, = 2(1+ af, /2v+ ~ ),
a„=1/137], and A is the vector potential due to
an external magnetic field. Equation (2) does
not include a frequently omitted relativistic cor-
rection to the Zeeman energy of the form

Hz -(P'/2m)/(mc') which is considered by
Abragam and Van Vleck" and has been discussed
by Hegstrom. " The last term in Eq. (2) will be
identically zero at the electron position for a
Coulombic potential (~ I/r), but can contribute
a correction for a non-Coulombic portion of V(r)
resulting from a central-cell correction. Here we
utilize the Coulombic potential V= e/er, a vector
potential A= ,'Hxr= ,'—H,(xj —yi), the Bohr —magne-

ton p. e = ek/2mc, and replace the mass elsewhere
by an isotropic effective mass m* to obtain

H = ——+ ', (x'+y'}+]ze(L, + g.S,) H, 1 —
2

s + , , ' , (s,(x' ) ') —
2 [s, (x —() ) + s (x () )]),m*c'er'

I,
'

where the frequently omitted relativistic correc
tion to the Zeeman energy, [-p, eH, (L,+ g,S,)P'/
2m*'c'], which is the same order of magnitude

(az, 'p H, ) as the field-dependent spin-orbit inter-

I
action [last term in Eq. (3)], has now been expli-
citly included. Only those terms in H which couple
the spatial coordinates to the magnetic field and
to the spin are important for the calculation of
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spin-dependent polarizabilities. When one ne-
glects the higher order off-diagonal field-depen-
dent spin-orbit terms S,z(x —iy) and S z(x+fy)
which couple to the excited d states m, = —1 and

m, =+ 1, respectively, the spin-orbit interaction
(K ~ S) and the orbital Zeeman interaction &,I,,
are identically zero for the hydrogenic atom ground
state. The new spin-dependent terms which couple
to the orbital motion are exactly those terms that
lead to the Breit-Margenau correction" "for the

g shift (g -g, ) of the H atom (ags„= -g, (z'„/3). It
is these very same terms that lead to the different
polarizabilities o(p„t}and a(F„N).

It is convenient to deal with this Hamiltonian in

reduced units, to wit

2 2

Ho=- a (I+ p) V + ———(x + y }2 2 y 2 2

2ea* 4

(4)

Here a*=—e8'/(Pn~e') and P
-=l(,sH, /(m*c'), and we

have omitted those terms dismissed in the preced-
ing paragraph and also the spin Zeeman term

which cannot contribute to the polarizability,
though certainly to the energy. The negative sign
in front of p means that the spin is parallel to the
static magnetic field H, .

Eigenfunctions and eigenvalues of 0, cannot be
obtained exactly. Qualitatively, we expect H,
to have three main effects: (1) It will shrink the
wave function through the diamagnetic term; (2)
it will shrink it less parallel to p, than perpen-
dicular to H„so that the wave function will be-
come elongated, like a cigar; and (3) the wave
function will become more rigid —from an ex-
ponential at &,= 0 it will become a Gaussian as
H, -~. Accordingly we select a trial ground-state
wave function of the form

(})o(H,) = exp[-[k(x'+y'+ sz')~'] ~~I,

where k &1 represents the shrinkage, s & 1 the
elongation, and p & 1 the "hardness". This trial
function has the advantages that (H, ) can be eval-
uated exactly, and that it shows the correct
qualitative behavior for all fields. Normalizing
and calculating the expectation value of Eq. (4), we

obtain

E =.
2 4pI' 3p gk2~ 3

p+1 1+p k2~ ' 1 —s
sinh

where

2y'pi (5p) pl'(2p)
3(k2')' 3(k2')'

f(s)= 6( ) (I )siss '( )
—(I —s) 9'

The parameters k, s, and p are of course depen-
dent on magnetic field and spin orientation.

Equation (6) was minimized to high precision by
numerical means with respect to k, s, and p for
each spin for y ranging from 10 ' to 10'. Table I
shows the energies in rydbergs and the wave-
function parameters for (}),(H, ) for some of the
calculated points in this range. It is reemphasized
that the spin Zeeman term is not included here.
It would have an effect in a real situation in de-
termining which spin states are occupied, be-
cause of the Boltzmann factor, and hence in
determining the net polarizability.

III. CALCULATION OF THE POLARIZABILITY

We now follow the variational method of Hasse, "
known to be exact for H, =O. We select a trial
wave function of the form

&6(r}= y, (H, )(I+ hi+ cpf), (8)

in the presence of an infinitesimal electric field
Here b and c are undetermined, infinitesimal

parameters,

p-=(x'+ y'+ sz')'",
and t equals z or x depending on whether 8, is
parallel or perpendicular to H, . We now re-
evaluate analytically the expectation value of
H, —e$, t with renormalized wave functions but
containing the undetermined parameters b and c.
We minimize analytically with respect to b and c
and obtain Eo as in Eq. (6) plus a, term propor-
tional to 8,', the coefficient of which is --,' the
desired polarizability, ~. There are four such
quantities, 8 (I a.nd 1 0 and for parallel and anti-
parallel spins. For 8, = 8, II H„we obtain

9 (-,) I' (6p)J +I' (5p)J —I'(5p)1'(6p)J
)2 s (k2')~I'(3p) 4J 4 —j~ (10)
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TABLE I. Wave-function parameters~ and energies.

g(t)+ tc(h)

2

tc(t) —K())
2

0'(t)+ 0.(k)
2

0(k) —0( t)
2

X(t)+ A(t)
2

X(t ) —A(h)

2

E(t) +E(h)
2

E(k) —E(t)

1(-3)

10'"(-3)

1(-2)

10'"(-2)

10 / (-1)

1(0)

10 / (0)

101/2(1)

1(2)

101/2(2)

1(3)

10 (3)

1(4)

-1.330(-7)
2.188(-8)

-1.242(-6)
6.915(-8)

-1.241(-5)
2.188(-7)

-1.231(-4)
6.903(-7)

-1.150(-3)
2.175(-6)

-6.072(-3)
6.916(-6)
2.627(-2)
1.977(-5)
2.613(-1)
5.452(-5)
8.595(-1)
1.852 (-4)
2.028
7.826(-4)
4.173
3.805(-3)
8.024
1.989(-2)
1.492(1)
1.083(-1)
2.722(1)
6.007(-1)
4.964(1)
3.465

5.357(-7)
1.903(-9)
5.349(-6)
6.014(-9)
5.356(-5)
1.906(-8)
5.335(-4)
6.113(-8)
5.215(—3)
2.202(—7)
4.287(-2)
1.270 (-6)
1.943 (—1)
7.255 (-6)
0.4393
2.368(-5)
0.6589
5.365(-5)
0.8076
1.033(-4)
0.8977
1.841 (-4)
0.9474
3.105(-4)
0.9742
5.004 (-4)
0.9878
7.757(-4)
0.9942
1.225(-3)

5.874(-7)
&1(—12)
5.795(-6)
&1(—12)
5.801(-5)
&1(-12)
5.775(-4)
&1(-12)
5.614(-3)
3.920(-8)
4.421(-2)
6.755(-7)
1.717(-1)
4.230(-6)
0.3163
1.012(-5)
0.4071
1.739(-5)
0.4545
2.760(-5)
0.4782
4.270 (-5)
0.4898
6.455(-5)
0.4954
9.512(-5)
0.4979
1.368(-4)
0.4991
2.040(-4)

[5.00(-7)l-1
3.55(—8)
[4.99(-6)1-1
1.12(-7)
[5.00(-5)]-1
3.558(-7)
[4.99(-4)]-1
1.12(-6)
[4.958(-3)]-1
3.59(-6)
[4.647 (-2) ]—1
1.243 (-5)
[3.455 (-1)]-1
5.708 (-5)
8.229 (-1)
3.778 (-4)
6.585
3.139(-3)
2.660 (1)
2.879 (-2)
9.275(1)
2.767 (-1)
3.059 (2)
2.709
9.856(2)
2.687(1)
3.138(3)
2.673 (2)
9.883 (3)
2.693 (3)

Note that ~ =—k —1, & =p —1, and 0=—1 —s. The numbers in parentheses indicate the power
of ten.

where

(3p+ 1)(2+ 3s) I'(3p)(I —p) g.(s)l'(4p) E (I5)py'I'(7p) N'(4p)
GBZ 40p 3k2' 6(k2')2 60(k2')» 30k2

(9p+5)(2+ 3s)I'(5p)(1- p) g,(s)I'(6p) E,l (7p) y'I'(9p) p I (6p)
120 3k2' 6(k2') 60(k2') 30 k2

(2p+1)(2+3s)I'(4p)(1 —p) 2g, (s)I"(Sp) E,I'(6p) y'I'(8p) p I'(5p)
DZ 15p 3k2' 3(k2') 30(k2')» lb 2 k

The functions g, and G, are defined as

g,(s)= & [d(1+d')' ' —d'sinh '(1/d)]

and

G,(s)= —,"~ d[(3d +2)(1+d')' ' —d'(3d'+4) sinh '(1/d)),

(11a)

(1lc)

(12)

(13)

where d-=[s/(1 —s)]' '.
Similarly, for 8, = 8 ~H„we obtain

(»)' I'(6p)J +I'(5p)J —I'(5p)I'(6p) J
(14)
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where

(3p+1)(4+ a)r(3p)(1- p) g,(s)r(4p) E,r(5p) y'r(7p) pr(4p)
BX 40p 3k2~ 6(k2~)x 30(k2~)4 15k2~

(8P+5)(4+a)1'(5P)(I -P) g.(s)1"(6P) E.l'(7p) y'I'(8p) Pi'(6p)
CX 120P 3k2~ 6(k2~ x 30(k2t)4 15k2o x

(2P+ 1)(4+s)I'(4P )(1 —P) 2g, (s )I'(5P ) E,I'(6P ) y'I'(8p) 2P I'(5p)
DX 15p 3k2~ 3(k2~)' 15(k2~)' 15k2~

where

g, (s) = —',d[(1 —d'/2) sinh '(1 —d) —z (1+d')'~'],

a,nd

G„(s)=~xd[(1+ d + sd') sinh '(1/d) ——', (d'+ 2)(1+d') ~'] .

(15a)

(15b)

(15c)

(16)

(17)

In all twelve places where P appears in these equa-
tions the sign corresponds to the case of the spin
parallel to the magnetic field. The sign of P in
every term is to be changed for the spin-antiparal-
lel case. 'The main reason for the use of high
(quadruple) precision for small y comes from
the functions of s, which appear to diverge as
s-1 but which actually vary as

f(s)= 1 —(1——s)/10,

g, (s)—= 1 —3(l —s)/10,

g, (s )= 1 —(1 —s )/10,

G,(s) =—1 —3(1 —s)/14,

G„(s)= 1 —(1 —s)/14,

(18)

for s close to unity. For example, ten terms in
the expansion of the sinh ' function in G,(s) are
required to obtain this result.

The minimization procedure for the energy it-
self was an unsophisticated "brute force" method,
made particularly tractable because of the cir-
cumstance that E is monotonic in s, p, and k. A
3 x 3 x 3 volume element in s, p, k space was
created so as to include the-point of minimum
energy, and the expectation value of the energy,
Eq. (6), was evaluated at the center of each of
the 27 volume subelements. The origin of a new
3 x 3 x 3 cube was shifted to this point of lowest
energy, and the linear cube size was reduced by
a factor of 0.6. This procedure was repeated
until convergence to 16 significant figures was
achieved. The quadruple precision referred to
above did not apply to the ~ functions, for which
only double precision is available, but this defi-
ciency is immaterial. 'The quadruple precision
was not necessary for y& 0.1 even for the para-
meter s, and was dropped at this point, the energy,
k, s, P, and the 6 and g functions for the larger

I

y values being evaluated with double precision
by the same methods throughout.

IV. RESULTS AND DISCUSSION

Before discussing the polarizability results we
discuss spin-dependent wave-function parameters
and energies versus the magnetic field strength
(y) as given in Table I. In Table I we introduce
the new parameters K=—k —1, X=-p —1, and 0=-1-s-
which are particularly useful for p«1 where k,
P, and s are all. close to unity. In addition, a word
about the mathematical notation in Table I is in
order. The first line means that @=1x10 ', that
[K(t)+ z(t)]/2 = —1 .330x 10 ', ... , [E(t)+E(t)]/2
= 5.00 x 10 ' —1; the second line means y = 1 x 10 ',
[v(4) —v(4)]/2= 2.188x 10 ', etc. The individual
values z(0), v(f), o(4), etc. can be deduced by
addition and subtraction. The quantities [~(f)
+ q(4)], [o(4)+cr(4)], and [A.(f)+X(0)] in the low-
field limit (y«1) are all proportional to y' with
proportionality coefficients identical to those
given in Ref. 20. In the high-field limit [K(i)
+ v(k)] is closely proportions. l to y'~'while [o(f)
+ o(t)]/2 and [X(0)+ X(t)]/2 approach 1 and —z, re-
spectively, asy-~. This inturnmeans thats, „[s„
= [s(4) + s(0)]/2j approaches zero while P„[P,„=[P(&)
+ P(t )]/2}approaches —,'. This is precisely the usual
high-field limit behavior characterized by a Gaus-
sian wave function strongly elongated (in comparison
with the x, y plane} along the z direction. The spin-
difference quantities [v(f) —v(k)] and [o(0) —o(0))
in the low-field limit are both proportional to
y while X(4) —X(t} is negligible in the low-field
limit. In this limit the proportionality coefficients
for [v(0) —v(4)], and o(0) —o(k) are slightly differ-
ent from those given in Ref. 20 (see the note added
in proof therein). The reason that X, the "hard-
ness" parameter in the wave function, has a negli-
gible spin dependence in the low-field limit is
that the spin-dependent term, p(x'+y')/2r', in Eq.
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(4) has the same I/r radial dependence as the
Coulomb interaction, unlike the spin-independent
diamagnetic term. In the high-field limit the
behavior is more complex with [g(0) —x(t)] in-
creasing more rapidly than linearly with y while

[o(4) -cr(0)] and [X(4) -A(t)] are both increasing
less rapidly than y' '. In the entire field range
(10 ' &y & 10') [a(4) —v(4)] is always much larger
than [a(4}—o(4)] and [A,(f) —X(k)]. Thus, the most
important effect of the spin-dependent terms in
Eq. (4) is the difference in the size of the wave
function for the [4) and ( 0) states.

The energy dependences of [E(4)+E(4)]/2 and

E(4) E(-t) (recall that [E(4) -E(0)]does not in-
clude the normal spin Zeeman contribution) are
also shown in Table I. [E(t}+E(k)]varies quad-
ratically withy inthey«11imit and varies nearly
linearly with y in the y» 1 limit. On the other
hand E(4) E(t) v-aries linearly with y in the y«1
limit and quadratically with y in the y» 1 limit.
The deviation of E(f) -E(t) from linear behavior
in the high-field limit results not only from the
spin-dependent term in Eq. (4), but also from the
other spin-independent terms in Eq. (4) because
of the different values of jh(0) and k(0), s(4) and

s(4), and P(0) and p(4). Finally we note that the
energy [E(4)+E(f)]/2 is not the ionization energy
quoted in many papers on high magnetic fields.
The ionization energy is obtained by subtracting
[E(4)+E(t)]/2 from the lowest Landau energy
level for Sk, = 0.

Figures 1 and 2 show the normalized spin-inde-
pendent field-dependent polarizabilities [&(4)+
+ +(t)]/2a(0) vs y. [a(0) means a evaluated at
y= 0]. Figure 1 best illustrates the high-field
behavior showing the perpendicular case (3&H)
falling as y ' for y» 1. For the parallel case
(X[(H) the falloff of [u(4)+ a(4)]/2a(0) is much
slower and is less than y '. Furthermore, the
parallel case is more complex, not being charac-
terized by a single exponent. The slope of the
decrease is decreasing as y increases. Figure
1 does not do justice to the low-field (y«1) vari-
ation of [n(4)+ e(t)]/2o.'(0). Figure 2 shows a plot
of log(log(2a(0)/[a(4)+ a(4)]})vs y for both the
parallel and perpendicular cases. The low-field
results (identical to those in Fig. 2 in Ref. 20)
show that n(y}/~(0}= 1 —gy' and that g~ = 1.8q, .
Figure 2 clearly shows the quadratic behavior
for y«1 with deviations from quadratic behavior
showing up for y & 10 ' as discussed by Dexter. "

The spin-dependent polarization quantity log
([&(0)—+(4)]/a(0)} vs y is plotted in Figure 3.
In the low field limit [a(4) —a(4)]/a(0) is linear
in y and virtually identical for the parallel and
perpendicular cases ([a~(4) —a~(4)]= 1.006[+„(0)

(1~~(4)]) The two cases diverge as y approaches

I
f

I

J

I

-2—

3
Cl O+

AI
tl -4—

O

-8
IO IO IO

'
IO IO' IO

Y

IO' IO4

FIG.1. log of the average fractional polarizability [n (5)
+n(t)l/2n(p) versus the dimensionless magnetic field
parameter y. At y=1 the diamagnetic energy term in
Eq. (4) is twice the hydrogenic Rydberg. In the high-field
limit (y»1) [n~())+n~(t)] falls off as y while for the
parallel geometry case [n„(h)+nH(t)] falls off more slow-
ly with a slope that decreases with increasing y.

2

+O

Al

O

O

l I I

IO-' IO ' IO-'
I i

10' 10 10 104

FIG. 2. loglog2n(0)/[n(t)+ n(t)] vs y. In the low-
field limit (y«1), n(t)+n()) =2n(p)(1 —spy ), thus leading
to a slope of two. The anisotropy is such that g~ = & 8&ii

in the low-field limit.

unity and a~(4) —&~(4) falls very rapidly for y» 1
with a y '" dependence. For the parallel case
Q g (0 ) Q (0 ) flattens out above y - 1, but then
starts to increase again as y increases. The slope
keeps increasing above y-100 and a„(0) o.

~ (4)
does not seem to fit a simple power law in the
high-field region. In the y» 1 region the aniso-
tropy of a(4) - o.(4) becomes enormous, e.g. ,
being about 3x 10' at y=10' and 4x 10' at y=10'.
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An alternative way of showing the same results
is shown in Fig. 4 where the polarization of the
spin-dependent polarizatility (PSP) is shown ver-
sus y. This shows the relative importance of the
spin-dependent difference n(y, i) —u(y, 4) to the
diamagnetic contribution to u(y, f)+ n(y, 0). Both
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FIG. 4. Polarization of the spin-dependent polariz-
ability (PSP) [n(y, i) —n(y, t)]/[n(y, i)+ n(y, t)] vs y. The
low-field limit is similar to the results in Fig. 3. In the
high-field limit (y &102) PSP for the parallel geometry
case increases slightly more rapidly than linearly and
for the perpendicular case increases as p '

FIG. 3. log of the fractional spin-difference polariz-
ability [n(t) -n(t)]/n(0) vs y. In the low-field limit (y
«1) [n(i) —n(t)] is proportional to y and the anisotropy is
negligible. In the extreme high-field limit (y &10 ),
[nJ(i) —n J(t)] ~ y ' . In the same limit the slope of
[n() (i) n (((t)] vs y is slowly increasing with

ysM~=(a*A )'= (as/1 ) (em/m )', (19)

the parallel and perpendicular case show virtually
identical linear behavior in the y«1 regime while
the parallel case is increasing very slightly great-
er than linearly (y' "}in the y»1 regime. For
the perpendicular case PSP is increasing as y' '
for 10' ( y ( 10'. These results show that the
fractional spin-dependent polarizability can indeed
approach unity in the super high-field regime
(y) 10'). The anisotropy in PSP is slightly greater
than 10' at y=104.

In the very high-field range (y» 1}the results
presented above are expected not to be as reliable be-
cause of the neglect of the proton spreading effect
considered by Virtamo and Simola. " These
authors demonstrate that field-induced proton
spreading can reduce the binding energy of the
electron by about 1(pk at y = 2 x 10' and by 20%%up

at y=2x 10', and they also state a rule that the
correct binding energy, E~, in the extreme field
limit (y ) 10') is given by the binding energy at
half the field calculated neglecting the proton
spread. It is not easy to say how the proton spread
will affect the polarizabilities n(y, 4) and n(y, t),
which depend on the parameters k(4), s(4), p(0}
and k(4), s(0), P(4), respectively. In the low-
field limit (y«1)u ~Es', however this result
may be modified in the extreme high-field limit.
Qualitatively the proton spread at a fixed y should
increase [u(4)+ n(0)] and decrease n(t) —n(0).
We estimate our calculated values are probably
accurate to within 60%%ug at y = 10', improving rapidly
in accuracy as y decreases. There may also be
small changes in the power law dependences of
u(i)+ n(0) and n(f) —n(k) in the range 10' & y & 10'
but these changes will alter only slightly the re-
sults shown in Fig. 1-4 in the region y ) 10'.

Unfortunately, we can envisage no experiment
at present that could readily measure [n(4}—n(0)]
for free hydrogen atoms employing currently avail-
able steady terrestrial magnetic fields, which are
limited to y values well below 10 '. At y = 10 '
the field-dependent change in u(y), namely [u(y)
—u(0)]/n(0), is of order 10 ' while [n(t) —u(0)]/
n(0) is of order 10 '. (For H= 24.0 T y-10 ' and
[n(y) —n(0)]/n(0)-10 ' and [n(b) —n(0)]/n(0)
-10 '.) We shall briefly consider below extra-
terrestrial H atoms in the atmosphere of neutron
stars or magnetic white dwarfs.

Considerably higher values of y for a fixed mag-
netic field strength can be obtained for shallow
donors in doped semiconductors where the unpaired
electron is orbiting the donor nucleus with a much
larger Bohr radius, given in the effective-mass
approximation (EMA} by a'=e(m/m")as (as =5'/
me'). Thus yzM„ is given by
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where X is the characteristic magnetic field
length X =(Sc/eH} . For Si (s=11.4, m*/m
= 0.299) y«„= 1455y„while fdr Ge (z =15.36,
m*/m=0. 12) y«„=1.6x 10'y„. In a magnetic
fieM of 10 T one obtains yE„A = 0.084 and y«„
= 0.66 for Si and Ge, respectively. Thus it is
possible barely to reach the intermediate field
region (y-0.1) for donors in Si, while for Qe
values of y slightly larger than unity can be ob-
tained. However, the spin-dependent texms in
Eq. (4}proportional to P scale differently from

P is given by

P«„—psH /m c -P„(rn/m ). (20)

PEN„ is enhanced only by the mass ratio, and
therefore by a very much smaller amount than

y«„. As a result the sealed spin-dependent quan-
tity [a(4) -&(0}]su„wiLL be very much smaller for
a given y«„ than the calculated 8-atom results
given in Figs. 3 and 4. The much larger Bohr
radius-of EMA donors does not enhance the quan-
tity [&(0)—a(f)]. On the other hand, actualdonors
(P, As, or Sb) have an additional central-cell cor-
rection contribution to the attractive potential
that can in principle enhance the effect of the field-
dependent spin-orbit interaction in Eq. (2). A

reliable estimate of this enhancement requires
not only a detailed knowledge of the central-cell
correction potential, but also of how the wave
function peaks at small r where it can no longer
be characterized by a single Bohr radius (see,
e.g. , Ref. 21}. Furthermore, for the many-valley
semiconductors like Si and Ge one should also
include mass anisotropy effects ' and intervalley
coupling effects. 'The latter intervalley coupling
effects make a negligible contribution to the ma-
trix elements [with the exception of Eo(H, )] con-
tributing to the donor polarizability &n(H, ). At
present there is no direct experimental information
on the quantity [an(4} —nn(0)] for an isolated donor
and it is doubtful whether [&n(0) -an(4)] could be
determined from experiments sufficiently dilute
in donor doping that most of the donors are effec-
tively isolated from each other.

The magnetocapacitance data" were obtained
for n-type Si samples (N~ & 10~'/cm~} where the
exchange interaction between donors is important.
The exchange interaction between a donor and its
neighbors also provides a spin-dependent inter-
action potential that ean lead to a spin-dependent
polarizability and to an effective quantity {nn(4)
-an(0)). We need only recaLL the single atom
of ion (e.g. , Mn") case of the exchange interaction
between a half-filled d shell (d', 8= —',) and the
filled s-shell core electrons. In this case g»
(r= 0, 0) and P„(r=0, 4) have different values,
thus leading to an isotropic Fermi contact term

hyperfine interaction from the "closed" 1s shell.
This core polarization" effect resulting from
the exchange interaction is a well known example
of a spin orbital-motion effect. For the present
case of one-electron donors the spin orbital mo-
tion interaction can arise from, in addition to the
hydrogenic atom terms in Eq. (4), the exchange
interaction between neighboring donors. A new
experiment is now underway here (UB) to attempt
a direct measurement of {aD(k}-en(4))for P-
doped Si.

For H atoms present in the atmosphere of neu-
tron stars one might readily expect to have y~
-10'. In this field regime the quantity n —1 [n(y)
being the tensor index of refraction of the H-
atom atmosphere] will. be highly anisotropic with
(n —l)g~ orders of magnitude smaller than (n

1)s gg On the other hand the extremely small
depth of the atmosphere ("1 cm) makes it diffi-
cult to imagine how this large anisotropy in (n
—1) might be measured, particularly since (n -1)
itself wil, l be such a small quantity. While the
dielectric properties of the H-atom atmosphere
of a neutron star represent an interesting ques-
tion no experimental data exists which is relevant
to this question. For magnetic white dwarf stars
y~ will be very much smaller, perhaps in the
range 10 ' & y & 10 '; however this is counter-
balanced by. a much thicker H-atom atmosphere.
For the magnetic white dwarf ease the anisotropy
in (n- I) will be many orders of magnitude smal-
ler than for neutron stars and will probably be
unobservable despite the much larger volume of
the H-atom atmosphere surrounding the magnetic
white dwarf. For both the neutron star and mag-
netic white dwarf we cannot presently envisage
any experiment that could directly measure the
quantity [o.s(k) —n„(0)].

The electron Zeeman effect for H atoms in the
high-field limit will occur in the x-ray portion
of the electromagnetic spectrum (at ps=10',
AEoz„,„=2psH= 27.2 kev); however, asecond-
order correction to the Zeeman energy [E„(0)
-E„(4)]resulting from the field-dependent spin-
orbit term and the spin-dependent relativistic
kinetic-energy term varies as y' in the high-
field limit (y» 1). This correction to hEz„
is 183 eV at y=10, or about O.V'fo of the first-
order Zeeman effect. Thus it is doubtful that
this second-order Zeeman effect could be detected.

In the present work we have neglected nuclear
spin effects (nuclear Zeeman effect, hyperfine
interaction between the electron and nuclear spine)
in our treatment of the H atom. It is worth point-
ing out that in the strong-field limit the dramatic
shrinkage of the electron wave function mill pro-
duce a corresponding dramatic enhancement of
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the electron-proton Fermi contact hyperfine in-
teraction and the high field will also induce a large
dipole-dipole contribution to the hyperfine inter-
action. The Fermi contact contribution will be
proportional to (((„(r=0)('~Msk' and willcontain
a spin dependence as well. At y=10', [g, (0)I'
can be enhanced by three orders of magnitude,
thus leading to a hyperfine frequency of order
10 ' Hz. Once again, this effect will be masked
by the much larger nuclear Zeeman effect for
the proton, which will now exhibit a resonant
frequency in the ultraviolet (-5 eV) for p = 10'.
Any accurate determination of both these higher-
order effects, the quadratic electron Zeeman
effect and the electron-proton hyperfine interac-
tion enhancement in the high-field limit would

have to take into account the proton spreading
effect."

To summarize, we have shown the dramatic
effect of very large magnetic fields on the elec-
trical polarizability of hydrogenic atoms and we
have calculated the magnitude of the very small
spin-dependent contribution [n(0) —a(4)] for iso-
lated H atoms. The best chance for observing the
spin-dependent contribution at present would

appear to be in the doped semiconductors.
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