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A method derived earlier to analyze one-dimensional systems is applied to the study of
multidimensional isotropic bounded oscillators. The problem is reduced to a one-

dimensional one in order to take advantage of several earlier results. The application of
the method to the harmonic-oscillator model shows that the results so obtained are
excellent.

I. INTRODUCTION

Owing to its great, usefulness in difFerent astron-

omy and physics fields, the bounded-harmonic-

oscillator model has received great interest for

many years. ' ' Among the applications of this
sort of model, we can mention the following:

(a) study of the fundamental mass-radius relation

of the white dwarf theory;
(b) determination of the rate of escape of stars

from galactic and globular clusters;
(c) specific heat of solids',
(d) phase transitions of second order;
(e) the magnetic properties of a system of elec-

trons contained within a cylinder.

Some works related to the-isotropic harmonic os-

cillator have been presented ' but the greatest

number of them are devoted to the one-

dimensional case. The mathematical methods em-

ployed in the analysis of this problem, in a direct

or indirect way, are the conAuent hypergeometric
function' ' " in the majority of cases. . Unfor-

tunately, this sets a limitation on the possible

bounded systems to be studied, and so only the

harmonic oscillator and the hydrogen atom have

been studied so far. Even general methods, like

the WKB approximation, "were only applied to
the harmonic oscillator.

Recently, we have developed a powerful and

general method' ' which allows the analysis of
any one-dimensional bounded system whose poten-

tial energy has the form

V(x)=ex, k ~0.

Through a particular way of combining the hyper-

virial theorems with the perturbation theory, we

deduced a method which permits the treatment of
symmetric oscillators as well as shifted oscillators

under different boundary conditions. In another
paper' we have generalized such a method in or-

der to be suitable for multidimensional systems.
The purpose of this paper is to apply this new

methodology to multidimensional isotropic bound-

ed oscillators (MISO). Hence these models can be
studied without further difficulty with our general-

ized method. ' We do so by a reduction of the
multidimensional problem to a one-dimensional

one, in order to take advantage of several previous-

ly published results. '

The present paper is organized as follows. Sec-

tion II introduces, in general terms, the method to
be used. In Sec. III we deduce the general formu-

las which allow us to obtain the eigenvalue for any

MISO. Finally, Sec. IV deals with the application

to the harmonic oscillator model, and Sec. V gives

a concluding assessment.

II. METHOD

Let us consider the one-dimensional eigenvalue

equation

D2 d0= — +V(x) D —=
2 dx

whose eigenfunctions must satisfy the Dirichlet
boundary conditions in the extreme points of the
finite closed interval [O,b], i.e.,
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$(0)=P(b) =0 .

(4)

where (P ~ P & = 1.
From Eq. (1) it can be deduced at once that

p (b) is related to the derivative of E in a very sim-

ple way

The functions x P'(x) do not belong to the domain
of H because of the boundary conditions (3},so
that hypervirial relationships' adopt a difFerent ex-
pression with regard to the usual ones'3

([H,x D]&= , b -i/'(b)
i
2,

'+ (N —1)(—,N (N —2)—t 2)A ~

c(—2N+k)A~+k '=— b" (10)
Bb

where

AN ( N&

From the power-series expansion in c for A and

E = g E'c', A = g A, c',

Then

Bb
= ——,

I
@'(b}I' the application of the virial theorem

2E c(k+—2)A = b-
Bb

' (12)

([H,x "D]&
= —b"

The calculation of the commutator [H,x D], the
elimination of the D terms from Eq. (1), and the
removal of the D terms' by application of the trivial

hypervirial relations

([H,x"-']
& =0

leads to the formula

,N(N —1—)(N—2)(x &+2NE(x

—2N(x"-'V& —(x V &= —b" . (g)
Bb

%%en the potential energy possesses the form

V(x)=cx +k

2x

Eq. (8) shows a relationship for the derivative of
the eigenvalues as a function of the average values

N&

and the Hellmann-Feynman theorem

BE
Bc

we arrive at an expression which shows the con-
nection between E' and b.

Es(b) ~ b(k+2)s —2

Xo——E'(b =1), s &0,, (14)

k
Es(b As-i(b =1)

S

The previous formulas assure us that it is only
necessary to calculate those terms of series (11) for
b =l.

It is possible to get a recurrence relation which
allows the computation of the whole set [ A, ]
(and consequently of [ E'

) } if BE/Bb is removed
from (10) and (12), and then expansions (11) are re-
placed in the resultant equation

[ (N2 1) t2]AN 22N+k+2 AN+K—
2(N+l)sE' ' 2(N+1)Eo ' ' 2(N+1}EO

1 ~ A~ iAs J
E' j

[ (N2 1} r2]A N 2—
In order to calculate the matrix elements A, through the recurrence relationship, it is necessary to know
only E and to take into account the normalization condition

0~s =&sO.
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III. ANALYSIS OF THE MIBO Eq. (17) transforms into

The Schrodinger equation for an M-dimensional
isotropic oscillator is ——,bP(q)+cq P(q)=WP(q) . (19)

bP(r)+ccorkg(r) =EP(r),
2@i

M g2
r=(xi, xq, . . . , xM),

(17)
If the oscillator is confined within the limits of a
sphere with radius rp, it is necessary that solutions

of Eq. (19) satisfy the Dirichlet boundary condi-
tions over a spherical surface of radius qp,

where c (perturbation parameter) is a scalar and
cprk has energy units. Defining the new dimen-
sionless quantites q and 8'

1/(k +2)

P( q) =0 for q & qo,

(20)

mcp
q, qo (mcofr'——)' '"+ 'ro .

' 2/(k+2)
1

Cp

' k/(k+2)
m

(18)
Applying M-dimensional spherical coordinates, Eq.
(19) may be transformed into a one-dimensional
equation' '

a' M —1 a+
2 Qq2 q Bq

I (I +M —2)
2 f l(q)+cq f.i(q)= ~.if.i(q), f.i(qo)=0 . (21)

As usua&, n and l represent the radial quantum
number and one of the M —1 angular quantum
numbers, respectively. From now on in order to
simplify the notation, we will omit the use of the
subindices n and l.

The definition of the new function g (q)

tions (15) and (16), with b =qo, A:—(q ), and
E = W, permit us to obtain the eigenvalues and
average values of q as a power series of c (or qp).
First we solve Eq. (23) for c =0 in order to get W
and to be able to make the necessary calculations.
The change of variables

""f(q)

permits us to write Eq. (21) in a similar way to
that employed in Sec. II:

——,'g" + U(q) = wg,

(22)

(23)

2

y"+ 1— y=0,

x =(2W )'/ q

transforms Eq. (23) into

(26)

2
U'(q) k+

2q

t2= l (l +M —2)+
2 4

(24) y(x) —x / J (x) p(l) —(0 25+t2) / (27)

Denoting the nth zero of J~(x) with x„~, we have

whose solution is closely related to the Bessel func-
tion J,((x):

g(q) satisfies the Dirichlet boundary conditions W.I =x.I /'2qp .0 2 2 (28)

g(0) =g(qp) =0, (25)

and therefore we can make use of the results given
in the preceding section to solve Eq. (23). Equa-

Consequently, the problem is reduced to a search
for the roots of the BesseI' functions and then to
employ Eqs. (15) and (16).
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IV. EXAMPLE: HARMONIC OSCILLATOR MODEL

24

We choose the harmonic oscillator model in order to illustrate the application of Eqs. (15) and (16). We

pointed out in Sec. II that it is just necessary to make the calculation once for b =qo ——1. Equations {15}
and (16) show the relationships

A = —2s Ai N [i(Nz 1)—tz]A~ ~ N+2 A~+i —t
~ J'—i s —J1—

(N+1}se ' ' 2(N+1)e ' ' (N+1)e

s g0 (29)

[ , (N —1}—t—]AoN+1 2(N+1)e
2

p &nl
e = W.t(qo= 1)=

2

Solving for (29) and (30} in consecutive steps, we obtain the following results:

(30)

(31}

Ao(qo ——1)=———(4 t ), —1 1

3 3e
(32)

Ao(qo=1}=—— ( —,—t )+ ( ——t')(- —t'),4 1 2 is p 2 15 p 3

5 15e 15e
(33)

A, (q, =1)= +[ , ( , t —)———„—( —, —t')]e '+[—„( —, —t')( —, —t') ——, ( —, —t')']e (34)

With the help of these quantities we can express

the dimensionless energy W, corrected up to the
second order:

Ao(n, l,qo) = 1+qo 2(l —1}

&nl
{37)

2

fV= +cA (q =1)q +—A, (q =1)qo.e p g c 2 6

qp 2

(35)

We get for the eigenvalues of Eq. (17):
2frx„t
z+cAo(n, l qo=1)coro

2Ngl'p

mcp2 2

+—A, (n, l,qo ——1} ro
2

(36)

The procedure can be continued to obtain any
desired number of terms in the perturbational ex-

pansions (35) and (36).
For M =2 we have the plane oscillator, which

was briefly discussed by Dingle in his analysis of
the magnetic properties of a system of electrons
trapped in a cylinder. His perturbative study was
made only for the first-order correction. Equation
(32) gives for M =2

which is coincident with that result obtained by
Dingle through the application of the Schafheithin
formula. '

Equation (35} is valid for relatively small qo
values and its accuracy can be improved by adding
new perturbative corrections. One of the main ad-
vantages of the present method rests upon the
property that Eqs. (29) and (30) can be easily pro-
grammed, and it offers the possibility of obtaining
the eigenvalues with extreme accuracy. In Table I
I we show eigenvalues W~p corresponding to the
three-dimensional bounded harmonic oscillator
(M =3) for different choices for qp and with
several perturbative degrees of approximation,
when c =0.5:

W&o(s, qo) = z+ g (0.5}'E~qoj
Wo j=l

&38)

Results show a decrease of accuracy when qp in-

creases, but the value W~p(qp
——2.5) = 1.552 is near

near enough to the asymptotic value W&p(00) =1~ 5.
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TABLE I. Eigenvalues 8'&o(s, qo) for the three-dimensional bounded harmonic oscillator (M =3) calculated from
Eq. (38).

qo 0.5 1.0 ( )1/2
2 1.5 2.0 2.5

1

2
3
4
5
6
7
8

9
10
11

19.774 543
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534
19.774 534

5.076 1386
5.075 580 7
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0
5.075 582 0

3.501 872 7
3.499 9090
3.499 9990
3.500 000 0
3.5000000
3.5000000
3.500000 0
3.500000 0
3.5000000
3.500000 0
3.500 0000

2.511 252 2
2.504 897 6
2.504 973 7
2.504 976 3
2.504 976 1

2.504 976 1

2.504 976 1

2.504 976 1

2.504 976 1

2.5049761
2.504 976 1

1.799 046 0
1.763 341 3
1.764 792 9
1.764 838 2
1.764 816 8
1.764 808 3
1.764 808 7
1.764 808 7
1.764 808 7
1.764 808 7
1.764 808 7

1.672 92
1.536 72
1.549 31
1.552 61
1.551 42
1.551 54
1.551 67
1.551 66
1.551 65
1.551 65
1.551 66

W= g p,qo*, p, =c*X,
s=0

by way of the function

W= W(oo)cothf(qo),

(39)

(40)

where W(ao ) represents the energy of the free os-

cillator (qp
——oo ), and

f(x)= g c,x +' .
s=p

(41)

The coefficients e, can be obtained through the qp

power-series expansion of cothf (qo ) and equaliz-

ing the coefficients in the series with those of (39):

When qp =(
2 ) (the root of the fourth Her-

rnite polynomial) we obtain the exact result

Wtp ——3.5. Furthermore, the approximate analyti-
cal expression (35) is applicable for qp values up to
2.5 with an error of less than 1%. In order to
reach relatively good results in the whole qp inter-
val of values, it is convenient to resort to the cothz
method, presented by Vawter. ' This author pro-
posed the approximation of the perturbative poly-
nomial

c2 ——cp /5 —p ~
e p / W( oo ) —p2c, /W( oo )

5 4 2

+p,c'/8'( ) (45)

In Vawter's original method, ' the coefficients p,
are obtained from the confluent hypergeometric
function. It is a more troublesome procedure than
the direct application of Eqs. (29) and (30). More-
over, Vawter s analysis is restricted to the unidi-

mensional harmonic oscillator, while the present
equations are valid irrespective of the dimension of
the space.

In Table II we display the eigenvalue W~p when

M =3, including 1, 2, and 3 coefficients in the
function f(qo )( Wio', Wio', and Wio', respective-

ly). For the purpose of making a direct compar-
ison, the chosen qp values are coincident with those
previously given in Table I. We can see that the
obtainable accuracy with just three coefficients c, is
excellent within the range of validity of the pertur-
bational polynomial. In order to get appropriate
results in the interval of high qp values, one must
restore the application of the first two coefficients

c, because c2 &0.

(42)

(43)

2j —1

p, =W(co) g . B2Ic,
p (2j)!

Bg 's are the Bernoul li's numbers and c~~'s are the
coefficients of the polynomial f (x) .'

The first three coefficients are

V. FURTHER COMMENTS

In our previous works on one-dimensional sys-
tems' ' we had taken into account only a poten-
tial function

V(x) =cxk .
cp ——W( oo )/e,

c&
——cp /3 —p ~cp /W( oo ), (44)

Then, results presented in Sec. II are a generaliza-
tion of those ones. When t =0, Eqs. (15) and (16)
are coincident with the odd solutions of the sym-



2888 FRANCISCO M. FERNANDEZ AND EDUARDO A. CASTRO 24

TABLE II. Eigenvalues W~p', W~p', and W~p' for the tridimensional bounded harmonic
oscillator calculated from Eq. (40).

qp W)p
(l) W(2)

10
w(3'

10

0.5
1.0

( —)''
2

1.5
2.0
2.5

19.777 190
5.085 856
3.514743
2.524995
1.789065
1.568 680

19.774 534
5.075 555
3.499 913
2.504708
1.763 747 3
1.549 552 0

19.774 534
5.075 582
3.499999
2.504969
1.764743
1.551 204

metric models studied before. The particular case
which was numerically analyzed (n = 1, I =0,
M =3) agree exactly with the second eigenvalue of
the harmonic oscillator symmetrically bounded.
An interesting feature regarding the virial theorem
is that its mathematical expression is independent
oft. It is owed to the fact that t /2x is homo-

geneous of degree —2. In the one-dimensional
case as well as in the present case, our results

13—16

are the most accurate which have been reported up
to now.

We deem it necessary to point out that our
method permits the treatment of any bounded os-

cillator with identical ease. One can include Eqs.
(15) and (16) for any k &0 in a sole program. This

property constitutes a striking difference with

respect to other existing methods. ' ' " Be-
sides, the recurrence relation (30) allows us to get a

set of relationships which involve integrals of the
Bessel functions. Such integrals have the form

I "x"+'J'(x)dx
=x„",W, (q0 ——l)

f "
xJ, (x)dx

(46)

and for N =2 we obtain

x3J, (x)dx
0 ——(

——t') .
ItlI xJ, (x)dx

(47)

We consider that this sort of integral relationship
eventually could be of interest and value in other
fields of physics.

At present, research on this subject is being done
in our laboratory and future results are planned to
be published elsewhere.
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