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A model for systems interacting via soft inverse-power potentials enables one to express the bridge function at the
origin, B(0), directly in terms of the equation of state, and to find its physical meaning. The Lindemann, Ross, and
van der Waals empirical melting criteria are unified by the empirical finding that B(0O), calculated along the freezing

line, is nearly independent of the pair potential and is nearly the same in two and three dimensions.

The idea of universality of the bridge func-
tions,'"3 B(r), has brought the theory of classical
fluids (on the pair level) to within the accuracy
of present day computer -simulation studies for
nearly every physically conceivable effective
pair potential. Analysis of the dense plasma sta-
tics and thermodynamics* based on scaled direct
correlation functions demonstrated that univer-
sality extends all the way to the origin (» =0).
Here, I extend that analysis to mixtures of “char-
ged” particles interacting via relatively soft in-
verse-power potentials. This study enables us to
find semiempirical relations between the bridge
functions and melting, and to assign physical
meaning to B(» =0). In particular (and as a
generalization to the Lindemann-Ross criterion)
it is found that to within the accuracy of the
simulation studies, B(r =0) calculated along the
freezing line is independent of pair potential and
is the same in two and three dimensions.

Consider a g-component mixture, containing N,
particles of type ¢, interacting through the pair
potentials u,,(»). Let N=2J,N,, V =total D-di-
mensional volume, p=N/V, x,=N,; /N, and B
=1/k,T. The bridge functions, B,,(r), represent
the sum over all “basic” elementary graphs with
h;,(r) bonds. They are related to the pair func-
tions g;,(r)=h, ;(r)+1, screening functions

H,,(7)=1n{g,,(r) exp[ Bu,,(r)]},
and direct correlation functions c; j(r) by
B, (v)=hyy(r) —cy,(v) =H (7). (1)

It was found possible to fit computer -simulation
data for quite disparate potentials through the

Pl

thermodynamically consistent solution of the
modified HNC (MHNC) equations, by means of
universal g-parameter fitting functions B?j‘
(r,oq,... ,oq,p), appropriate to the g-component
system of hard spheres (HS) with diameters ¢,
(i=1,...,q).}"® The above fitting procedure is
insensitive to the values of the bridge -fitting
functions at small separations where the given
(from computer simulations) g,,() is essentially
zero. Analysis of the computer -simulation data
for dense Coulomb mixtures revealed, however,
that the universality of the bridge functions ex-
tends all the way to the origin, i.e., a hard-sphere
bridge function that accurately fits the structure
of a given system also predicts well [via Eq. (1)]
the value of H,,(0).* In other words, the equation,

B(0;p, T) =B™(0;n), (2)

where B™ is a hard sphere (disk, in 2D) bridge
function, defines the same effective packing frac-
tion n(p, T) (n=5 mpo®, 4 7po? in 3D, 2D, respec-
tively) as the thermodynamically consistent MHNC
equations. A model for soft inverse-power po-
tentials enables to express B(0) directly in terms
of the equation of state of the given system.
Consider mixtures of charged particles inter -
acting via the relatively soft inverse-power po-
tentials, Bu;,(r)=Q;Q;To/r™(Q;>0, m/D=< 4).
T, pBp™/P is the coupling constant and » is the
distance in units of the D-dimensional Wigner-
Seitz radius g =[r~"/21 (D +1)/p]*/P. An exact
relation for these systems is®

H”(O)=“Qg+“01_“’°i’°j’ (3)
where ko, =(8/8x,)(BF§ /N) lro(o)m/D is the chemi-
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cal potential for a particle with charge @, at con-
stant total charge density and temperature (the
notation is (Q% =E,x,Qf). Assume that as for
plasmas with real charges? these mixtures with
charged soft inverse-power interactions, in the
strong-coupling regime (I';>1), are governed

by a “one-fluid” equation of state, (3U/N) ‘mp?
=U g™ (ToQ%,). U‘™P (T ) denotes the potential
energy, BU/N, for the one-component system. In
order to determine the effective charge @, 2
generalization of the model for plasmas is em-
ployed. The direct correlation functions are
assumed to have the scaled form

c {myD )(T) = _.__QiQJL F (myD )(__Z____) (4)

H [t,;R(T)]™ tyR(T) )’
where R(T,) is the scaling length, and t;isa
function of charges and concentrations, satisfying
the identity 20, x Q2 /¢ =20,,, %, %,Q, Q1% ™
Writing the solution to this identity equation in
the form t,, =[3@}® +Q1°)AQ*P]T,,(m,D), it
can be easily verified that except for highly dis-
symmetric mixtures (e.g., Q,/Q,>1), T,, is
excellently approximated by unity. The “ion-
sphere” charge averaging for multicomponent
plasmas is thus generalized by

2, = Z; X, Q2 /17, =(Q)"P(Q% mP) . (5)

With a one-fluid equation of state for the dense
inverse-power mixture and an effective charge
given by (5), the exact relation (3) yields:

Us™P (T,Q%,)
<Q2- m/D>
X Qf""’” +Q§'""° -@Q, +Q,)2""/D]- (6)
Using Eq. (1) and making simple manipulations

on the Ornstein-Zernike relations, one obtains

B(0)=8 (z—Z)T_1 -2(3 U) H(0)+4, )

10 =

for the one-component system, while a similar
expression for the mixture is obtained provided
one considers the average

<B(°»Ez;: %, B,,(0)

3(BP>T it "2(‘%]> '; x, Hy (0) +a.
(8)

B(8p/8p)7,, is the total inverse compressibility
for the mixture, while

a=p ) x, x,fg,,(?’)[c,,(r) +Buy,(r)]d¥
is]

is a relatively small quantity for any dense
fluid.>*® Using Egs. (6) and (7) one gets

[B(O) - A] (mD) =<% -4(1-2" mb )) U;”"D)(Fo) ‘

(B)rom U™y, ©

for the one-component system, and exactly the
same expression, but with I'j replaced by T',

X @2, is obtained from (6) and (8) for the mlxture
average [(B(0)) —A]‘mD?,

It is unsafe to rely on uncontrolled approxima-
tions when assessing the subtle free-energy dif-
ference given by Eq. (3). In the absence of com-
puter -simulation data for the mixtures treated
here, I checked the result (9) for two typical
cases (m =5 and 12 in 3D) by solving the MHNC
equations to find as good agreement as found
before* for the one-component plasma (m =1).”

The exact result for D-dimensional hard spheres
is® H,;(0) =Bu$*, where uj* is the excess chemical
potential for the smaller spheres (o, <o,) leading
to

[B(0) -A] =ﬁ(§—2)T ~1-puer, (10)

Interesting enough (and as for soft spheres above),
exactly the same expression but with the equation
of St:(lte Eor the mixture is obtained for [{B(0))

-a]™P

Incorporating (9) and (10) in (2) one obtains the .
effective packing fraction, 7,¢,(I;), which is
generally consistent with that obtained from the
variational hard-sphere® (VHS) calculations,
Nyus(To). The van der Waals (vdW) model for
freezing correlates the transition of the hard
spheres with the melting transition of simple sys-
tems.'® It leads to a Lindemann-type criterion
that associates freezing with a universal effective
packing fraction® (e.g., flyyg=0.45-0.50 in 3D).
The vdW hard-sphere freezing criterion can be
reformulated in terms of the new definition of
effective packing via B(0). V

Systems of particles interacting through inverse-
power potentials (m =1,4,6,9,12,«) have been
studled by computer s1mulati ons, 112 and accurate
sem1emp1r1cal fits for the equation of state were
derived' enabling to calculate (9) along the fre-
ezing lines (denoted by subscript f) as determined
by the simulations, with the following results:
(i) D=3. For m=1,4,6,9,12 at the corresponding
(1"0) =155, 66, 83,174,540, one obtains [ B(0) - A]
—52 54, 52 50 54 respectwely For hard spheres
at n, = 0 5 the result is [B(0) - ],=40. (ii) D=2.
For hard discs at 1,=0.69 and for m=1 at (1"0),
=125 one gets [B(O) -4],=50,52, respectively.
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(iii) For the Lennard-Jones (LJ) potential it is
justified to use the relation'* H,;(0) =B ; and by
employing an accurate equation of state!'® one gets
[B(0) -A],=49,48 at T,/e =0.72,1.15, respec-
tively. (iv) A detailed analysis in 3D shows that
A,= -6, +5 for the two extreme cases m =1,
respectively. With allowance for small deviations
from the assumed “one-fluid” laws and for un-
certainties in the values of A, a relation of the
type

Bf(0)=50110%, (11)

can provide a universal freezing indicator in both
two and three dimensions. This criterion can be
generalized to mixtures: (B,(0))=50+10% is
manifestly the generalization of (11) to mixtures
with soft inverse-power potentials.

The strong-coupling potential energy for m/D= 4
is dominated by the Madelung term, a,I,, and a
good approximation for B(0) over a limited region
near freezing is given by

B(0)=A, (m/D)a,T,+b, (12)
where
A, (m/D) =(m/D)(m/D+1) —4(1 =27 "P)

a, is the fcc (or triangular lattice in 2D) Made -
lung constant, and b is a constant (b ~1 for m/D
<9 and b~10 for m =12 in 3D). To compare (12)
with other empirical melting indicators we put
them also on a linear in I'j scale. Lindemann’s
law'® says that the system melts whenever the
ratio (5) of the root-mean-square deviation of a
particle from its static lattice position, to the
nearest-neighbor distance exceeds some critical
value 6,,,,. When written in terms of the Debye
temperature it can be extended also to 2D.}" Upon
using the lattice-dynamics approximation (LD) in
3D, one obtains

1/62=A,5 a,T,, (13)

where A, is a combination of lattice sums and

- computer calculated numerical factors.!® Ross’s
criterion® is equivalent to the statement that the
thermal free energy, f =8F{X/N, is constant (Cp)
along the melting line. In the harmonic approxi-
mation (justified even for m =12 in 3D),*° f
=(D/2)In(A pa, T';) where A p=exp(2Cp/D)/
[@4(To)mert], OnE obtains

exp(2f/D)=A pa,T, . (14)

The approximate equality 1/6% =exp(2f/D) in 3D
(A g~A_p) is exact in the harmonic cell theory
for any D, and may also serve to extend Linde-
mann’s law to 2D. Results of computer and
laboratory experiments'?:?! indicate that &,
and Cp are roughly the same, independent of
details of the potential, at least for simple sys-
tems: e.g., 8,,.=0.125,0.17 and C;=5.85, 6.3
for the extreme cases m =«,1, respectively, in
3D, and C,=3.9,>24.3 (Ref. 23) is likewise in 2D.

The numerical similarity of B (0), exp(2 Cr/D)
and 1/62 , is not accidental and reflects the
similar physical meaning of these quantities: (i)
In the limit of high densities near closest packing
(cp) of D-dimensional spheres we have f =)
DIn(1 -n/n,,) and the dominance of the B(8P/3p)r
term in (10) implies B(0)*®’~exp(2f/D*'®’). 1D
spheres do not undergo a melting transition yet the
exact 1D relation, B(0) =exp(2f/D) — exp(f/D) — f/D
yields B(0)= 50 for 2f/D= 4, in agreement with
the 2D and 3D results for 2C,/D~ 4. (ii) For soft
interactions the B(8P/ap), term in (12) is no lon-
ger dominant. In 3D, A, , and A, vary from
zero (for m/D—1) to about 20 (for m/D~4), yet
they maintain a nearly constant ratio (Refs. 24
and 25) between them, e.g., A, a,';=45vs
A, o, =50 for m=4,6,9,12.

B(0), which was originally introduced as a mea-
sure of effective packing suitable for reformulating
the vdW hardsphere freezing criterion, is found to
be close in physical meaning to the quantities used
to formulate the Lindemann and Ross criteria.
The Lindemann, Ross, and vdW criteria can now
all be expressed in terms of the thermodynamic
expression for B(0). The D independence of B,(0)
is yet to be explained, but it is correlated with
that of the Ross indicator 2C,/D. The new
freezing criterion (11) is, however, unique in )
two main respects: (i) B,(O) is a universal quantity
related to melting in the sense that its precise
value for one system (in either 2D or 3D) will
predict the freezing densities for any system
(in either 2D or 3D) to within the accuracy of
present day computer studies. Note that the Ross
indicator is much less universal in that sense.?®
(ii) The B,(O) criterion can be applied via its
structural definition (in, e.g., the MHNC scheme)
and via the equation of state [e.g., Eq. (9)]. In
particular, the study of the possible role played
by B(0) [and B(7)] in the process of melting can
proceed via a diagramatic analysis,?” providing
a new angle for the vdW and Lindemann ap-
proaches.
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