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Hydrodynamic singularity in the spinodal decomposition of a binary liquid

Richard A. Ferrell
Department of Physics and Astronomy and Institute for Physical Science and Technology, University of Maryland, College Park,
Maryland 20742*
and Physik Department, Technische Universitit Miinchen, James Franck Strasse, 8046 Garching bei Miinchen, Germany
(Received 27 April 1981)

The long-wavelength diffusion involved in spinodal decomposition in the critical region depends upon transport of
the concentration fluctuations by the hydrodynamic shear modes. As spinodal decomposition advances the
concentration fluctuations become peaked at some wave number k,. We demonstrate here that the Onsager
coefficient for such a fluid is also strongly wave-number dependent and develops a logarithmic singularity at k,,.
This will tend to enhance and speed up the spinodal decomposition and will significantly affect the comparison of

theory with experiment.

Recent experimental work'? has demonstrated
how the metallurgically important phenomenon of -
spinodal decomposition can also be observed in a
binary liquid. This is accomplished by abruptly
changing the temperature of the liquid so as to
bring it past its critical, or consolute, point. The
purpose of this paper is to point out that the theory
that has been developed for solids®*® cannot be ap-
plied without modification to spinodal decomposi-
tion in liquids. This is because of the essential
role played by the hydrodynamic shear modes in
the latter case. We discuss this complication and
give explicit results for the special cases of great-
est interest—the initial®” and the well-advanced
phases of spinodal decomposition. In the latter
case we find that the phenomenon is enhanced by
a singular contribution from the long-wavelength
hydrodynamic modes.

In the very first stages of spinodal decomposition
the growth has just started and the concentration
fluctuations are still described by the equilibrium
Ornstein-Zernike (OZ) correlation function®

C
g(k’K)=k2+K2’ 1)

where % is the wave number, «™! the correlation
length, and C a constant proportional to the iso-
thermal derivative of the concentration with re-
spect to osmotic pressure. The flow in response
to a thermodynamic force tending to change the
concentration fluctuation of wave number % has
been calculated from mode coupling by Kawasaki®
and from the equivalent decoupled-mode approxi-
mation by the present author.!® It is described by
the nonlocal Onsager coefficient (neglecting the
noncritical background contribution)

Mk )= g L(f) , @

|¥®

where the relatively small effects produced by the
critical variation of the shear viscosity'! n are
neglected here. The Kawasaki function of the di-
mensionless momentum ratio z=k/k is

1 1 1 -
L(z2) =zt (;—?) tan™'z

{'43" z=0
- 1/(2z), z>1. @)

The regression of the fluctuations at equilibrium
is described by the nonlocal diffusion coefficient

_ AR, k)

D(k, k) Tg_—J_(k,x) . (4)
Substitution from Eqs. (1)-(3) gives the familiar
results®!° D(0, k) =Tk /6an and D(k, 0)= Tk/16n
for the hydrodynamic and extreme nonhydrodynam-
ic limits, respectively. (The temperature T is
measured in units such that Boltzmann’s constant
equals one.)

When the fluid is brought out of equilibrium and
spinodal decomposition starts, Eq. (4) can no long-
er be used. Instead, the factor Tg™ is replaced
by a k-dependent function which is negative over
a range of small & values and which contrasts
with the positive definiteness of Tg™ (a property
also of nonequilibrium distributions). This change
describes qualitatively the thermodynamic forces
which tend to produce growth rather than regres-
sion of the fluctuations. The resulting negative
diffusion coefficient is, however, also strongly
affected by the # dependence of A(k,k). This is
the additional feature which is lacking in the spin-
odal decomposition of solids, where A can be as-
sumed to be a constant. The full variation of
A(k, k) is shown by the plot of L(z) in Fig. 1 (curve
labeled OZ). In comparisons of theory with ex-
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FIG. 1. L(z) vs |z| for real and imaginary z, repre-
senting the nonlocal Onsager coefficient for equilibrium
(OZ) and advanced spinodal decomposition, respectively.
|z| is the wave number in dimensionless units. The
diverging curve represents the extreme case of an iso-
tropic 6-function distribution of fluctuations concen-
trated at |z| =1. The logarithmic singularity results
from the diverging contribution of the long-wavelength
hydrodynamic shear modes and is cut off for a “6
function” of finite width. The dashed curve is drawn
for a distribution twice as sharp as that shown in Fig.
2. Because of linearity, the functions can be super-
posed.

perimental data on the initial stages of spinodal
decomposition it is essential to take this variation
into account.

The purpose of this paper is to demonstrate the
effect of the hydrodynamics on the Onsager coef-
ficient. For this reason we limit our attention to
the numerator of Eq. (4). In fact, we will no long-
er have reference to Eq. (4), which has served
primarily to introduce the important role played
by the Onsager coefficient. We do not attempt a
full description of the spinodal decomposition pro-
cess. It is not in general possible to follow the
course of the spinodal decomposition by means of
a simple equation such as Eq. (4). It is instead
necessary to join the theory of the Onsager coef-
ficient, which we present here, to some theory
of the thermodynamic forces (including the Brown-
ian motion effects) such as that of Langer and
Bar-on.® Our goal is the more modest one of
describing the hydrodynamic modification that
has to be taken into account at any given stage
of the process. The calculation of the actual
amount of the modification depends upon the size
of the fluctuations that have accumulated since the
moment that the system was brought out of equi-
librium and the spinodal decomposition started.
At any given stage of the spinodal decomposition
the accumulated fluctuations are described quan-
titatively by the correlation function g.

BRIEF REPORTS 2815

The % dependence of A becomes even more pro-
nounced in the later stages of the spinodal decom-
position of a fluid. The growth occurs in a re-
stricted % range, leading to the formation of a
peak in g centered at some value k,. This can
reasonably be represented by a more-or-less
sharp 6 function, as shown in Fig. 2. For com-
parison, the initial OZ form for g is also shown,
rescaled by setting k =%,. The & dependence of A
corresponding to an arbitrary g can be calculated
explicitly from the convolution integral of Eq. (5)
of Ref. 10 and its generalization to finite wave
number [as described in connection with Eq. (15)].
This is because the critical slowing down of dif-
fusion permits us to neglect the time dependence
of the concentration fluctuations, relative to the
time scale of the hydrodynamic modes. Conse-
quently, A is simply a linear response function
based on the transport of some frozen-in distri-
bution of fluctuations. To calculate A from the
Kubo formula, as in Ref. 10, it is not necessary
to assume that the concentration fluctuations have
an equilibrium distribution.!?

From the above remarks it is clear that it is a
straightforward task to carry out the necessary

"integration for A based upon any arbitrary g. But

for the special case of interest here g 6(k —k,),
we can even spare ourselves this trouble by recall-
ing that the OZ form for g is nothing other than a
pole in the complex k2 plane, located at k= —«Z.

By formally setting x*=k2 (which no longer has

any direct connection with the initial equilibrium
value of k) and rotating the pole by 180° clockwise
about the origin, we can bring the pole to the posi-
tive real axis, at k2=k2. Taking now the imaginary
part of the resulting expression for g gives the de-
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FIG. 2. Distribution of concentration fluctuations g vs
wave number % for equilibrium (OZ) and advanced
spinodal decomposition centered at k=%,. The distribu-
tions can be superposed with arbitrary relative weight
and scale,
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sired 6-function distribution in the form
1r
Img(k, ~ik) =2 <5 (k ~ k). (5)
2 k,
We remark in passing that the corresponding cor-
relation function in configuration space is
eikor

Im =Im -1 sink,7 , (6)
Y lk=irg r r :

as expected for the Fourier transform of a % spec-
trum concentrated on a spherical shell of radius
k,. As g occurs linearly in the integral for A, we
impose on Eq. (2) the analytic continuation indi-
cated in Eq. (5), to find

TroA (, —ik,) =—8—$7,TReL(iv) ) (7)
0

Here v=|z |=k/k, and the Kawasaki function has
become

1 1 1
ReL(iv)=-—+ (— + —-5) Imtanjp
v v v

1 1/1 1 1+p
s (e . 8
v2+2<v+vs)mll—vl (®)

The logarithmic singularity at y =1 is exhibited in
Fig. 1. It is due to the divergent behavior of the
long-wavelength hydrodynamic modes, which
would contribute even more strongly in the inte-
gration if it were not for their transverse nature.

The treatment of the above paragraph is easily
modified to correspond to a peak of small but finite
width. Rotation of k by 7/2 - 6, where 0<6<1,
replaces mk;'5(k — kg) in Eq. (5) by 6/[(k - k,)*
+k262], with a full width at half maximum of 2k..
This replaces Eq. (8) by

i+5) =il )1ty
ReL (v +0) v2+2(v+v3)ln|1—u+i51 ©

plus terms of 0(6). The Onsager coefficient now
no longer diverges at v =1 but instead takes on a

finite value corresponding to
ReL(i+5)=—1+ln§ s (16)

plus O(6%21n%5). This is illustrated by the dashed
curve in Fig. 1 which has been drawn for 6= -217,

(or a full width at half maximum in the peak in

g of k,/10). In this case, where the spinodal de-
composition is rather far advanced, Eq. (10) is
equal to 2.69. This relatively sharp structure in
the Onsager coefficient will tend to promote growth
at 2=k, and enhance the peak more than would be
the case without the hydrodynamic singularity.
Because of the linearity of the problem, the On-
sager coefficient for more complicated distribu-
tions can be obtained from superpositions of curves
of the type shown in Fig. 1.

To summarize, the spinodal decomposition de-
pends upon a wave-number-dependent thermody -
namic force and a wave-number -dependent Onsa-
ger coefficient. The latter is a constant in the
solids, but its & dependence cannot be ignored in
the fluids. In general, this requires a straight-
forward integration’ that has to be carried out at
each stage of the spinodal decomposition, based
upon the concentration fluctuations which have
developed up to that point. But the problem sim-
plifies in the two special cases: (a) the beginning,
where the familiar Kawasaki equilibrium expres-
sion can be used, and (b) the end, where an ana-
Iytic continuation of the Kawasaki expression can
be applied. In the latter case, the hydrodynamic
logarithmic singularity enhances further peaking
of the k distribution of the concentration flucuta-
tions.
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