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The nonlinear hydrodynamic equations for biaxial discotics with two broken translational symmetries (which have

been identified experimentally very recently) are presented and the structure of the hydrodynamic excitations is

considered. For biaxial discotics with broken rotational symmetries, owing to the existence of two preferred axes, the
gradient free energy, representing a generalization of the Frank free energy for nematic liquid crystals, is given and

the nonlinear hydrodynamic equations are derived. As a striking result a set of three commutator-type relations

reflecting the anholomomity of the hydrodynamic variables characterizing the broken symmetries is found for the

first time in the physics of liquid crystals. The influence of a static external magnetic field on both types of biaxial
discotics is discussed.

I. INTRODUCTION

Since the discovery of discotic liquid crystals in
&9~7' the chemistry and physics of this first man-
made type of liquid crystals proved to be a rapidly
growing, fascinating field. Most of the papers
published so far deal with uniaxial, hexagonal dis-
cotic liquid crystals' "but more recently uniaxial
discotic liquid crystals with broken rotational sym-
metry (thus being quite analogous to nematic
liquid crystals} have been identified as well."
Very recently experimental evidence for the oc-
curence of biaxial discotic liquid crystals has also
been presented ' ' and these biaxial discotic
liquid crystals seem to possess two broken trans-
lational symmetries (i.e., in two directions the
centers of mass of the molecules are arranged
regularly). However, due to the disklike shape of
the molecules constituting the discotic liquid crys-
tals, one can suppose that biaxial discotic liquid
crystals with broken rotational symmetries (the
orientations of the molecules are arranged regu-
larly in two directions) will also be produced soon.

In the present paper we study the hydrodynamic
equations for both types of biaxial discotics, those
with broken translational symmetries as well as
those with broken rotational symmetries.

For uniaxia? discotics linearized hydrodynamic
equations have been studied by Prost and Clark" "
and, as it will become obvious in the following,
their equations emerge as a special case of our
nonlinear hydrodynamics for biaxial discotics with

two broken translational symmetries.
The hydrodynamic method used in the present

paper has been applied to many systems in con-
densed-matter physics in the linear as well as in
the nonlinear regime. Among those systems are,
e.g., simple liquids and paramagnets" " super-
fluid 4He (Refs. 22 and 23), antiferromagnets and
ferromagnets, ' nematics, ""cholesterics, ""~
crysta3, s,"'"'"smectics"'" spin glasses, "and

the various phases of superfluid 'He.""
The present paper is organized as follows. In

Sec. II we discuss biaxial discotics with broken
translational symmetries, their nonlinear hydro-
dynamic equations, the hydrodynamic excitations,
and the influence of a static external magnetic
field, and in Sec. III we investigate biaxial dis-
cotics with broken rotational symmetries, their
gradient free energy, and the nonlinear hydrodyn-
amic equations.

II. BIAXIAL DISCOTICS WITH BROKEN
TRANSLATIONAL SYMMETRIES

A. Hydrodynamic equations

The type of biaxial discotics we wish to discuss
here is that which has been observed in the exper-
iments by Sigaud, Achard, Destrade, and Tinh"
and by Fugnitto, Strzelecka, Zann, Dubois, and
Billard, " i.e., that having two broken translation-
al symmetries which are orthogonal to each other.
Thus macroscopically this type of liquid crystal
behaves like a crystal in two dimensions (the
centers of mass of the molecules are long-range
ordered} whereas it behaves like a fluid in the
third direction.

We denote the two preferred directions char-
acterizing the discotic liquid crystals under in-
vestigation by n and m. As in nematics and
smectics we assume that n and -n are indisting-
uishable, thus the hydrodynamic equations which
will be derived in the following have to be invari-
ant under the transformation n--n. The same is
true for m and, therefore, the hydrodynamic
equations have to reflect an n - -n and a m - -m
symmetry separately. This has to be contrasted
with the case of smectic- liquid crystals: In this
case the hydrodynamic equations are invariant
when the replacement n - -n, m - -m is carried
out simultaneously. As it will become obvious

2777 1981 The American Physical Society



2778 H. BRAND AND H. PLEINER

which is the straightforward generalization of Eq.
(3.19) of Ref. 32 and the equations of motion read

8—p+v' g =0,
8—@+V 0' =0

et

(2.3)

(2 4)

in the following, these transformation properties
allow us to reduce drastically the number of in-
volved phenomenological parameters which will
nevertheless remain rather large.

The broken translational symmetries are char-
acterized by the displacement vector R. However,
the translational symmetry is broken only in two
orthogonal directions and the third component of
K is not a hydrodynamic variable. Therefore we
must impose the constraint

R ~ (nx m) =0.
To set up the hydrodynamics of the present sys-
tem we must list the hydrodynamic variables first.
The conserved quantities are density p, energy
density E or entropy density o, and the density of
linear momentum 'g. The hydrodynamic variables
characterizing the broken symmetries are the
components of the displacement vector which
satisfy the constraint (2.1}and we arrive at a total
of seven hydrodynamic variables which will give
rise to the same number of modes if the hydro-
dynamic equations are discussed in the linearized
regime. For the Gibbs relation we have (there is
no term proportional to dR, in the Gibbs relation
because the gradient energy does not depend on R, )

da Td(j+ j(dp+v dg+Q jdvjR ~+$(jkdvkvjR(

(2 2)

variables characterizing the broken symmetries,
as it should be, because homogeneous translations
are not involved in hydrodynamics. For a,», we
find for a discotic liquid crystal with a fourfold
symmetry (tetragonal system)" "

a,j, =a,(n,njmkm, +m, m~~()
+ a,(n(n jn~(+ m, m jmkm, )

+ a, 6k»(m, m j+n,n, )

+ a4(m, n(+ n, m (}(m~(+nkm, ),
where

(2.10)

3 =5q) =6~) —m~m) —nqn, .

For a discotic liquid crystal with a twofold sym-
metry which has also been proposed to explain the
experiments" we have

OI]f~g = 0)S)Sfm~m)+ Q~S @fan+)+ QSN]Sf6~)
S

+ Q4m mfSf~m)+ OISP7l mftlQg

+ akm m (6~»+ a,(m n j)(m~(+ nkm, )

+ ak(m jn()(m~(+ m, nk) . (2.11)

(jk(="( j( ( k (+ k k(}. (2.12)

The terms involving e, and a, show that o. ,f/) must
be symmetric in the last two indices but not in the
first pair, a fact that has already been mentioned
in Ref. 32.

For a uniaxial discotic liquid crystal with hex-
agonal symmetry, we find for a(jk( (as has al-
ready been mentioned above, the complete linear-
ized hydrodynamic equations for this type of dis-
cotics have been given by Prost and Clark, "'")

8—0'+V j' =0
et (2.5)

d—R+X =0
dt (2.6)

where

d 8

dt et

For the reversible currents we find, by using
general symmetry arguments and the requirement
of vanishing entropy production,

(j (j f(6((j( k+ ( k)~kj+ ak j(R V (~kl+ (Ijk (V(Rk

(2.V}

X( =(f(n(nj+fkm(mj}Vk(I(jk

+ (t',n(n(+ )km(m j)V(T,
=(K(n(n(+ Kkm(m (+ Kk5(j)V jT

+(((n(nj+ )kmjm()Vkfjk

ff f fA'J Itl

(2.13)

(2.14)

(2.15)

As has to be expected from symmetry considera-
tions n, », contains fewer phenomenological para-
meters for uniaxial discotics than for the various
types of biaxial ones.

The dissipative currents which have to satisfy
only the constraint of positivity of the entropy pro-
duction take the form

(2.8)

(2.9)

jo~ =pv;,

X( (n(n(+ m(mj) (a( jk(R jVkv(

where the contribution -vj in (2.9) subtracts rigid
translations from the dynamic equations of the

where

Ak( k(Vkv(+ V(vk) ~

For biaxial discotics with fourfold symmetry

(2.16)
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where

v j jgg [v (gm, m jm, mg+n, n,n,n, )+ v, 6'j j 6gg

+ vc6gg(mjm j+n, nj)+ v4mjm jnjgng

+ v, mjnjm~g+ v, (mjm, 6'fg+njn$6fg)]
(2.18)

Equations (2.16) and (2.17) are also valid in uni-
axial discotics. ""In the case of biaxial discotics
with a twofold symmetry pj 4 f, and $j + (2y
eral, and the viscosity tensor reads

3 3
V fgyg V jm fmfm«tm'«+ V+Py RP&g + ~3~«f ~«t'«

3 3+ p mfm) fg~pgg+v5mfmg ~«,g+ v6tlpy ~g

3 3+ ~ mf f lmk+ f A~)&+ ~ +f~«f~f&

(2.19)

and thus contains nine independent viscosities, a
fact which complicates the discussion of the nor-
mal modes considerably. To close the system of
hydrodynamic equations we need the equations of
state linking intensive and extensive quantities.
We begin with the discussion of the gradient free
energy and obtain for the part quadratic in the
variables (i.e., entering the linear hydrodynamic
equations) in lowest possible order in the gradi-
ents

=&y&»g(Vj )(VgR )+py jVjR j+jgyjIVg j

+Kg(6jgncVj VPc) +Kc(6jjmqVjVgRc)
(2.20)

I

and

Xfgg g Xjap&n~n, + X2mfm& m m,

+ }tc(tjjncmgmg + ng jtncngng

+tjjn~m gtgg j+m jm+gn j)

+X4(ng mgnjma+ngmjnamj (2.21)

y(Pea) y(P, a)z z +y (P f o)m mff j f 9 2 f

or more explicitly (we choose n [(e, and m'[[e„)

Fc c Xg(V R ) +c Xc(V R )

+—'
X,(V„R,+V,R )c+}L,(V„R„}(V,R,}

+K, (VIR,) +Kc(V,'R„)'+ y "p (V„R,)

+yccp(V, R )+y' jt(V„R„)+yegg(V R ).
(2.22)

Xl X2 yl =y2 y, =y„ (2.23)

Nonlinearities will be considered only up to cubic
terms in V& R„ thereby we disregard cubic terms
of those VJR„which are already present quadra-
tically, i.e., V R„V R and V R, +V,R, and ob-
tain

A corresponding expression for smectic A taking
into account higher-order gradient terms due to
rotations has been discussed extensively by the
present authors in Ref. 32. Equations (2.20}—(2.22)
hold for biaxial discotics with a twofold symmetry.
For a fourfold symmetry

+ (py" + jty'~}[m jmj VP j—6cj&m mg(VjRc)(V&Rg) —c [mug�(VcRg —VgR~)] c)

+ (p y c + jt y c)(n jn j V jR& —6 j&n&ng (V jR~}(Vj R g ) —~ [m&ng (V&R
g
—Vg Rz)] )

+c }(gntn VtR fnjn& VjRj —6cgnjng(V~Rj)(VgRj) -~[m~g(VcRg —VgRc)J )
yz Xcmtm Vt R (m jm& V jR& —6cgm jmj (V R )c(VjR )g—g4 [mzng(V&Rg — RVzg)]'3

+cXcmtn (VtR + VPt)[m jn& (V jR&+ V&R j) —m jn&6', (V R j)(VgR&)

'(n mj)(v R& —V,R )(—n—n, v R, —m m, v,R, )J

+c }(4(2m jm&n~g(VjRj)(VcR, ) -mjmjn ng6~c[(V Rg)(VcRj)(VtRj)+ (VjRj }(V R~)(VtRg)]

——,
'

(m jmj+njnj)(V, R&)(m,n, [V~Rg —VgRc])'). (2.24)

Now we are prepared to write down the equations
of state

QF t
Qp, = A, 5p+y50'+y]g«& &V«R~

' (2.27)

(2.26} ~~=eVR ~ (2.26)

Fc
6T = TC„j6cr+y5p+y',

&
f

(2.26)
8F~

oa 8V Vf
(2.29)
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B. Influence of an external magnetic field

Let us briefly discuss the orientation of the bi-
axial discotic liquid crystal in an external mag-
netic field. For the magnetization we have
(s[[e„m/[e„)

M] = XffHf j( Q
gfHf + X„m,mf Hf + X,,n,nfHf,

(2.30)

M(= ()t, —y, )nP&H&+(y, „X,)m-(m&H(+)I, H, .
(2.31}

The orientating contributions to the free energy
due to the external magnetic fields are

F"=--,')('"(n. H)'-» )('"(m H)' (2.32)

where

Minimizing F ~ with the respect to the possible
orientations of n and m leads to three cases,

(1) X"'&0, X"'&0 H&n, HLm

(2) )((2) & 0 X(11& )t(2&

(3a) X("&0, X("&X'" H~~n

(3b) )(,'"& 0, X.'" &0 H (( n,

(2.33)

i.e., the molecules always orient parallel to one
of their principle axes. The results of Eqs. (2.33)
are summarized in Fig. 1.

By the connection for linear changes of n and m
with V(R( (5(»(= n»V(R-», 5m(=-m»V(R») the ori-
entational energy (2.32) leads to terms quadratic

in (V„R,}, (V,R„), and (V„R —V R„) not present
in (2.22). These terms, however, will vanish for
K-0 like H2

C. Normal-mode structure

(Ftg. 4) k. =0, k„,k, arbitrary.

Finally we discuss the normal modes of biaxial
discotics with broken translational symmetries.
Because we have seven hydrodynamic variables
we have to expect seven modes, propagating or
diffusive. In the most general case (a wave vector
with all three components different from zero) we
find a bicubic equation for the reversible motion
and one mode which is purely diffusive (it is the
mode which is mainly due to heat conduction). The
number of propagating modes in the most general.
case depends on the invariants of Cardani's equa-
tion. We find that in any case there is at least
one pair of propagating modes corresponding to
first sound in an ordinary liquid. For a very
special set of k values we find two pairs of prop-
agating modes and for most k values there exist
three pairs of propagating modes. The spectrum
can be discussed explicitly for k„=0 or k, =0. In
these cases one has, as in smectic A, a biqua-
dratic equation and in addition one equation for a
third sound. In Figs. 2-4 we have plotted the
spectrum qualitatively for

(Fig. 2) k„=0, k», k, arbitrary,

(Fig. 3} k, = 0, k„k„arbitrary,

t
i, Il

I
I

I

Ax%

n/

HL»

It seems worthwhile mentioning that our cases
k„=0 and k, =0 are in close correspondence with
the results of J. Prost and N. A. Clark for the
case of uniaxial discotics. This has to be expected
because in all three cases (k„=0, k, =0, hexagon-

tn x ik

A

k,

FIG. l. Orientation of a biaxial discotic liquid crystal
in a static external magnetic field: -~ = X»- Xy
=&»

FIG. 2. Speed of propagating modes in a biaxial dis-
cotic liquid crystal as a function of direction of propaga-
tion for k„= 0 (schematic plot).
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n

FIG. 3. Speed of propagating modes in a biaxial dis-
cotic liquid crystal as a function of direction of propaga-
tion for k = 0 (schematic plot).

FIG. 4. Speed of propagating modes in a biaxial dis-
cotic liquid crystal as a function of direction of propaga-
tion for k,= 0 (schematic plot).

al discotic) the mode spectrum clearly separates
into two subspaces.

For k„=O we obtain

2=X (2.34)

&u~ —&o2 —k2+(X, +y")k2 +kg~2 —X, =0, (2.35)

i.e., we get three propagating modes if k, and k,
are different from zero. For k„=k,=0 we have
only one pair of propagating modes corresponding
to first sound [&u' = (8P/8p)k'] and for k„=k, = 0 we
get two pairs of propagating modes [&u'=X,k,' and
v'=(8p/sp+X, +y")k',]. All these results are
summarized schematically in Fig. 2.

Setting k, =0 we arrive at

&o' —&o' —k'+(X, +y")k', +k2p,'—X, =O (2.36)

and

(d = X3k3

The discussion for the case k„=0 can be carried
over to the quite analogous case k, = 0 and after
similar considerations we obtain for k, = 0 the
schematic plot shown in Fig. 3.

The third special case which can easily be dis-
cussed is k, =O and the corresponding results read

+ XlX.'-(X,+X.)kp', 2 —+r"+r"&I

—(X~+X4)kgb

(2.37)

and

co2= 0 (2.36}

where

X2 —X2k„+X3kg s

Xz = X,kg+ X3k„.
(2.39)

Thus we have two pairs of propagating modes
(even if we set in addition k, = 0 or k„=0) and one
pair which is purely diffusive (in discussing the
mode structure we have, of course, always one
diffusive mode corresponding to energy dissipa-
tion}. Therefore we get for k, =O the result which
is displayed qualitatively in Fig. 4.

In the most general case in which all compo-
nents of k are different from zero we obtain the
following bicubic equation for &,

, , ( apw' —co' k'—+y"k'„+y"k,'+X', +X,' +~' k' —X', +X', +X,",'—X, +X4 k„'k,' 2—+y" +y"
h

J

—
& k.'[xlx.'—(x.+x.)'kg', ] = o. (2.40)
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As can be easily checked, Eq. (2.40) contains as
special cases all results presented so far con-
cerning the mode structure. If one is interested
in a configuration where all components of the
wave vector are different from zero it is straight-
forward though somewhat tedious to evaluate the
corresponding plot and therefore we leave things
there before detailed measurements have been
carried out in this regime.

III. BIAXIAL DISCOTICS WITH BROKEN
ROTATIONAL SYMMETRIES

A. Motivation

to the case (ii), also the ellipsoidal axes of the
molecules are long-ranged oriented;

(iv) Smecticlike phases, where long-ranged
positional order occurs. The hydrodynamic de-
scription of case (ii) is identical to that of ordin-
ary (threadlike} nematics; case (iv) is treated by
Prost and Clark" "and in Sec. II.

In the following we study the hydrodynamic be-
havior of case (iii) (hereafter called biaxial ne-
matic discotics) and we hope that the results pre-
sented here are a further stimulation for the syn-
thesis of such a phase.

As has been briefly indicated in the Introduction
the study of discotic liquid crystals is a rapidly
growing field. Among the types of discotic liquid
crystals already synthesized are uniaxialhexagonal
(broken translational symmetries) and nematiclike
phases (broken rotational symmetry because of one
preferred axis}. Very recently biaxial discotics
with two broken translational symmetries have
also been identified. "

As is well known attempts have been made to find

biaxial nematics for many years"' because the
underlying fundamental group is non-Abelian lead-
ing to interesting properties of the defects of such
a phase [e.g. , a 180' disclination can catalyze the
topological decay of a 360' one (Mermin")]. How-

ever, up to now the search for biaxial nematics
seems to have remained unsuccessful. Possibly
this is due to the fact that nematic liquid crystals
consist of long, threadlike molecules; it is difficult
to imagine that such entities can show two differ-
ent broken rotational symmetries on a macro-
scopic scale. We think that it is much more prob-
able that discoticlike liquid crystals show a phase
with two different broken rotational symmetries
because the basic entities are objects rather ex-
tended in two dimensions. (After the manuscript
had been submitted for publication the first ob-
servation of a biaxial nematic phase was reported
by Yu and Saupe for a lyotropic system. ) There-
fore it seems to be quite suggestive that ell. ipsoid-
al, disc-shaped molecules can show the following
sequence of phases by lowering the temperature
(see also Refs. 53 and 54):

(i) Ordinary isotropic fluid without any macro-
scopic order;

(ii) Nematiclike phase, where rotational symme-
try is spontaneously broken by the existence of
one preferred direction, i.e. , where the axes nor-
mal to the discs are oriented parallel to each
other;

(iii) Biaxial nematicl. ike phase, where rotational
symmetry is spontaneously broken by two pre-
ferred perpendicular axes, i.e., where, ih addition

B. Hydrodynamic variables describing biaxial
nematic discotics

n' m=0. (3 1)

Thus we have three components of n and m which
we have to keep in our list of hydrodynamic vari-
ables, namely (nx m) 5n, (nxm} 5m, and

m 5n(=-n 5m). If we choose in a local frame
for the equilibrium value n')) e, and m'(( e„ the
corresponding hydrodynamic variables character-
izing the broken symmetries are 5n„5n„, and

5m, [5m, =-5n via Eq. (3.1)].
As in the case of biaxial discotics with broken

translational symmetries we have as conserved
hydrodynamic variables the density p, the entropy
density 0, and the density of linear momentum g.

Therefore we find for the Gibbs relation

de = T do+ g dp+ v dg+ P",&d(V&n, )

+ P,P(V&m&) +h,"dn, + hfdm, , (3.2)

where Q,"&, Q~& have to vanish in the homogeneous
limit 0-0 like 4 and h&, j'g, like 4 for 4-0. High-
er-order gradient terms -d V&V~&, dV&V~m, can
be neglected in biaxial discotics with broken ro-
tational symmetries (contrary to the case of bi-
axial discotics with broken translational symme-
tries, cf. Sec. IIA}.

The three hydrodynamic variables (n x m} 5n,
(nx m) 5m, and m 5n describe rotations and can
be interpreted as components of the "vector"
55=(m 5n, (nx m) 5n, (mx n) . 5m). Since finite
rotations do not commute, our hydrodynamic
variables have to satisfy the relations (these rela-
tions are derived in the Appendix}

By the existence of two preferred axes, rotational
symmetry is spontaneously broken with respect
to all (i.e., three) directions. Denoting the pre-
ferred axes by the unit vectors n and m, their
deviations 5n, and 5m, (n, 5n, =0 =m, 5m, ) consti-
tute four variables, three of which are hydro-
dynamic. The nonhydrodynamic, i.e. , rapid vari-
able is eliminated by the constraint
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(6,6, —5,6,)e =(5,8) x (6,8)

or explicitly,

(5,6, —6,6,)n, =6',~m, (-6,m~6, n, + 6n, 6, m, )

and

+ 6~,m&( 6-,n~62m, + 6~m, 62n~) (3.3)
I

n--n and m--m (3.4)

separately. This property reduces the number of
phenomenological parameters considerably.

C. Gradient fme energy for biaxial nematic discotics

In this section we consider in detail the gradient
free energy of biaxial nematic discotic liquid
crystals. The present investigation represents
a generalization of the Frank free energy of ne-
matics. First there exist no contributions to the
gradient free energy which contain only one gra-
dient and which are invariant under n--n„
m -m, and parity. Such terms would become
possible only if a pseudoscalar in real space would
exist as, e.g. , in cholesterics. Thus we must con-
sider terms which are quadratic in the gradients.
We proceed in several steps. The gradient free
energy can be split into three parts,

(i) Ff =K,qg„(V,nq)(V(n ),
(ii) Ff=M), g (Vqm, )(V,m ),

(3.5)

and

(5,62 —6~6, )m& = 6s&~m, (-6~n, 62n~+ 6,n~62n, ),
where 5, and 5, stand for any first-order differen-
tial operator (like S, or V~) and where 6n, or 5m,
have to be interpreted as the appropriate hydro-
dynamic variables m 6n, (nx m) 6n, or
(mx n} 5m. Thus, when dealing with Eq. (3.2)
one has to keep in mind that dV~n, e Vpn„because
of Eq. (3.3}.

Equation (3.3} represent the first occurrence of
such relations in the physics of liquid crystals. Of
course they hold equally for biaxial nematics. In
the case of the superfluid phases of 'He similar
relations have emerged, e.g. , in 'He-A as has
been pointed out by Mermin and Ho." It seems
worth noticing, however, that the relations which
hold for the superfluid phases of 'He connect quan-
tities (phase deviations and rotation angles between
real and spin space) which are different from
those studied in the present work. Like in nemat-
ics and in discotics with broken translational sym-
metry (Sec. II} the state of the system can be
equally well described by -n instead of n or by
-m instead of m. Therefore, the hydrodynamic
equations must be invariant under

0 = V(n~+n2+n~) =2n Vn, ,

leading to zg„=0,

u„=+curl n)„,

g,„=—/curl n), ,

we obtain from Eqs. (3.9) and (3.7),

F,' = X,(sp,}'+q(s,n„)'+ q(spy( s,n„)

+ x,(sp, + s,n)'+ x,(s,n }'+x,(s,n„)'.

- (3.8}

(3.9)

(3.10)

Next we consider F,' containing (curl n) quadratic-
ally. There exist only a few new terms that cannot
be incorporated into the coefficients of Eq. (3.10).
Under the further restriction of the invariance
under n--n and m--m, we finally get for F~~

the novel terms

F, = X,(s&, —s,n„}2+X,( s~, —s„n,)

x (s~„+s„np . (3.11)

Of course its possible to rearrange the terms
X„X„and A to arrive at

z,(sp,,)'+ x,(sp„)(s„n,}+x,(s„n,)' . (3.12)

Concerning F, , it is straightforward to check that
there exists no further contribution that survives
all constraints, and that cannot be incorporated in

y ~ ~ ~ y Xs ~

The evaluation of F, is achieved most easily by
replacing n with m and vice versa in F,. How-
ever, by the constraint of (3.1), m, =-n„, and only
m„has to be dealt with as an independent hydro-
dynamic variable. Thus we obtain for F,:

(iii) F,'=N, q, (V,nq)(V(m ).
It proves to be useful to divide Eq. (3.5) further,

(3.6)

where F,' contains terms quadratic in the strains
of n„F,'comes from terms containing (curl n)
quadratically whereas F, represents the cross
terms.

Let us start with F,'. From the textbooks of
elasticity" we obtain for the biaxial system under
consideration

s~ +A, +X ~~ +2&- 1 ~& XXXX XX yyyy+yy CCCC-SS XXyyNXPyy

XXSPXX CC yyCP'yy C4 EXPXC

(3.7)
I

where s,&

= Qs,n&+ s&n, }. Equation (3.7) contains
nine independent coefficients.

Taking into account the fact that n is a unit vec-
tor, i.e.,
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F,' = jj.,(s„m,}'+jj.„(s„m,)'+ jj.„(sm, p ..

Now we turn to the discussion of F,'. The con-
straint (3.4) requires Nj» to contain an odd num-

ber of n and an odd number of m. WefindforN, ~, ,
I

N, » = »m, n&6»+ X»m, n, 6»+ X,4m&n, 5,~
3 3 3

+ ~„C'„min, . (3.14)

Putting together Eqs. (3.10)-(3.14) we obtain for
the gradient free energy of biaxial nematic dis-
cotics

F =Aj(5jjVjnz) +A&(mjm&Vjjjz) +A~5j&m&mj(V~j)(V jjj&)+A 5j m m ( V, jj)(V jj )

+A,5'j jm, m~(V jjjj)(V~j)+A,5j jm, m~(Vjnj)(V, jj,)+A,5',~ jj,(V jj,)(V,jj )

+A,njjjjm jmj(V &jjj}(Vjnj)+ (A,5sj&5~»+A„5';~ n, +A„5', m m, )(V,m, )(V,m )

+ 5sjjjj&m~[A~2(V&jjz)(Vjmj)+Ajs(Vjn~}(V&mj)+Aj~(V& jjj)(V&m j)+A, ,(V&jjj)(Vzmj)]. (3.IS)

D. Hydrodynamic equations for biaxial nematic discotics

The conservation laws and quasiconservation
laws for the hydrodynamic variables described in
Sec. IIIB are

a—p+ Vigi =0
y

a—g +Va =0

8—0+V j'=0
at

—m+X' '=0d
dt

d—n +X'"'=0
dt

(3.16)

Equation (3.15) is the generalization of the Frank
free energy for uniaxial nematics to a biaxial
liquid crystal, either biaxial nematic discotics or
biaxial nematics. It contains 15 independent phen-
omenological parameters. At least three combin-
ations of them can be determined by the Frederiks
transitions. However, unlike the case of nematics,
it is somewhat difficult to give a simple picture
of the distortions contained in Eq. (3.15). Most
probably &„... ,&, are the largest coefficients
and of the same order of magnitude whereas &„
+go +yg assume a value which is supposed to be
considerably lower. These predictions may be de-
rived from the sequence of phase transitions de-
scribed in Sec. GI B.

In addition one may suspect that the &», . .. ,&»
are the smallest of all contributions because they
connect the variations of the different axes. If an
external magnetic field is applied, the orientational
free energy is given by Eq. (2.32). The discussion
of the influence of the magnetic field for discotics
with broken translational invariance (Sec. II B) is
equally valid for the biaxial nematic discotics.

I

For the equations of state, which relate the vari-
ables to their conjugates defined by Eq. (3.2) we
obtain

V= gq
p

5p. = ~5p+y50,

5T=TC '5o+y5p,

(3.1V)

aF'
Bm i

where the gradient free energy F' has been studied
in Sec. III C.- We wish to stress that nowhere in
the derivation of the hydrodynamic equations al-
ready presented (or still to be discussed, as is the
case for reversible and irreversible currents) are
n and m restricted to being constant in space in
equilibrium, i.e., the hydrodynamic equations
which are presented in this section can be applied
to hydrodynamic motions in inhomogeneous tex-
tures as well. In addition we wish to point out that-

P, &, h; as well as P,"z, h", depend on both n and m.
Next we turn to the discussion of the reversible

currents. We find taking into account general
symmetry arguments, the reversible currents of
the variables characterizing the broken sym-
metries

XI (jr 5 j j + a m, m j)jjp(V jv$+ Vgv j)

+ —,'(a, 5'j j+ a4m jm j)jj,(V jv, —V,v j), (3.18)
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XI ~'" = a,5'„(V,v, + V,v, )mk

+ —,'a, 5'«(V, v, —V,v, }m, , (3.19)

(cf. the discussion on p. 26).
Vanishing entropy production requires counter

terms to X'"'" and X'~'" in 0j j go

~fyR =(TVj (3.20)
jg P jj f/' jnjf + QygV jm~+ PP jg + Q jg ~

It should be emphasized that only one component
enters m Xjj~'(Xjj '&n, X'p'im) because the second
one ( ) fn) is identical to a component X,'"'(X,'"'

(( m) where

(3.21)

Eif Ioaj 5jj+ jkkmjmj)nj + (p j) + kHj(ak5, j + jkmkmjj)nj —(i j) +FP'ak(5, jmj + 5«m j)

+ ,'aj —a,(5kj,m, —5'„m,} (3.22)

(3.24)

Hj =h,"-
V&Q» —p»5&mjVjmk+ Qpjmp5»Vjmk+ ppj5&mjV ink —p»5pjmkVpk, (3.23)

EP, ' = h~j —Vip~»+ jtjkp&5kp, mkVPk —$pi 5~»m j Vink .

By deriving Eqs. (3.21)-(3.24) with the help of the Gibbs relation (3.2), the commutator-type relations
(3.8) must be taken into account. As is well known, in order to preserve angular momentum, it is always
possible to choose the stress tensor symmetric locally"" "(we do not consider the angular momentum

of the molecules due to rotations about their centers of mass, since these are microscopic excitations, not
connected with a spontaneously broken symmetry), i.e. , the antisymmetric part of o; must be zero or a
total divergence. From Eqs. (3.21}-(3.24) we have

1 3 j.

ji jj 8kj kPj 4g k j k khj j ji k k j j Pj k k j jj j k k p~jP'j jj
j. n—ka Vppgpm jmjnj —ka, Vppjp5»mj + [ppjmp5jkVjmk —jtjpj5pkm jVmk+ p pjm(Vjnk) 5pk

1 s
ppi 5k jm, Vjnk]( k a,n, 5 jj + —,a4m jm jnj )

+ 2a65jjmj(epj5pjmk jnk 4pj5pkmjVjnk)) (3.25)

where

+hj"5nj+ h~j5m j, (3.26)

5Vjnj =Q»Vjjnj+ VjAjknk+5kjmj(5nkVjmj —5m, Vjnk)

+ 5kj~ j(5mkV pn j —5n, V ~k) (3.2 I)

and

5V&m j = Q&&V&m j + V&Q j&m&

+ 5kjyn j(5n j Vpnk —5nkvjnj)

with Qj& any antisymmetric matrix. Again, the
commutator-type relations (3.8) are of special
importance while deriving (3.26}-(3.28). If we
make use of Eqs. (3.26) and (3.27), the antisym-
metric part of the stress tensor (3.25) is found
after a straightforward, but lengthy calculation,
to be of the required form if

Q3 = Q4 = Qs = 1 (3.28)

As is easily seen, the case of uniaxial discotics

Because the gradient energy is rotational invariant
we have the additional identity

0 = 5e = P~]~5V~n j + Q~)~ 5V~m j

I

with broken rotational symmetry or uniaxial ne-
matics is contained as a special case (cf. also
Ref. 32).

By linearizing Eqs. (3.18) and (3.19) we can ob-
tain further insight if we discuss the symmetric
contributions involving Qg ~2 and Q5 in the frame-
work of Mori's projector formalism which was
introduced into hydrodynamics by Forster during
his study of nematic liquid crystals (cf. Refs. 30
and 50 for a detailed exposition of the method).
As usual Qg Q2 and Qs pick up acontributionfrom
the frequency matrix which contains the instantan-
eous noncollisional effects. It seems important
to note, however, that Qy Q2 aIld Q5 get, to the
same order in k in the equations for n and g, a
contribution from the memory matrix which con-
tains the noninstantaneous collision-dominated
processes.

Thus the memory matrix contributes to the re-
versible hydrodynamic equations of biaxial ne-
matic discotics. The same is true for uniaxial
nematics, as has been discussed by Forster, and
for smectic-C liquid crystals. For the latter sys-
tem this fact seems to have been overlooked so
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far T. hese systems (nematic, smectic-C, and

biaxial discotics) have broken rotational symme-
tries in real space in common, whereas all liquid
crystals with broken translational symmetries
(smectics-A, -B, and -C, biaxial discotics with

broken translational symmetries) have no rever-
sible contributions from the memory matrix in

their hydrodynamic equations. This fact leads
quite naturally to the suggestion that only hydro-
dynamic systems with broken rotational symmetry
in real space possess reversible noninstantaneous
contributions in their hydrodynamic equations.

For the irreversible currents we have

gD-0

~~P~Ag~ 2

= (K~ 5() + Kmn)tt~ + K~m )m~}V~T,

X ' =$5 jP'
Xq"' =(f~ 5 ~+ f m m )H",

where

A)~ = (V)v) + Vp)) .

(3.29}

(3.30)

(3.31)

(3.32)

(3.33}

The structure of the quantities vfgp, and K]~ ls
the same as in biaxial discotics with broken trans-
lational symmetries (Sec. IIA), i.e. , we have

nine independent viscosities (compared to five for
uniaxial nematics) and three thermal conductivi-

ties (two for uniaxial nematics). Contrary to.the

case of discotics with broken translational sym-
metries we find three independent dissipation co-
efficients of the order parameter g$ g2 g3 ~

cross coupling between the variables character-
izing the broken symmetries and entropy density
is not possible for biaxial nematic discotics due

to the behavior of m and n under spatial parity
which is different from that of R.

In closing the section on biaxial nematic dis-
cotics we briefly discuss the mode structure of
the linearized hydrodynamic equations. Com-

pared to uniaxial nematics we have one additional

variable characterizing a broken symmetry. If
the viscosities and elastic coefficients are of the

same order of magrdtude as in nematics we ex-
pect one pair of propagating modes (first sound)

and six diffusing modes (energy dissipation, ro-
tational diffusion, and shear diffusion). Of course
the diffusion peaks show an angular dependence
reflecting the fact that we consider a biaxial sys-
tem. If, unexpectedly, the phenomenological
parameters connected with the broken symmetries
(elastic constants, reversible transport para-
meters a, ) are large, propagating modes of the

form &o = I'k + fDk become possible (I' and D are
highly anisotropic}. This can be seen by con-
sideration of the coupled motion of n, m and the

APPENDIX

In the following we derive the equations [cf. Eqs.
(3.3}of the main text]

(tt, tt, - tt, (t,)e=(t),e) x(t), e), (AI}

where 59 is given by

(ae,
~ ( a. ns

tte = tte, -=(n~ m} ~ 5n

663 mx n) ~m

(A2)

and where 6~ and 52 stand for any first-order dif-
ferential operator. From inspection of the quanti-
ties 66, it becomes clear that the &6, are defined
only locally and cannot be integrated in a biaxial
nematic liquid crystal. Thus, a vector e is glo-
bally not defined. Although we always deal with

5i5 (and never with 5), the nonexistence of e has
the consequence for 55, that 5,(5,5)s 5,(5,e),
which is brought about by Eqs. (Al). Let us start
.with the derivation of the first equation in (Al):

density of linear momentum yielding a bicubic
equation. Owing to the complicated structure of
the gradient free energy and the viscosity tensor
the explicit expressions are not very illuminating.

IV. CONCLUSION

%e have given the sets of nonlinear hydrodynam-
ic equations for biaxial discotic liquid crystals
with broken translational symmetries and broken
rotational symmetries, respectively. Among the
results which seem to be most easily accessible
to experiments are predictions of the various pos-
sible orientations which a sample of a biaxial
discotic liquid crystal can assume under the in-
fluence of a static external magnetic field. Fur-
thermore, it should be possible to detect the prop-
agating modes (depending in number on the or-
ientation of the wave vector) in the case of bi-
axial discotics with broken translational sym-
metries.

More interesting from a fundamental point of
view, although experimentally more difficult to
attack, are the intriguing hydrodynamic proper-
ties of a biaxial discotic liquid crystal with broken
rotational symmetries. Among these fascinating
properties the most important ones seem to be the

existence of commutator-type relations for the

variables characterizing the broken symmetries
(a feature which may be related to the intricate
properties of the defects in such media) and the

structure of the gradient free energy for these
variables.

It is a pleasure to thank N. A. Clark for a stim-
ulating discussion.
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(5,52 —5~5~)e~ —= 5~(m ~ 5~n) —53(m ~ 5~n)

= (5,m) ~ (5,n) —(5,m) ~ (5,n)

=5,$[(5,m, )(5 ny) —(5 m, }(5,ny)]

=(53&+m, m&+ n, n&)[(5~m,.)(52n&) —(52m, )(5,n&)]

= 5', ,[(5,m, )(5,n~) —(5,m, )(5.,n~)] = (5,e,)(5,e, ) —(5,e,)(5,e,).

(A3)

(A4)

(A5)

(A6)

(A7)
(A8)

Equation (A8) completes the demonstration of the first of the equations given in (3.3) or (Al), respectively.
Equation (A7) follows from Eq. (A6) because

m,.ham, . =0 =n]5~,- .
For the dynamic equation for 66, roe have

(5,5, —5,5,)B,=—5,((nx m) ~ 5,n) —5,((nx m) ~ 5,n}

=f,y,(52n,.)(5,ny)m~+6, J,(5,n. ,)(5,m, )nf —&gf„(5,nf)(5gnf)m, —e,j,(5n, )(5/m. ,)ny

=e, ,g,( 52n) 5m, ) —E,„(5,n., )ny(5, m, )

= (5, , + n, n, + m, m, ).f »~& [(52n, )(5,m~} —(5~n, )(52m~)]

= m, m, E»@&[(52n,)(5,m~) —(5,n, )(5~m~)]

=(5,e,)(5,e,}—(5,e,)(5,e, ) .

(A9)

(A10)

(A11)

(A13)

(A13)

(A14)

(A16)

Equation (A15) completes the demonstration of the
second equation of (Al). Equation (A12) holds be-
cause the second and fourth terms in (All) can-
cel each other, and Eq. (A14) follows from (A13)
by taking into account that

(A16)

and by remembering that n, m, and (nx m) always

I

form a triad of orthogonal vectors.
The demonstration of the equation for 6e, per-

fectly parallels that for 5e, and thus our derivation
of the anholonomity relations for the variables
characterizing the broken rotational symmetries
of a biaxial nematic is complete. It should be
noticed that Eqs. (Al) are not restricted to homo-
geneous equilibrium textures, but apply to arbi-
trary nonsingular textures.
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