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Ermakov systems are pairs of coupled, time-dependent, nonlinear dynamical equations

possessing a joint constant of the motion called an Ermakov invariant. The invariant

provides a link between the two equations and leads to a superposition law between solu-

tions to the Ermakov pair. Extensive studies of Ermakov systems in classical mechanics

have been carried out. Here we present a detailed study of Ermakov systems from a

quantum point of view, and prove that the solution to the Schrodinger equation for a gen-

eral Ermakov system can be reduced to the solution of a time-independent Schrodinger

equation involving the Ermakov invariant. We thereby arrive at a quantum-mechanical

superposition law analogous to the classical superposition law.

I. INTRODUCTION

We report on exact solutions to the Schrodinger

equation for certain nonlinear, time-dependent os-

cillators. These systems, called Ermakov systems,
have been studied extensively in classical mechan-

ics, ' ' since their introduction in Ref. 1. The Er-
makov systems we study in this paper are de-

scribed by the Hamiltonian'

H= ,p + 2co (t)q +—2f(q/x),

where q,p are the canonical coordinates, co (t) is an

arbitrary function of time, f is an arbitrary func-

tion of its argument, and x is an auxiliary function

satisfying the equation

x+co (t)x =k/x (2)

q+co (t)q=, f'(q/x),

where f'=df/d(q/x). The form of (2) and (3) is

easily recognized as an Ermakov pair with the Er-
makov invariant'

where k is an arbitrary constant which could be
zero. The equation of motion for q follows from H
and is (p =q)

I is constant if x is any solution to (2) and q is any

solution to (3). The system (2), (3), and (4) is an

Ermakov system.
In the quantum theory of (1), q and p becomes

quantum-mechanical operators p =(fi/i)(B/Bq); the

auxiliary function x remains a c number. The in-

variant I, (4), is a constant Hermitian operator

aI
[I,H]+—=0 .

dt i%
'

Bt

Apparently, Lewis' and Lewis and Riesenfeld'

first used constant operators I to solve time-

dependent quantum-mechanical problems. In par-

ticular, in Ref. 19 they solved the problem for the
time-dependent harmonic oscillator f=0 and

presented the general outline of how to utilize the
constant operator I to solve other quantum prob-

lems. The important point to note here is that H
varies in time H =H(t) in a way that depends

upon the arbitrary frequency co(t). Thus, the eigen-

values of H will change in time and cannot be

determined until co(t) is specified. On the other
hand, I satisfying (5) has constant eigenvalues

which we write as A,„
Ig„(q, t) =A,„f„(q,t), A,„=const .

I=—,(xp —qx) + (q/x) +f(q/x) . —(4)

Here, P„(q,t) denotes an eigenfunctions of I which

will, in general, be time-dependent. Lewis and
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Riesenfeld' showed that the general solution to the
Schrodinger equation for (1)

fP 8 i 2 2 1Hg= ——
2 + , co (t—)q + f{q/x) P(q, t)

Bg x

=i% a
at '

I=—,(xp —xq) + (—q/x) +f(q/x) .

=U n (14)

The key point of our analysis is to perform the uni-
tary transformation

(q t) e Ix) /(2%0)f {q t)

can be written in the form

g(q, t) = g c„e "
1(„(q,t), (8)

The operator I changes into I'.

{15}

where c„are constants, g„(q, t) are the eigenfunc-
tions of I defined by (6} and the phase functions
a„(t) are found from the equation

The eigenvalue equation (12) is mapped into

(16)

f„ i A —Hg„—

where we have arranged the states P„(q,t) to be
orthonormal

(9)

(10)

where we find by straightforward calculation that

I'= x—+ (q/x) +—f(q/x) .2 8 k

Bq

If we now define a new independent variable
O.=q/x we can write the eigenvalue equation in
the form

For simplicity we assume I to have a discrete spec-
trum. The time-dependent phases a„(t) are chosen

ia„(.t)to satisfy (9) so that e " g„(q, t) satisfies the
Schrodinger equation (7) for every n The g. eneral
solution to the Schrodinger equation is then the
linear combination of these elementary solutions
(8). Lewis and Riesenfeld' solved explicitly for
A,„,a„(t) for the time-dependent harmonic oscilla-
tor.

More recently Khandekar and Lawande
solved the quantum problem using the Lewis-
Riesenfeld theory for the case when f=cx /q
which yields the Hamiltonian

8 k
2 + o+f(—o) P„(o)=k„P„(o),

or

where

Q„'(q,t)=,q2$„(o)=,/ P„(q/x) .
1 1

(19)

The factor 1/x ' is introduced into {19)so that
the normahzation conditions

H= p+ , t0 (t)q -+—,-.
q f f„"(q,t)f„'(q, t)dq = I P„'(o )P„(o)do = 1 (20)

In this paper we reduce the solution of the
Schrodinger equation (7) to the solution of a time-
independent one-dimensional Schrodinger equation
incorporating the results for f=0,f=cx /q just
mentioned into a framework valid for arbitrary f.

hold. The important point is that the transformed
eigenvalue problem (18) is an ordinary one-
dimensional time-independent Schrodinger equa-
tion with potential

V(o)= o+f(o) . —k
2

II. SOLUTION TO THE SCHRODINGER
EQUATION

The central equation of Lewis-Riesenfeld tech-
nique is the eigenvalue equation for the invariant

We can make use of the extensive knowledge about
solutions to this equation to find the eigenvalues
lL,„and eigenfunctions P„(cr). Once we have the
orthonormal eigenfunctions P„(o) we can construct
the Lewis-Riesenfeld orthonormal states via

If„(q,t) =A,„f„(q,t),
where

(12)
Q„(q,t)=,q2e s ri 'p„(q/x) . (21)
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There remain the problem of finding the phases
a„(t) which satisfy

1(„ i A —H—f„ (22)

where we have used the auxiliary equation (2) to el-
iminate co (t) from H. Next substituting

(24)

into (23) we find

2
I'da„

dt x2 (25)

Finally using (18) and the normalization of p„we
have

dan

x
(26)

with solution

'" dta„(t)= — f (27)

Thus, the phases a„(t) are determined in terms of
the eigenvalues A.„and the integral of the auxiliary

function f dt/x .
To summarize the results of this section the ex-

act solution to the Ermakov Schrodinger equation

(7) is

Carrying out the unitary transformation U the
right-hand side of Eq. (22) becomes

il
" = ii„' iil————0 ~ — I' g„'),

da„, . 3 x fi 8 xi%
Bt x t Bq 2x

(23)

III. DISCUSSION

q=xr, (31)

where r is the general solution to the autonomous
equation

dr

where the independent variable ~ is defined by

(32)

There are two Ermakov systems, of those under
consideration in this paper, for which the
Schrodinger equation (7) does not depend on the
auxiliary variable x. These are (1)f=0 the
Lewis-Riesenfeld' harmonic oscillator problem
and (2) f=cx /q, the problem treated by Khan-
dekar and Lawande 2o, 2& In all other cases the aux-

iliary function x appears in the potential energy of
the Schrodinger equation (7). It is then to be inter-

preted as an external field whose time dependence
is to be determined from the auxiliary equation (2).
In the uncoupled Ermakov systems f=0,
f=cx2/q2, x is just an auxiliary variable whose

particular form drops out of any calculation of
transition matrix elements. ' However, in the cou-

pled case x is a physical field whose form deter-
mines the interaction of the system with the field

through the interaction potential (1/x )f(q/x).
Our solutions, of course, hold for both the coupled
and uncoupled Ermakov systems. The division

into coupled and uncoupled cases also occurs in
the classical case. '

We have proven in this paper that the solution
to the Ermakov Schrodinger equation (7) reduces
to solving the one-dimensional Schrodinger equa-
tion (18). This has an interesting analog in the
classical theory. The classical result is that the
general solution to the equation for q, (3), can be
written

P(q, t) = g c„e "
1(i„(q,t), (28) d~=dt/x (33)

where,

~na„=—
x 2 s

c„=( 1(„(q,O), 1(i(q, O) )e

(29)

(30)

(31)

2

I=—, + r+f(r), —dr k
d~ 2

(34)

In (31) x is any particular solution to (2) in the un-

coupled case or the external field solution to (2) in

the coupled case. Equation (32) has the energylike
first integral

A,„and iI)„(o) are determined from the one-

dimensional Schrodinger equation (18) and x is any
solution to the auxiliary equation (2).

which can be proven to be equal to the Ermakov
invariant I, Eq. (4).' ' The law (31) for obtaining
the solution to q in terms of the solution to x and r
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is called a superposition law. ' "' Thus, we see a
close connection between superposition in the clas-
sical case and the reduction to the one-dimensional
Schrodinger equation, (18), in the quantum case.
In fact Eq. (28), together with (29) and (30), is a
quantum-mechanical superposition law. It is in-
teresting that the same variables I (dtlx ), q/x
appear in both the classical and quantum superpo-
sition laws. This correspondence between classical
and quantum superposition rules for Ermakov sys-
tems could imply a similar relationship for other
types of superposition laws, e.g., Backlund
transformations, etc.

Since the work of Lewis and Riesenfeld there
have been other studies of the solution of the time-
dependent Schrodinger equation. Extensive work
has been done at the Lebedev Institute of Physics
in Moscow. Some of this work along with refer-
ences to other work by this group may be found in
Ref. 22. Also work by Burgan is along the same
lines.

Part of this work was performed while J. R. Ray
was a participant in the NASA-ASEE Summer

Faculty Fellowship Program at the Marshall Space
Flight Center.
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