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Velocity-correlation function for systems with strong repulsive potentials
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It is shown that a singularity appears in the velocity-correlation function of a classical fluid in equilibrium at time

equal to zero when a smooth interparticle potential tends to the hard-sphere potential.

I. INTRODUCTION

H, = g —,'mv, '+g V,(r„), (1.2)

where m is the mass of a particle and the spher-
ically symmetric two-body potential is given by

V, (r) = ~(o/r)'~'

where the constants a and o have the dimension of
energy and length, respectively. The potential
V, (r) with 5) 0 will serve here as an example of a
smooth potential. For 5-0, V, (r) describes the
interaction of hard spheres with diameter o.

As is discussed in the literature ' the velocity-
correlation function C, (t) can, for small ~t ~, be
expanded in powers of t, i.e.,

C, (f)= g s, (5)f' (5)0) (1 4)
1~0, 8, 4, ~ ~ ~

and all coefficients a, (&) can be expressed in equi-
librium properties of the system.

Owing to the symmetry C,(t) = C,(-t) odd powers

It has long been noticed in the literature' "that
time-correlation functions which appear in the
Green-Kubo expressions for the transport coeffi-
cients of a classical monatomic fluid have an es-
sentially different behavior for particles interact-
ing through a smooth or a hard-core potential.

The difference appears in the short-time behav-
ior. Generally, for smooth potentials time-corre-
lation functions are analytic functions of the time f
around t = 0,~4 while for hard-core interactions
singularities appear at t =0."' As an example of
this difference I consider here the velocity-corre-
lation function which appears in the relation for the
coefficient of self-diffusion in the fluid. This func-
tion is defined as

C, (t) = (v, v, (t)), , (1.1}

where v, and v, (t) denote the velocities of a par-
ticle, labeled 1, at times 0 and t, respectively.
The angular brackets (' ' '), in (1.1) refer to a
canonical equilibrium ensemble average for a sys-
tem of N particles in a volume V' at temperature
T and a Hamiltonian

of t are absent in (1.4). It is also shown in the lit-
erature ' that for hard spheres, i.e., & =0 in
(1.1}-(1.4) the function C,(t) behaves as

C,(t) =
p

1-2 +0(t')2 l tl

pm 3 tE
(1.5)

Expressions for the coefficients a, (5) in Eq. (1.4)
are obtained from Eq. (1.1) using the representa-
tion exp(L, t)v, for v, (t), where L~ denotes the
Liouville operator corresponding to the Hamilto-
nian H, in Eq. (1.2), i.e. ,

N

Lg=Q v(' + Q 8~(ij). (2.1)
f.l ' Brj j&y

Here the first term is due to free streaming and
the operator 8,(ij) describes the interaction of
particles i and j:

de(r, ~) r, ~ S S l,
eo(&g) = - I.

d+j f m+ jf 8vf ~vf)

Then the coefficients a, (5} are given by

(2.2}

which means that C,(t) has a cusp at t = 0. In Eq.
(1.5) P =I/ksT with k~ Boltzmann's constant and

tE is the mean-free time between collisions in a
hard-sphere fluid

V'Pm
I;E =

4~m no'X

with the density n =N/V, and X denotes the value of
equilibrium-pair-correlation function of two

spheres in contact.
The result (1.5) ha's been derived from (1.1) us-

ing from the very beginning the properties of a
hard-sphere fluid. Here I wish to show how the
result (1.5) can be derived from the expansion
(1.4). First, it is shown in Sec. II that the coeffi-
cients a, (5) in Eq. (1.4) diverge for 5- 0 and I ) 2.
In Sec. III the most divergent contribution in & to
each coefficient a, (5} is determined. In Sec. IV
the series (1.4) with a, (5) replaced by its most
divergent contribution is resummed. Then the
limit 5-0 is taken and the result (1.5) is recov-
ered. Some consequences are discussed in Sec. V.

II. SHORT-TIME COEFFICIENTS
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a, (6) =l—, (v, (L,)' v,), . (2.3)

a,(5) = 3/Pm,

which is independent of &. For l =2 one has

(2.4)

The operator L, has the property (f,L,f,),
(f, L,f,), for any two functions f, and f, of the

phases of the N particles. Hence the right-hand
side of Eq. (2.3) vanishes for l odd. The first non-
vanishing coefficient in (2.3) occurs for l = 0, and
1s

(2.12)

s = P~(o-/~)"' (2.13)

as the new integration variable so that

(6) ""'(l' )'('- ) ™d-. -~«('(l}~)'~

(2.14)

For & -0 the integral over r can be evaluated using
the dimensionless inverse length

a, (6) = (v,L()8,(12) v,), ,2
(2.5) Furthermore, one needs that

where one operator L, has been replaced by (N
-1)8(12). The function 8(12)v, in Eq. (2.5) depends
on r, and r, only, as follows from (2.2). There-
fore, using (2.1) for Lo:

a, (6) = v,
~
v, ' 8, (12)v,

N-]. & 8

2 E &r~ 6
(2.6)

g, (r») =e "()'"»'«,(r„)
with

(2.7)

N(N —1) Idr, '' Jdr„(exp-PE& V()(r~ ))

j dr, ' 'f dr„(exp —Pg V,(r, ))

(2.6)

The variables + and &' run over all different pairs
in the system and in the summation over &' the
pair 12 is excluded. Thus

2

,( )= J dr, d, dv f dv, g, (v„,)((v,)((v,)

&& v&' I v&' [8&(12)v»
er~]

(2.9)
where (t) (v, ) denotes the normalized Maxwellian

Pm '~'
y (v ) e ()mvg/2

2m
(2.10)

3ubstitution of (2.2) for 8~ in (2.9) and performing
the integrations over v» v» and r, yields

a2(6)= 3 J) drge(r) —
d

+ ),-s t - 2 de(r) d V()(r}

(2.11)
where r denotes the relative distance r».

Using Eq. (1.3}for V, (r) and Eq. (2. l) for g, (r)
yields

A similar term, with v, ' S/&r, replaced by v, S/
er„vanishes since it is odd in v, . The average in
(2.6) can be expressed in terms of the equilibrium-
pair-correlation function g, (r»), which is defined
as

lim «, , ~
=«,(e)=X

c(Pe)'&
(2.15)s j

which holds since «, (r} is a continuous function of
r for all r and & ~ 0 with & = 0 included. The quant-
ity X in Eq. (2.15) is equal to the equilibrium-pair-
correlation function of a hard-sphere fluid g, (r) at
r=c since in Eq. (2.V) the Mayer function
exp[-PV, (r)] tends to one for 5-0 and r~ o.

Thus the egression on the right-hand side of Eq.
(2.14) diverges for 5- 0 proportional to 1/6, i.e.,

a,(5)=-, , 6 [1+0(6)], (2.16)

which is the final result for a, (5). Notice that the
divergence is due to the following four properties:

(1}a factor -6 ' which is present in the interac-
tion term 8, (12) at the right-hand side of (2.6) since
8,(12) contains the derivative of the potential V, (r)
[cf. (2.2) and (1.3)];

(2) a factor -5 ' which arises from the free
streaming term v, ' (S/Sr, } on the right-hand side
of (2.6) since each further derivative of V, (r) in-
troduces a factor -& ';

(3) a factor -5 which is due to the volume ele-
ment dr in the r integral on the right-hand side of
(2.12) since dr- 6ds with s r ' ', given by (2.13);

(4} the fact that the integral over s in Eq. (2.14)
is finite in the limit &- 0. For this the Mayer
function exp(-s) is explicitly needed as a conver-
gence factor for large s, i.e., for a small inter-
particle distance r.

These four properties can also be used to esti-
mate the asymptotic behavior of a, (6) for 5-0 and
l larger than 2, from Eq. (2.3). First notice that
the expression in angular brackets on the right-
hand side of Eq. (2.3) is proportional to 6 ' since
each operator L, yields a factor & as discussed
in (1) and (2) above. For each l the coefficient
a, (6) can be decomposed into terms which contain
the two-particle-equilibrium-correlation function
g~(r) defined in Eqs. (2.V) and (2.6), the three-
particle-equilibrium-correlation function defined
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in a similar way as in Eqs. (2.'l) and (2.8), and so
on. Terms which contain g, (r) are for 6- 0 at
most proportional to & '&, where the extra factor
6 is discussed in (3) above. Terms which contain
the three-particle correlation function are at most
proportional to & '& . Here the extra factor & js

due to spatial integrations over two relative dis-
tances each giving a factor & in a similar way as
in (3) above. Thus a, (6) diverges for 6-0 propor-
tional to & ' . In the next section the proportional-
ity constants are determined.

III. ASYMPTOTIC BEHAVIOR

Here the behavior of the coefficients a, (5) is determined for 5- 0 and l ) 2. From Eq. (2.3) it follows
that for / ~ 2,

a, (6) =
~

(v, (f,) '-'e, (12) v,}„El (s.l)

similar to the derivation of Eq. (2.5).
The most divergent contribution to each a, (6) is obtained from (3.1) by substituting Eq. (2.1) for L, and

keeping the terms which involve particles 1 and 2 only. This is explained at the end of Sec. Q. Therefore,
2-1

a, (5) =
) v, v, ' + v, ' +e, (12) e, (12)v, [1+0(6)]. (3.2)

Using Eqs. (2.V) and (2.8) one derives that
2 t 1-1

g, (5) =
) J dr, dr, dv, dv, g~(r») p(v, ) p(v, )v, v, ' +v, '=+8~(12) 8, (12)v,[1+0(6)].4 er er1 2

(3 3)

similarly as in Eq. (2.9). The operator e, (12) can
be written in relative coordinates, i.e., v=v»,
V= &(v, +v~), r=r», and R= &(r, +r,}as

8,(12)= 2
d V()(r) r

dr mr &v
(s.4)

The free streaming operator in Eq. (3.3) can be
written as v, ' (s/sr, )+v~ (s/Sr, ) =V' (s/sR}
+v' (s/sr). The operator V' (&/BR) commutes with
v ~ (s/Sr) and with 8,(12) and vanishes when acting
on 8,(12) v, on the right-hand side of Eq. (3.3).
Thus

1-1
a, (ll)=

l f d fart)~r(r)p, (v) v(v = re()R)
8r

x e,(12}v[1+0(6)], (3.5)

where P„(v) stands for the Maxwell-Boltzmannfac-
tor (2.10) with m replaced by m/2, i.e., by the
relative mass and the integrations over R and V
have been performed. Next, introduce the dimen-
sionless r'elative position

(3.6}

so that s =Pc(o/r)'~~ =PV, (r) similarly as in Eq.
(2.13) and the dimensionless relative velocity

W=2V'Pm V (3.7)

so that s+I)'=P[V, (r)+-,' mv ] is the dimensionless
relative energy. With respect to the new variables
s, w the free streaming term in Eq. (3.5) reads

2s' 8 1 w s-sw' —— 1+- s
Sr )) pm o(pc)' Ss 6»s

(s.s)

and the interaction operator reads

e, (12)=,—s —.$ ] ~ 8
(3.9)

4 pm o(pc)' 5 sw

Substitution of Eqs. (3.6)-(3.9) into (3.5) and chang-
ing to new integration variables s, w yields

(pg)' ', , - s w e-x ds dwe '~s ' "h,~o, w s' &s' —-(1+6) s' —+6sw'=s' '
gw s as es

s's[1+O(6)],

(s.lo)
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ds dwe s w'L' s 1+0 ~

(3.11)

where Eq. (2.15) is used and where

8
L = —s'—

0 2
8w

w s ~s' —.
s 8s

(s.ia)

The operator L, takes into account the interaction
operator e()(12) in Eq. (3.9) and the most divergent
part in & of the free streaming term v' (S/Sr) in

Eq. (3.6).
As follows from Eq. (3.12), L, conserves the

direction of the vector s, i.e.,

where the relation (2.7) is substituted for g, (r)
The second factor on the right-hand side of Eq.
(3.10) is proportional to 6' '. The proportionality
constant is obtained from Eq. (3.10) taking the lim-
it &- 0 in the remaining quantities, so that

~'X
(mph)"'l 1

' ds Jt dw due ~~ Lo 's[1+0(&}].
0 0

(3.16)

The following variables are convenient in order to
perform the integrations over s, w, and Q.

x=w -Q w2 2

y = (s+u w'P",
QW, 2„(2 .

(s+Q w /

(s.17}

The variable x denotes the angular momentum and

therefore is conserved [cf. (3.15)], x+y'= s+w' is
the energy and therefore y is a conserved quantity

[cf. (3.14)]. With respect to the new variables x,
y, z the operator L, in Eq. (3.12) takes the form

of s, w, and s w. Thus one can integrate over s,
w, and u=w' s/ws as

a,(&}=,i, ,
(-,'))'Pmo6)' '8~7]'sG X

Los/s =0 (s.is)
8

L0= 2y— (s.is)

and conserves the energy, i.e.,
L,(s+w') = 0 (3.14)

and conserves the absolute value of the angular

momentum, i.e.,

(3.15)

Furthermore, L, maps any function of s, w, and

s' w into a function of s, w, and s' w. Writing the

vector s in the integrand on the right-hand side of '

Eq. (3.11) as (s/s)s and commuting s/s with L,' '
using Eq. (3.13), the integrand becomes a function

as follows from (3.17) and (3.12).
The transformation of variables in Eq. (3.16)

from (s, w, u} to (x,y, z} is most easily carried out

in two steps. First, change from (s, w, u} to (s,
$, x) with x as in Eq. (3.17) and $ =uw. The Jacobi-
an of this transformation is given by dsd$dx
=2w dsdwdQ and -~- $ -+~ and 0-x . Sec-
ond, change from (s, $, x) to (x,y, z). According
to Eq. (3.17) one has y= (s+$z)'~2 and z =tanh '$(s
+ $') '~ ' so that dx dy dz = (1/2s) ds d$ dx and 0 ~y- ~ and -~- z - . Using these results and Eqs.
(3.17) and (3.16) one finds for a, (~) in Eq. (3.16)
and)o2

6Vzno'}( (8 't&-&

(Pm}"'l(, g, „(az&a (~)= ( vpmu& '}' dx„l dy dze *e "y'"tanhzl —
l sechzz[1+0(6)]. (3.»)

The integrations over x and y can be performed so
that

w +~ l-1
dz tanhz — sech'z[1+0(&)].

8z
(3.20)

The integral over z can be obtained from the cor-
responding generating function defined by

+co

G(&) —= dz tanhz exp r
l
sech'z—, (3.21}

O(r')= —f d sect z tssc(z sr)

Using the addition formula for tanh(z+r) and

changing to the variable x = tanhz yields

x+ tanhr
1+x tanhT

so that the final result is

G(r) =2r csch r -acoth&

or equivalently

(3.22)

(3.23)

(s.a4)

which is, after a shift in the variable z,
8

G(r) = -2 —r coth& .
8T

(3.26)
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IV. RESUMMATION

Here the series (1.4) with a, (5) replaced by its
most divergent contribution in & is resummed. At

the end the limit & -0 is performed. Using the re-
sult (2.4) for ao(5) and the representation (3.19)
for e,(5) with l = 2, 4, 6, . . . one can write the
series (1.4) for C~(t) as

( )
3 8~mno'XF~t t

Pm Pm &&pm og
(4.1)

with

+()0

F(r)= P —! dy dz e" y'
gn2 4 ~ ~ ~ 0 ~00

( 8) i-1
x tanhz( —

~l
sech'z .

(~zi
(4.2)

The Taylor expansion of coth& yields

G(r) = -4 Q B~.,
(2r)'

(3.26)
jn1, 3, 5, ~ ~ ~

where the coefficients B& are Bernoulli numbers,
and only odd powers of & occur in the expansion.
From the result (3.26) and the definition (3.21) one
finds for a, (5) in (3.20) and l ~ 2,

4vno X (l +1)B, 1
(P ) & (t/2)!())(P )- 5- [ +

(3.27)

Thus a, (&) diverges proportional to 5' ' and the
proportionality constant is explicitly determined.
For t =2 the result (3.27) is equivalent to (2.16}
since B,=, .

For the integral over z one may substitute G(yr')
according to Eq. (3.21) and use the result (3.25}
so that

n (n) g
F(r) = -2 dr' dy e ' y3—y cothyr'. (4.4)

0 8$

Integration with respect to w' and differentiation
with respect to y yields

OO

F (7)= -2'dy e y2(yr cothyr —1) .
0

(4.5)

From the expansion of cothy& in powers of yv' one
finds

l+1
in( 4y ~ ~ ~

(4.6)

which applies to small values of w, and where &f

denotes a Bernoulli number. From the represen-
tation 1+2+„"., exp(-2nyr) for cothyr one finds,
using the symmetry of F(r),

F(.) = (r ~+-,'A+-.' ~, ,
'" — (4.7)

(l —1)B„, w
'

which applies to large values of &. Thus the series
(4.2} for F(v) is explicitly resummed [cf. (4.5)], the

behavior of E(r) for small r follows from Eq.
(4.6) and for large r from Eq. (4.7). For a fixed
but small value of 5, the function & in Eq. (4.1) can
be expanded in powers of t/(Cpm o&}. Using Eq.
(4.6) one recovers the series (1.4}, i.e.,

&(T)=I d&'
deaf

dec' y'tanhz
0 0 ~oo

(, 8
x exp ~r'y —sech'z: (4.3)az

The dots ' in Eq. (4.1) indicate terms in the ex-
pansion (1.4) which are for each power in t less
divergent in &. The quantity 4'Pm o which occurs
in the argument of the function & in Eq. (4.1) is of

the order of the average time a particle needs to
traverse the distance cr. The time needed to change
the relative velocity in a head-on collision from
minus to plus half the asymptotic absolute value

is, on the average, proportional to ~Pm o&. Thus

the quantity 4Pmo& is a measure for the time
spent in the steep part of the force range. The re-
duced time r =t/(v'pm o5) in Eqs. (4.1) and (4.2) is
a dimensionless quantity and E(r) is a dimension-
less function which is even in & and vanishing for
v =0.

Owing to the symmetry properties of the integral
over z on the right-hand side of Eq. (4.2) one may
add terms in Eq. (4.2) with l = 1,3, 5, . . . . Then

changing to the summation variable j=l —1 one
finds

C, ( )= 3 4vn(r'X
5' =P Pm

l+1, & t

,.„~... («2)) "4(~.~)
'" ' (4 ())

where each coefficient a, (5} in (1.4} is replaced by
its most divergent contribution in 5 [cf. Eq. (3.27)].

For a fixed but small value of time t and for &

tending to zero one needs in Eq. (4.1}the function
F for large values of its argument. Using the re-
sult (4.7) and taking the limit 5- 0 yields

(4.9)

which is the hard-sphere result for C,(t) given by

Eqs. (1.5) and (1.6).

V. DISCUSSION

The main results of this paper are contained in
Eqs. (4.8} and (4.9). First for the soft but steep
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potential V, (r) the velocity-correlation function
C, (t) is analytic around t = 0 and has a series ex-
pansion in even powers of t where the coefficients
of t' diverge for 5-0 and l) 2 [cf. Eq. (4.8}]. Sec-
ond by resumming the series, taking into account the
most divergent part of each coefficient only, and
then performing the limit ~-0 one obtains the
hard-sphere result given in Eq. (4.9) which is sin-
gular at t=0.

I remark that both statements have long been
conjectured in the literature. Kleban' and Sears'
have in fact shown that the first few coefficients
in the series (1.4) diverge in the hard-sphere limit
and have conjectured that the hard-sphere result
could be obtained from a resummation of most di-
vergent terms. It has been the purpose of this
paper to show that such a resummation procedure
can actually be carried out and that both conjec-
tures are correct, at least for the potential con-
sidered here.

The explicit calculation given here confirms
furthermore that the two expansions for the veloc-
ity-correlation function given by Eqs. (1.4) and

(1.5) are of a completely different nature. First
the representation (1.4) is an expansion in powers
of t/t, where t~ = v'Pm o5 is the time needed for a
particle to traverse the steep part of the potential
[cf. Eqs. (4.1) and (4.6)]. Therefore, the repre-
sentation is restricted to times

~
t (& t„and for

&-0 the region of applicability of the series
shrinks to zero. Equivalently one might say that
the dynamics of the particles enters into the coeffi-
cients of the series essentially through an analytic
expansion of the velocity v, (t) around v, (0). Since
over a time interval t~, v, (t) differs drastically
from v, (0), the representation (1.4) is restricted to

~
t

~
&f,. On the other hand, the hard-sphere re-

sult (4.9} for C,(t) represents the first two terms
in an expansion in powers of t/ts, where tx is the
mean-free time between collisions [cf. Eqs. (1.5)
and (1.6)). Therefore, the result (4.9) is meaning-
ful for ( t

~
&ts. As noted below Eq. (4.8) the sec-

ond term on the right-hand side of Eq. (4.9) essen-

tially involves the asymptotic large-time behavior
of a two-body interaction which for hard spheres
includes infinitesimally short times since the col-
lision is instantaneous. Thus for a finite but very
small value of 5 the expansion (4.8) represents the
velocity-correlation function for 0-

~
t

~

& t, and the
expansion (4.9) for t, s

~
f

~

s ts. This applies to a
I ennard- Jones potential with & =~» and low densi-
ties where the time scales tl and t& are well sep-
arated, i.e., t, «t~. However, at liquid densities
t, is of the order of t& so that the representation
(4.9) does not apply. This has been discussed
elsewhere. "

The essential difference in the short-time be-
havior of C~(t) with 5)0 and of Co(t) manifests
itself also in the large-frequency behavior in the
corresponding Fourier transforms, i.e., in C~(&o)

and C, (&o), respectively. For large frequencies
C, (&u) decays to zero faster than any inverse pow-
er of &o, while C,(~) decays proportional to &u '.
A similar and related difference occurs in the in-
coherent scattering functions for hard-sphere and
for soft potentials. '"

A singularity as discussed here for the velocity-
correlation function of a hard-sphere system is
also present in the time-correlation functions
which appear in the Green-Kubo expressions for
the heat conductivity and the shear and bulkviscos-
ities. .For these functions the singularity takes the
form of a delta function in time located at t = 0 and
with a strength equal to the collisional transfer
contributions to the corresponding transport co-
efficients. This will be discussed elsewhere.
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