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It is shown that any time-dependent description of quantum systems derived from the varia-
tional principle is equivalent to Hamilton’s description of a classical system. This is done by es-
tablishing the fact that the Euler’s equations from the variation of the wave function in any
parametrization can be transformed to a system of Hamilton’s equations. The problem of ob-
taining collective dynamical variables in quantum many-body systems is discussed in the light of

this equivalence.

1. INTRODUCTION

We show in this Communication that any time-
dependent description of a quantum system derivable
from the variational principle (£ =1, 9, =49/0x)

sf" (¥|(i9,— H)|¥)dt =0 m
‘o

for ¥ in an arbitrary manifold in the Hilbert space of
normalized wave functions, is equivalent to a classical
Hamiltonian system.

For the exact time-dependent Schrédinger descrip-
tion, i.e., for the case that the manifold is the full
Hilbert space, such an equivalence is well known.!
Recently, the interests in large amplitude dynamics of
many-body systems have led to active investigations
on the variational principle (1) in various types of
submanifold. Our knowledge on the equivalence of
the variational principle and classical Hamiltonian
systems is now widened to include many cases. They
are time-dependent Hartree-Fock? in which the mani-
fold consists of single Slater determinants, the
dynamics derived from manifolds generated by two
parameters,’ and the dynamics derived from mani-
folds with symplectic structure.* Having seen these
many cases where the equivalence holds, one may
ask whether this equivalence is a general property,
valid for any submanifold in the Hilbert space of nor-
malized wave functions. We show in this Communi-
cation that it is indeed the case.

In order to show the equivalence of (1) and a clas-
sical Hamiltonian system, we utilize parametric
representation of the manifold. That is, we consider
normalized wave functions ¥ which depend on a set
of parameters, such that as these parameters vary, ¥
traces through every element of this manifold. We
then show that the variation in an arbitrary manifold
can be reduced to the variation in a smaller manifold
with a symplectic structure due to the special prop-
erty of the variational functional that it is linear in
the time derivative of the parameters. Then the

result on the symplectic manifold* can be used to
transform the equations of motion to Hamilton’s
canonical form. However, we present an alternative
method for the transformation to canonical form,
which has the advantage that it explicitly transforms
the variational functional in (1) into a Lagrangian.
Thus, the equivalence of (1) and the Hamiltonian
system becomes more transparent. The paper con-
cludes with some remarks on the theories of collec-
tive dynamics in many-body systems.

II. PROOF OF EQUIVALENCE
A. Euler’s equations of motion
In a manifold generated by n real parameters

a=(ay, ...,a,), the variational principle (1) can
be rewritten as

sj:;'s

where the variational functional & is

—~da
,——|dt=0 , 2
&= (2)
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a"T‘flsw(a)l(ia,—H)lw(a))

=/"d—‘:- (¥|ao¥) — (W[H|¥) . 3)
Only normalized ¥ are considered in this paper.’~’
The variational principle leads to a set of # Euler’s
equations of motion for the parameters
a..s-%aﬁ.,,,sho , )

which now takes the form
= _nda
B(&) 4L —5_(H) . 5
(a) 7 0z (H) (5)
Here, (H)= (¥|H|¥) and the matrix B is antisym-
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metric and is given by
By(@) =i((8a,¥|8,,¥) — (3, ¥|8, %)) . (6)

It follows that all the variational descriptions with a
constant Hamiltonian conserve the average energy
(H): d(H)/dtvanishes by (5) and by the antisym-
metry of B.

The objective in this Communication is to trans-
form the equations of motion (5) into a system of
Hamiltonian equations.

B. Legendre transformation is impossible

We note first that the procedure of applying the
Legendre transformation® to cast the Euler’s equa-
tions (4) or (5) into Hamiltonian canonical form fails
here. The Legendre transformation is based on the
introduction of a set of canonical conjugates
Pa=10;7/5F(&, 8a/31) of &, and then use P, and
o as new independent variables. However, in the
present situation the variational functional § in (3) is
linear in d9&’/9t. As a result the canonical conjugates
P, defined in this way are functions of a but not a
function of da/9dt. Therefore, one cannot use P, to
eliminate da/df and P, and & cannot serve as new
independent variables. The Legendre transformation
is hence impossible. Nevertheless, as we show in the
following, the equations of motion (5) can still be
transformed by other means into a set of Hamiltoni-
an equations, although the resulting set will consist
of fewer equations than 2z as would be the case if
the Legendre transformation were possible.

C. Reduction to éven number of parameters

Before transforming (5) to Hamiltonian canonical
form where the canonical variables always appear in
pairs, we first show that the number of parameters
can always be reduced whenever this number is
0dd.*10

If nis odd, then det(B) vanishes identically'! be-
cause of the antisymmetry of B. It follows that there
exists a linear combination of the n Euler’s equations
(5) which vanishes identically. That is, one can find
n functions (&), such that

T(&) 95 (H)=0 . 0]

In fact, Eq. (7) can be transformed to a stationari‘ty
condition of the energy in terms of a new variable 8

by the transformation (ay, . .., a@,)— (8, az . .., a,)
which' satisfies the condition
%%=a( &) . ®)

Then, Eq. (7) will reduce to the stationarity condition
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Therefore, when det(B) is zero, the variational prin-
ciple determines the value of this new parameter 8 at
which the energy of the system is stationary.

We are now left with only » —1 parameters and
n —1 Euler’s equations of the same form as (5) to
deal with. If the determinant of the matrix B in this
set of new Euler’s equation is zero, we can apply the
above procedure of reducing the number of parame-
ters again. At the end of a repeated application of
this procedure, we shall have a nonsingular §, and in
that case the number of parameters involved is
necessarily even.

For the special case n =1, the above result that the
variational principle leads to a stationarity condition
has been pointed out by Kerman and Koonin.2 In
that case the Euler’s equation is in itself the sta-
tionarity condition (9) on the single parameter in-
volved.

D. Transformation of 2m parameters to m pairs
of canonical variables

_ We now show that the set of Euler’s equations (5)
for n =2m parameters a can be transformed to m
pairs of Hamiltonian equations.

When the number of parameters is even, the mani-
fold with an antisymmetric B is symplectic.* One can
use the method of Rowe et al.,* to transform the
equations of motion to Hamiltonian canonical form.
We here present an alternative method which is a
generalization (and a simplification) of that employed
in Ref. 3 for the case of two parameters. This
method gives an explicit set of differential equations
for the transformation, which can be solved by a
power series. It also transforms directly the varia-
tional functional to the form of a Lagrangian.

We seek here m pairs of new parameters

d=(q1,....,q9,) and P=(py, . . ., p) satisfying

the following conditions: :
i(¥]dz¥)=F , (10a)
i(¥[a5¥)=0 . (10b)

If these new parameters can be found, then the ma-
trix B will have elements

Bop, = i(0q (¥|0,¥) =9, (¥]3,¥))=—8; , (lla)

Bq,q/ =B,

i

»,=0 . (11b)

for i,j=1, ...,m, and the Euler’s equations (5)
reduce immediately to m pairs of Hamiltonian equa-
tions

9T _ 5 e T
o 35;%(T,p) , (12a)

L G (12)
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with the ‘‘classical Hamiltonian> 3¢(q, p) = (H ).

We did not initially label the variational functional
¥ in (2) as a Lagrangian, since it is neither derived
from the definition that it is equal to the difference
of a kinetic energy and a potential energy, nor is it
connected to a Hamiltonian by the Legendre
transform. However, after the transformation to
canonical variables p and @ such a terminology be-
comes appropriate. For in terms of P and @, we
have

F=p-7-%(T,p)=2 . (13)

In terms of the Lagrangian, the equivalence of the
variational principle (1) and Hamiltonian dynamics
becomes most transparent, since the Euler’s equa-
tions obtained from (1) by varying § and P indepen-
dently are exactly the set of Hamiltonian equations
(12).

Equations (10) are satisfied if and only if we can
solve the following 2m equations

P8, a=fi(@), i=1,....2m , 14

where the functions,
S =i (¥]o, ¥) (s)

are known and are real as guaranteed by the norm
conservation of ¥. To solve this set of equations
one can solve the first m equations algebraically for p
and substitute the results into the rest, obtaining m
equations for T:

aalql tre aalqm. fl
aumql e aamqm fm =0 (16)
9aq1 0 Bafdm i

i=m+1,...,2m

This set of first-order partial differential equations
can be solved as Cauchy’s initial value problem.'?
One can construct a power-series solution!? of this
type of problem about an ‘‘initial value’’ of one vari-
able, a,, say. That is, at a; =0 we choose for
@ (&) m arbitrary but fixed functions of the variables
ay, a3, .. .,a),. From this choice of ‘‘initial values’’
we can calculate all the partial derivatives of @, which
do not involve the differentiation with respect to a;.
With this information, the set of differential equa-
tions (16) and its derivatives will allow one to evalu-
ate 6,,16', 6,.18.,1,('1’, i=1,...,2mand all higher
derivatives involving a;. We can then generate a
power-series solution (&) of (16) about a; =0.
The conjugate momentum P( &) can be obtained
from (14) by direct differentiation.

Thus the equations (14) which define the transfor-
mation of the 2m arbitrary parameters & to (T, p)

can be solved, and in this new set of parameters the
equations of motion (5) are in Hamiltonian canonical
form. The equivalence of the variational principle
(1) and Hamiltonian system is hence established.

For the case of two parameters («), a;), Egs. (14)
and (16) reduce to

P—q‘a =filay, &) , (17a)
aal
P2~ f)(ay, ) (17b)
aaz
and
Oq _, 9 _
fa Si =0 . (18)
aal aaz

Equation (18) can be solved by elementary meth-
ods.!* With the solution ¢ (a;, a;) from (18),

p(ay, ay) can be calculated by direct differentiation in
either (17a) or (17b), completing the transformation
to canonical variables. Comparing with the method
presented in Ref. 3 for two parameters, one can see
that the present method is simpler.

III. DISCUSSION: REMARKS ON COLLECTIVE
DYNAMICS

While our result is completely general and applica-
ble in any field of physics where the variational prin-
ciple (1) is considered, we point out in particular its
consequences on the theory of collective dynamics in
many-body systems here.

The basic problem in the theory of collective
dynamics is to identify the collective variables and to
derive the dynamical equations governing these vari-
ables. Some progress'*~!” has been made on this
problem in the time-dependent Hartree-Fock in re-
cent years. Villars'* was the first to construct a two-
parameter wave function and to show in the adiabatic
approximation that the parameters involved are
canonical variables through a pair of Hamiltonian
equations. Many authors'” have followed with simi-
lar parametric wave functions.

The proof of equivalence presented here shows
that in fact one can always introduce collective
parameters in the wave function to describe the de-
formation of the system and then transform the
equations of motion into Hamiltonian canonical form.
The new parameters (@, P) can be properly called the
dynamical collective variables as they are now en-
dowed with a dynamical meaning through the Hamil-
tonian equations. Villars’s parametric wave func-
tion' is then seen to be one out of many possibilities
as there is no restriction in the way of introducing the
parameters in our derivation. This freedom may al-
low one to find alternative canonical collective vari-
ables should Villars’s commutation condition!* fail.
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Adiabatic assumption is crucial in many recent
studies of collective phenomena.!*"!” One advantage
of the adiabatic assumption is that it leads to a (clas-
sical) collective Hamiltonian quadratic in momenta,
so that this Hamiltonian can be requantized by stand-
ard techniques.!®* However, we should not limit our-
selves from considering more general collective
phenomena just because of this advantage. In fact,
alternative ‘‘requantization’’ methods for general
large-amplitude, nonadiabatic situations have been
proposed recently in the gauge-invariant periodic
quantization (GIPQ) method*’ and in the path in-
tegral method."’

The present result of equivalence has direct conse-
quences on the GIPQ method, since that method is
based on the very same variational principle (1). It is
shown in Ref. 7 that in terms of the canonical vari-
ables the gauge-invariant periodic quantization condi-
tion takes the form of the Bohr-Sommerfeld quanti-
zation rule. The wave functions in the GIPQ method
are then equivalent to the quantized periodic orbits in

certain Hamiltonian systems. This result not only
adds physical insight to the GIPQ method but also
directs the attention of the researchers in that field to
the current research? on the periodic orbits of Ham-
iltonian systems.

Recently, the present author has shown?! that the
collective Hamiltonian for the rotation of the many-
body system about a fixed axis can be obtained from
the variational principle by use of two parameters,
the angle of rotation and its associated current, and
that the GIPQ on this parametrization.leads to the
correct quantization of the angular momentum. This
is a very encouraging result. Based on the present
result for general parametrization, one may hope to
eventually derive the Bohr collective Hamiltonian?
from a 10-parameter variation, 3 Eulerian angles, 2
intrinsic deformations, and their (5) associated
currents.
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