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The melting in a two-dimensional Lennard-Jones system is investigated by the
molecular-dynamics technique. "Final-size" efFects on the melting are analyzed by per-

forming calculations for systems with up to 3600 particles. The phase transition is weak-

ly first order, but analysis of the crystal shows that there is a weak increase in the density

of crystal defects as the size of the system is increased. The defects appear in large loops

just before melting. The size effect on the defects in the lattice will weaken the first-order
transition further when the size of the system is increased.

I. INTRODUCTION

The properties of two-dimensional (2D) systems
at high densities have been the subject of contro-
versy for a long time. Originally, Peierls' and Lan-
dau showed that conventional long-range order
does not exist in such a "solid" system due to the
long-wavelength phonons. However, despite the
missing translational long-range order, orientation-
al long-range order can still be present. This ex-
act result only concerns the structure of the dense
state and not the way in which it can be reached
from the low-density fluid state, e.g., by performing
phase transition(s}. Recently, Halperin, Nelson,
and Young (HNY) have derived a theory for the
phase changes in 2D media in which they predict
that if the melting is not of first order thermo-
dynamically, then two second-order phase transi-
tions are necessary to come from the isotropic
low-dcnsity state to the high-density state with
orientational long-range order.

On the other hand, 2D computer models show a
first-order melting. Alder and Wainwright first
performed molecular dynamics (MD) calculations
on 870 hard disks and found that the pressure iso-

therm exhibits a van der Waals loop when the sys-

tem melts. Later Hoover and Rce derived a
method, the "single-occupancy method" (SO), to
determine the free energy of the ordered solid state
and calculateds the tie line between fluid and solid
states with equal chemical potential. The melting
pressure determined in this way agrees with the
value obtained by Alder and Wainwright. Recent-

ly, a series of computer simulations ' for various

systems with soft repulsive potentials has con-
firmed this first-order behavior. The soft-disk sys-

tems exhibit such characteristics as hysteresis and
nonuniform solid-fluid particle distribution at the
phase transition, ' ' and the location of the ob-

served transition agrees fairly well with the loca-
tion of the calculated "tie line" between the fluid

and solid of equal chemical potential. ' On the
other hand, the systems have properties which are
(qualitatively) in accordance with the theory
derived in Refs. 4 and 5.' '

In thc present article we report some very long
and accurate MD calculations on systems of dif-

ferent numbers (X) of Lennard-Jones particles with

N up to 3600, in order to investigate the melting
mechanism and thc influence of the size of the sys-
tem on the phase transition. The calculations (see
the Appendix} are performed for the temperature
kT/a=1. This temperature is well above the 2D
critical liquid-gas temperature, but on the other
hand the attractive part of the potential is still im-

portant at this temperature.

II. LOCATION OF THE MELTING ZONE

The melting zone was located (dynamically) as
the density zone in which the pressure isotherm ex-
hibited a van der Waals loop. The loops were ob-
tained by starting the system in a triangular lattice
state at the density po =(2/v 3)2' =0.9165, and
scaling the systems down to lower densities. The
results of the calculations are given in Tables I and
II and shown in Fig. l. Both the small system of
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TABLE I. Pressure and energy per particle for the N =256 Lennard-Jones system at
kT/a= 1.

PlX PcT /6 u/e
Number of time-

steps (103)

0.5953
0.6350
0.7143
0.7540
0.7937
0.8135
0.8334
0.8413
0.8493
0.8572
0.8651
0.8731
0.8810
0.8880
0.8937
0.9048
0.9165

0.91
1.10
1.89
2.48
3.39
3.94
4.55
4.79
5.11
5.34
5.60+0.08
5.0+0.4
4.87
5.16
5.52
5.88
6.50

—0.620
—0.744
-0.960
—1.072
—1.163
—1.196
—1.232
—1.248
—1.256
—1.279
—1.30+0.02
—1.43+0.04
—1.495
—1.494
—1.501
—1.521
—1.528+0.002

10
10
10
10
10
10
10
10
80
10
50
50
10
35
10
10
14

256 particles (0) and the large system of 3600 par-
ticles g) display a loop in the pressure iostherm;
however, whereas the small system exhibits large
pressure fluctuations in the melting zone, the pres-
sure only fluctuates a little in the 3600-particle sys-

tem and the loop is more smoothed out. The un-

certainties in pressure and energy in the large sys-

tem at melting were 0.04 and 0.005, and outside
the loop the corresponding uncertainties in both
systems were of the order 0.02 and 0.004, respec-
tively. The systems exhibited hysteresis; when the

large system was rescaled to a higher density the
pressure converged very slowly to the equilibrium

value, at the solid branch of the loop.

The melting zone was also located thermo-

dynamically by calculating the points of fluid and
solid states with equal chemical potential. In order
to calculate the free energy and chemical potential
of the solid state, we need to know the free energy
of the solid in the (starting) state kT/a=1,
per =0.9165. It was obtained by the SO technique
as described in Ref. 16, and the points of state for
the single-occupancy cell system are given in Table
III. The three-dimensional SO system exhibits a
kink in the pressure p (p) at a density below the
solid density at melting and this second-order
phase transition is interpreted as the density above
which the particles are constrained to their cells;

TABLE II. Pressure and energy per particle for the N =3600 Lennard-Jones system at
kT/a=1.

per

Number of time-
steps (10 )

0.8493
0.8572
0.8651
0.8731
0.8810
0.8880
0.8953
0.9010
0.9165

5.08
5.32
5.51
5.55
5.44
5.37
5.48
5.73
6.54

—1.258
—1.280
—1.309
—1.354
—1.420
—1.471
—1.504
—1.514
—1.522+0.003

3
4
5

10
10
10

5

5

5
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for N =576 and per =0.75. No size dependence is
registered within the accuracy of the calculations
which is estimated to be 0.005 in the pressure
below pe =0.75 and of the order 0.01 above. The
convergence of the MD calculations was slower
above per =0.75 and long runs were performed.
However, different starting conditions gave the
same pressure so the SO method is still ergodic in
this region. When the cell was removed at
po' =0.9165 no change was observed in the pres-
sure within the accuracy of the calculations, and
the points of state in Table III thus serve as a re-
versible path from the low-density region from
which the free energy F is calculated. ' We find
good agreement with the corresponding value ob-
tained by Barker et al. ' who calculated F by in-
tegrating from T=0 and using the "quasiharmon-
ic" approximation. At per =0.9165 and kT/a=1,

Present calculation F/Ne= —0.143,

Ref. 13 F/Ne= —0.136.

FIG. 1. The pressure as a function of density at
kT/@=1. The full line and the points ~ give the pres-
sure in the large system, and the dotted line and the
points 0 give the corresponding pressure in the small

system. Also shown is the extension of the fluid pres-
sure and the tie line in the small system (dotted line) to-
gether with the virial expansion pressure and its tie line

(—~ ——.) taken from Ref. 13.

not by the Wigner-Seitz cell walls but by their
nearest neighbors. The transition is more fuzzy in
2D (Ref. 8) and the present long calculations shaw
that it is a continuous taking over of another "con-
straint mechanism". This conclusion is obtained

by counting the number of reflections per particle
at the cell walls as a function of density, which was
found to decline exponentially with increasing den-

sity with two different slapes (well) above and
below a certain density region p0 =0.75. Analysis
of the particle structure shows that the SO system
contains (bound} disclinations' both above and
below the transition zone per =0.75 and an ex-
planation of the fuzzy transition in the 2D soft-
disk system could be that it is the disclinations
which are gradually excluded in the lattice as the
density is increased.

The dependence on the size of the SO system
was analyzed by performing a calculation for
N =576. At low density the SO system is indepen-
dent of N, and a priori we would expect a possible
size dependence to begin to show up in the regime
po =0.75, and have performed a MD calculation

The thermodynamic location of the melting zone
can now be determined. Figure 1 shows the calcu-
lated tie line (dotted line) between fluid and solid
with equal chemical potential for the N =256 par-
ticle system. The thermodynamic location of the
phase transition appears at higher pressure than ac-
tually observed in both the small and the large sys-
tem. Also shown in the figure is the Pade extrapo-
lation of the virial expansion and the calculated tie
line taken from Ref. 13 ( —.——}. The Pade ap-
proximant fails systematically above po =0.80 by
giving too high a pressure. This shortcoming of
the virial expansion with 5 —6 virial coefficients is
also observed for hard disks. We have analyzed
this quality further by compressing (scaling} the
systems rapidly from pcs =0.80. The systems were
compressed to the freezing density during 40—80
timesteps ( & 10 ' s} which is shorter than the
transit time for a sound wave and thus, no long-
range correlations could take place during this
time. The pressure just after the compression was
higher than the equilibrium pressure but lower
than the Pade approximant pressure, from which
we conclude that the shortcoming of the truncated
virial expansion is not due to h freezing phenomena
(or to the appearance of a hexatic phase ' ). How-
ever, it means that the first-order nature is less pro-
nounced than found in Ref. 13, and it implies that
the tie line appears at a higher pressure.

The calculated tie line (dotted line) appears at a
higher melting pressure than actually observed in
both systems, but the uncertainty must be rather
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TABLE III. Pressure and energy per particle for the single-occupancy system of N =256
Lennard-Jones particles at kT/e= 1.

PcT /6
Number of time-

steps (103)

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.85
0.9
0.925
0.95
0.975
1

1.025
1.05
1.075
1.09
1.10
1.11
1.1188
1.14
1.1547

0.073
0.125
0.148
0.149
0.144
0.174
0.293
0.606
0.878
1.277
1.520
1.84
2.16
2.52
2.91
3.36
3.89
4.26
4.50
4.81
5.07
5.85
6.50

+ 0.316
+ 0.078
—0.187
—0.460
—0.736
—0.879
—1.009
—1.072
—1.132
—1.196
—1.258
—1.319
—1.377
—1.433
—1.463

.—1.482
—1.490
—1.508
—1.526
—1.528

15
10
5
5
5
7

14
5
5

5
5

15
15
17
15
22
30
13
16
13
25
10
15

high due to the small density change at the transi-

tion, which means that the curves p, (p) and p~(p)
for the solid and fluid chemical potential at the
crossing point have almost the same slope. ' The
uncertainty ia p comes from the MD simulations,
the extrapolation of the equation of state for the
fluid, and from the calculated free energy. For ex-

ample, an error in the free energy of. the solid state:
dd /Le=0. 01 will result in change in the melting
pressure on hpo /@=0.25. The calculated melting
pressure is per /@=6.06, and the melting pressures
in the two systems estimated from a (crude)
"equal-area" construction ofp(p ') are =5.20 and
=5.50, respectively, for the small and large system
and we believe that the difference between the cal-
culated and the observed melting pressure is not
greater than can be explained by the uncertainty of
the calculations.

III. THE PHASE TRANSITION

The phase transition, as it appears in both the
small and the large system, is of course Grst order
but the question is whether it is an artifact caused
either by the size of the system or by insuf6cient
time averaging. In order to answer the first ques-

tion we have performed a more extensive analysis
of size effects both in the fluid and solid state. The
result of the analysis of the fluid state is that there
is no significant size effect here. The calculations
were performed for systems of N =256, 576, 1024,
and 3600 particles at the density per =0.8493 and
gave the same pressure within the accuracy of the
calculations. The solid state, however, exhibits a
weak size dependence. At the density ptr
=0.9165, which corresponds to a dense solid in
both systems, the energy per particle is significant-
ly greater in the large system and the density of
crystal defects per particle were found to be
0.0031+0.0006 and 0.0100+0.0010, respectively,
for the small and large system. This effect is in-
creased when the transition is approached. ' Table
IV gives the result of the calculations for the densi-
ty ptr =0.8880, which is also analyzed by Tobo-
chnik and Chester. ' The present calculations
show that the point of state ptr =0.8880, kT/e= 1

lies on the thermodynamically unstable part of the
van der Waals loop and represent an over-expanded
crystal close to the spinoidal point. This fact ex-
plain the narrow melting temperature interval at
the isochores in Ref. 12.
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TABLE IV. Size effect on pressure, energy, and lattice defects at the metastable state

pcs=0. 8880 and kT/a=1.

per~/e

Disclinations
per
particle

Number of
timesteps (10')

-1(SO)
56

256
576

1024
3600

5.07+0.03
5.11+0.06
5.16+0.02
5.21+0.05
5.26+0.04
5.37+0.03

—1.508
—1.499
—1.494+0.002
—1.489+0.005
—1.484+0.005
—1.471+0.004

0
(0.01

0.026
0.029
0.034
0.052

25
50
35
75
28
10

The question whether equilibrium states of the
systems can be obtained in time intervals of
= 10000 timesteps is difficult to answer. The tran-

sit time of a sound wave gives only a lower limit
for the necessary time interval. Another test can
(in principle) be performed by compressing the sys-

tems from a fluid state, since if the points shown in

Fig. 1 represent equilibrium states the systems
should freeze and end in the starting state by
compression. However, as already mentioned, the
large system showed hysteresis and converged very

slowly at the "solid" branch of the loop: When

compressing from the density 0.8SSO to 0.9010 the
pressure after 8000 timesteps was 5.81+0.04 and in
the next 5000 steps it only decreased a little. A
structure analysis showed that the state contained a
higher concentration of crystal defects than the
corresponding state given in Table III. We believe

that the system had not reached equilibrium and

that the necessary time would have been very long.
However, if this state has to be included in an ap-
propriate averaging over equilibrium configurations
the pressure and the density discontinuity at the
phase transition will only change a little.

In the HNY theory ' the lattice defects before
melting are assumed to appear in pairs of bound
dislocations with opposite Burger vectors. By me-

lting into a possible "hexatic phase" the disloca-
tions dissociate and destroy the (algebraic) long-

range lattice order. The dislocation itself consists
of pairs of bound disclinations, e.g., disclinations
with coordination numbers 5 and 7, and at the me-

lting of the hexatic phase into an isotropic fluid the
disclinations dissociate and finally destroy the
long-range order between pairs of particles. This
theory is developed from the Kosterlitz-Thouless~o

(KT) theory for melting in 2D, which has been
supported both by computer simulations and exper-
iments. ' The present calculations of lattice defects

in the solid show that the majority of defects con-

sist of quadruplets of disclinations with coordina-
tion number (5757) as assumed in the HNT-KT
theory, but also of small loops of disclinations
(575757. . .). Figure 2 shows a typical picture of
lattice defects at the density per =0.8953, which

corresponds to a density just above the melting

density determined from an equal-area construction
of p(p ') in Fig. 1. At higher densities the pic-
tures are qualitatively the same. As the density is

decreased the defects are found to cluster together

in loops and clusters as also observed in Refs. 12
and 15. Figure 3(a) shows a typical picture of de-

fects at per =0.8880. We find, not surprisingly,
that the size effects given in Table IV are associat-
ed with creation of these loops and clusters which
are prevented in the small systems with periodic

FIG. 2. Particles in the large. system at po =0.8953
with coordination numbers different from 6 (disclination
center). Particles with coordination numbers 5 and 7 are
given by S and o, respectively.
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(o)

o$g!

(b)

FIG. 3. (a) Disclinations in the large system at po =0.8880. (b) Four (subsequent) pictures at per =0.8880 of dis-
clinations in the N =576 system. Pairs of dislocations are more dominating in the smaller system.
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boundaries. Figure 3(b} shows four subsequent pic-
tures of defects in the system of N =576 particles
also at po =0.8880.

The HNY theory gives a quantitative description
of 2D melting. One of the predictions is that the
product of the Lame elastic constants, A, and p,
should approach a certain value at melting. They
predict that limK:

1' =16m.=50,
r~r 2p+ A, kT

sorbed on solid surfaces, the computer systems are
rather small. The diameter of the box in the large

0
computer system corresponds only to -250 A; in
that case it simulates a noble-gas monolayer. The
real systems suffer from surface and interface de-

fects caused by the edges of the crystal adsorption
planes; an imperfection the computer systems do
not have. On the other hand, the periodical boun-
daries even prevent rather small density fluctua-
tions and it is these fluctuations which must cause
the bulk 2D crystal defects which finally melt the
system.

where T is the solid-state melting temperature
and d is the lattice constant of the triangular lat-
tice. The Lame coefficients were calculated ac-
cordingly to the formula derived by Squire et al.
The value of E was found to be significantly
greater than 50 at the points where the crystals
(N =256,3600}melt due to thermodynamical insta-

bility, but it was of the order 50 at the densities
where the two systems melted.

The conclusion of these calculations is that the
phase transition in the computer systems is first or-
der. The KT melting theory describes melting at
the spinoidal point and the melting may occur not
due to unbinding dislocations, but due to genera-
tion of loops of disclinations (grain boundaries in
2D). Whether this result holds in the thermo-
dynamic limit is of course, in principle, impossible
to say from two sets of calculations. Hoover and
Alder have estimated the number dependence of
the melting pressure in a hard-disks system and
found that the variation with N could be explained
as originating in the number dependence of the
communal entropy which varies as —ln(2~N)' /
N. This effect will result in an increase in the
melting pressure of =0.3 when the number is
changed from N =256 to 3600 as actually ob-
served, and the melting pressure, due to this effect,
should only change marginally ( =0.01) when
N~oo. But the calculation is based on the as-
sumption that the density discontinuity pI

' —p,
'

is not number dependent. Furthermore, in a
Lennard-Jones system we need not only consider
entropy effects but also energy effects, and the
solid-state energy is found to be weakly number
dependent due to an increase of the density of crys-
tal defects as N is increased. This number depen-
dence will weaken the transition and may change
the nature of the transition in the thermodynamic
limit.

Compared to real systems, e.g., monolayer ad-
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APPENDIX

The systems consist of N particles in a rectangu-
lar cell with the ratio 3' /2 between the edge
lengths. The density is p and the particles interact
through a Lennard-Jones potential

u (r) =4m[(r la) ' (rlo) —], (A1)

The pressure p, energy per particle u, and tempera-
ture were obtained as the time average of the virial
of the forces, the potential energy, and kinetic ener-

gy, respectively. In addition we obtained the
derivative of pressure and energy from the fluctua-
tions in pressure and kinetic energy according to
the formula (in 2D)

and

N(5T }= T (1—c„), (A2)

T2—N 5 +—T5T = — —1
p C1, p BT

(A3)

where the brackets are time average and 5x =x (t)
—t,x(t) }.

The calibration (of kinetic energy) to kT/a= 1

truncated at r, =2' 2.5' =2.80.. The MD calcu-
lations were performed as described in Refs. 10 and
16 by integrating the equations of motion and us-

ing the "Verlet algorithm" with a timestep

At =2' 0 005o(mls)' =10 ' s .
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was continued until none of the observed quantities
T, p, u, Bp/BT, and c„showed any systematic vari-
ation with time. In addition we have used another
criteria for the necessary time for calibration and
subsequent time for averaging, namely, that these
time intervals should be much larger than the time
it takes an adiabatic soundwave to traverse half the
system. (The half, due to the periodical bound-
aries). The sound velocity c was obtained as

1/2

c= Bp T Bp

c)p cp BT
(A4)

from (A2) and (A3), and by numerical differentia-
tion of p(p) near —but not at—the phase transition.
This traversion time was found to be =10 time-
steps for the large 60X60 particle system.

After the calibration the equilibrium pressure
and energy were obtained from the subsequent time

interval and fine corrected to kT/a=1 by means of
Bp/BT and c„. The temperatures for the generated
equilibrium points of state deviated less than 1%%uo

from kT/a=1, and the fine corrections were less

than, or at the order of the estimated uncertainties
in p and u. Finally, the pressure and energy per
particle were corrected for contributions due to the
truncated "tail" of the potential. For 2D we have

p~ —
2 np f dr g(r)r u'(r), (A5)

u mp J drg(r)ru(r}, (A6}

where g (r) is the radial distribution function for
the system of particles interacting through the
truncated pair potential. For po (0.8 the formula
were sim'plified further by setting g (r) = 1. For
pir )0.S g (r) was first approximated by unity for
r &2' 4cr
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