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Hydrodynatnic singularity in the spinodsl decomposition of a binary liquid
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The long-wavelength diffusion involved in spinodal decomposition in the critical region depends upon transport of
the concentration fluctuations by the hydrodynamic shear modes. As spinodal decomposition advances the

concentration fluctuations become peaked at some wave number k,. We demonstrate here that the Onsager

coefficient for such a fluid is also strongly wave-number dependent and develops a logarithmic singularity at k,.
This will tend to enhance and speed up the spinodal decomposition and will significantly affect the comparison of

theory with experiment.

Recent experimental work" has demonstrated

how the metallurgically important phenomenon of

spinodal decomposition can also be observed in a
binary liquid. This is accomplished by abruptly

changing the temperature of the liquid so as to
bring it past its critical, or consolute, point. The

purpose of this paper is to point out that the theory
that has been developed for solids' ' cannot be ap-
plied without modification to spinodal decomposi-
tion in liquids. This is because of the essential
role played by the hydrodynamic shear modes in

the latter case. We discuss this complication and

give explicit results for the special cases of great-
est interest —the initial" and the mell-advanced

phases of spinodal decomposition. In the latter
case we find that the phenomenon is enhanced by

a singular contribution from the long-wavelength

hydrodynamic modes.
In the very first stages of spinodal decomposition

the growth has just started and the concentration
fluctuations are still described by the equilibrium
Ornstein-Zernike (OZ} correlation function'

C
g(k, z)

where k is the wave number, z ' the correlation
length, and C a constant proportional to the iso-
thermal derivative of the concentration with re-
spect to osmotic pressure. The flow in response
to a thermodynamic force tending to change the
concentration fluctuation of wave number k has
been calculated from mode coupling by Kawasaki'
and from the equivalent decoupled-mode approxi-
mation by the present author. " It is described by

the nonlocal Onsager coefficient (neglecting the
noncritical background contribution)

x (a, s) = I(—), .

where the relatively small effects produced by the
critical variation of the shear viscosity" g are
neglected here. The Kawasaki function of the di-
mensibnless momentum ratio z = k/z is

1 1 1 i
L, (z) =—,+ ———,

i
tan 'zz' z z'&

3y z=04

z/(2z), z» 1. (3)

The regression of the fluctuations at equilibrium
is described by the nonlocal diffusion coefficient

( )
z(k z)
g(k, z)

' (4)

Substitution from Eqs. (1)-(3) gives the familiar
results'" D(0, z) = Tz/6zg and D(k, 0) = Tk/16'}
for the hydrodynamic and extreme nonhydrodynam-
ic limits, respectively. (The temperature T is
measured in units such that Boltzmann's constant
equals one. )

When the fluid is brought out of equilibrium and
spinodal decomposition starts, Eq. (4) can no long-
er be used. Instead, the factor gg ' is replaced
by a k-dependent function which is negative over
a range of small k values and which contrasts
with the positive definiteness af Tg (a property
also af nonequilibrium distributions}. This change
describes qualitatively the thermodynamic forces
which tend to produce growth rather than regres-
sion of the fluctuations. The resulting negative
diffusion coefficient is, however, also strongly
affected by the k dependence of A.(k, z). This is
the additional feature which is lacking in the spin-
odal decomposition of solids, where A. can be as-
sumed to be a constant. The full variation of
X(k, z} is shown by the plot of L(z) in Fig. 1 (curve
labeled OZ). In comparisons of theory with ex-
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sired g-function distribution in the form

Img(k, -ikg =——5(k —k, ) .r C

0
(5)

finite value corresponding to

2
ReL(i+5) = -1+ln —, (10)

We remark in passing that the corresponding cor-
relation function in configuration space is

jhpr
= Im =—sink py,r r

Kl
Im

K =Qkp

as expected for the Fourier transform of a k spec-
trum concentrated on a spherical shell of radius

k,. As g occurs linearly in the integral for ~, we

impose on Eq. (2) the analytic continuation indi-
cated in Eq. (5), to find

Ima(k, -ikg =
8 k

ReL(iv}.C
7Tg p

Here v =
~
z

~

= k/k, and the Kawasaki function has
become

1 1 1 t

ReL(iv}=-—,+ —+ —,
~
Imtan 'iv

v v v j

1 1 &1 11 1+v=-—,+—
/

—+—,
f

lnv' 2 (v v'] )1-vl
The logarithmic singularity at v =1 is exhibited in

Fig. 1. It is due to the divergent behavior of the
long-wavelength hydrodynamic modes, which

would contribute even more strongly in the inte-
gration if it were not for their transverse nature.

The treatment of the above paragraph is easily
modified to correspond to a peak of small but finite
width. Rotation of z by s/2 —5, where 0(5«1,
replaces vk, '5(k -kg in Eq. (5} by 5/[(k -kJ'
+k~5'], with a full width at half maximum of 2k05.
This replaces Eq. (8} by

plus O(5'ln'5}. This is illustrated by the dashed
curve in Fig. 1 which has been drawn for 5 = —,',
(or a full width at half maximum in the peak in

g of k,/10). In this case, where the spinodal de-
composition is rather far advanced, Eq. (10) is
equal to 2.69. This relatively sharp structure in
the Qnsager coefficient will tend to promote growth
at k = k, and enhance the peak more than would be
the case without the hydrodynamic singularity.
Because of the linearity of the problem, the Qn-
sager coefficient for more complicated distribu-
tions can be obtained from superpositions of curves
of the type shown in Fig. 1.

To summarize, the spinodal decomposition de-
pends upon a wave-number-dependent thermody-
namic force and a wave-number-dependent Qnsa-
ger coefficient. The latter is a constant in the
solids, but its k dependence cannot be ignored in
the fluids. In general, this requires a straight-
forward integration' that has to be carried out at
each stage of the spinodal decomposition, based
upon the concentration fluctuations which have
developed up to that point. But the problem sim-
plifies in the two special cases: (a) the beginning,
where the familiar Kawasaki equilibrium expres-
sion can be used, and (b} the end, where an ana-
lytic continuation of the Kawasaki expression can
be applied. In the latter case, the hydrodynamic
logarithmic singularity enhances further peaking
of the k distribution of the concentration flucuta-
tions.

1 1 1 1 & 1+vReL(iv+5}=-—,+——+—,
~

ln . (9}v' 2 v v' j I1-v+i6l

plus terms of O(5). The onsager coefficient now

no longer diverges at v =1 but instead takes on a
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