
PHYSICAL RKVIE% A VOLUME- 24, NUMBER 5 NOVEMBER 19&1

Anomalous mixing times in turbulent binary mixtures at high Prantltl number
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A theory of turbulent binary fluid mixtures is applied to situations ~here the diffusive Prandtl number„P = vfD,
far exceeds the Reynolds number R. This regime is accessible just above the consolute point in binary mixtures,

where Prandtl numbers in excess of 10 have been observed. %e find that sizable large-scale inhomogeneities are

mixed to uniformity quite slowly, in a time of order r = tg/8, where to is a characteristic stirring time. The

spectrum of concentration fluctuations rapidly acquires a peak at wave vector k ~-kg, where k, ' is the scale of

the initial inhomogeneity. Mixing times of ten minutes or more are possible.

I. INTRODUCTION

Turbulence is known to have a striking effect on

the efficiency of mixing. Despite the low diffusivi-
ties (D 10 cm-'/sec) in miscible binary mixtures,
one can easily mix a 1-cm inhomogeneity to uni-

formity in a few seconds. This striking enhance-
ment of an effective transport coefficient is a com-
mon feature of turbulence. '

It is interesting to consider the reduction of mix-

ing efficiency in the extreme limit of exceedingly
smal. l diffusivities. This limit is experimentally
accessible in binary mixtures just above the con-
solute temperature T', .' Indeed, the diffusivity
actually vanishes like a power law,

metric" binary mixture where the consolute point
occurs at 50-50 concentrations, and where

Q(P, f)) =0 (1.5)

in equilibrium. Standard theories of turbulent
mixing' ' assume that g(1', f) is passively advected
by a turbulent velocity field %(V, f),

+ (v V)g = DV'g .
8$

Suppose a Large-scale inhomogeneity with g of or-
der 1 is stirred with a characteristic period t,.
For Prandtl numbers of order unity or less, the
inhomogeneity would be dissipated in a time of
orde~ f, For larg.e P [P»exp(R'~')] a passively
advected inhomogeneity would be mixed in a longer
time (see Sec. II),

whexe the exponent p is in the range'

p = 0.63 -0.74.

By holding the system a few millidegrees above
T„diffusivities of order 10 ' cm'/sec are possi-
ble. A dimensionless measure of the reduction in

D is the Prandtl number

where v is the kinematic viscosity. Since the vis-
cosity is only weakly singular2 3 near the consolute
point [v(T) =const-10 ' cm'/sec], Prandtl numbers

as large as 10' can be obtained.
Questions of mixing efficiency focus on the re-

laxation of a concentration variable

pr, t) =[p„(P,f) —p, (r, t)]/p„ (1.4)

where p„('P, f) and ps (F, f) are the mass densities
of two species', and B, and p0is the mean mass
density. %e will, for simplicity, consider a "sym-

lnP
~passive ~0 ~1/2 &

where g is the Reynolds number. The mixing
process can be significantly slowed down, but
only in the limit of unrealistically large Prandtl
numbers. A modest Reynolds number of, for
example, 10', would require Prandtl numbers in
excess of 10"for an observable effect.

The concentration variable g(r, t) is, however,
not simply advected passively by the velocity
field in 50-50 binary mixtures. Concentration
gradients react back on the velocity field to pro-
duce flow. A theory of binary mixture turbulence
capable of dealing with this effect was worked out
in Ref. 9, henceforth referred to as I. Here, we
observe that the theory predicts anomalously long
mixing times in these "active" binary mixtures.
In particular, we find that the mixing time in the
limit P»g is
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~active 7 p y
(1.8)

in contrast to Eq. (1.7). For Prandtl numbers of
order 10 and Reynolds numbers of order 10',
large-scale inhomogeneities can take ten minutes
or more to mix.

Also of interest is the spectrum of concentration
fluctuations

which can be measured directly via light scatter-
ing. " Here (/)g(t) is the Fourier transform of

l()($, t). In turbulence theory, one traditionally
works with the spectral function

C (k, t) —= 2vk S(k, f) . (1.10)

I I I I I I I 'I I I I I I I I I I I I

Figure 1 shows the time evolution of C(k, t), ob-
tained from closure equations derived in I (see
Sec. III). Fluctuations are concentrated initially
around wave vector kp with g = 10' and P = 10'.
The spectrum is rapidly transferred to large wave
vectors, where it peaks up around a wave vector
k*» kp. The peak will persist for a time given by
Eq. (1.8). We find that k* is determined only by

ko and the Reynolds number

k+=gko.

Equations (1.8) and (1.11},which are the principal
results of this paper, apply when the variation of

(t)(r, t = 0} across the sample is of order unity. The
modifications necessary when this variation is
small are discussed in Sec. III. Of course, Eq.
(1.7), (1.8), and (1.11) are all subject to dimen-
sionless multiplicative corrections of order unity.

We note finally that all wave vectors discussed

II. HYDRODYNAMICS AND RESULTS
FOR PASSIVELY ADVECTED MIXTURES

To describe turbulent binary mixtures, we sup-
plement Eq. (1.6} with modified 5avier-Stokes
equations for the velocity field v(r, f), namely, "9

(SI+v' V}v= Vp'+IdV'v —aV |()V(j)+f,
Po

ye/=0
(2.1a}

(2.1b)

The quantity f(r, f) is a Gaussian stochastic force
designed to simulate stirring at long wavelengths.
Several longitudinal terms involving p have been
absorbed into a modified pressure p'. The rever-
sible coupling a has the dimensions of a transport
coefficient squared and is in order of magnitude, '

Q V (2.2}

The model of binary mixture hydrodynamics de-
fined by Eqs. (1.6) and (2.1) has been studied both
in' and out' of equilibrium.

In I, integral equations for the Fourier trans-
formed spectra

above must be smaller than the inverse correla-
tion length ( '. Indeed, length scales smaller
than $ must be in equilibrium, in order that D(T)
be given by Eq. (1.1}. This does not seem to be
a severe limitation, even at temperatures quite
close to T, .

In Sec. 0, we briefly review the hydrodynamic
equations appropriate to turbulent binary mix-
tures, as well as the predictions for Passively
advected mixtures. Section IO summarizes the
results for active binary mixtures at high Prandtl
number. Although high Prandtl number mixtures
were discussed briefly and qualitatively in I, both
the numerical results and emphasis of this section
are new. Several technical points are discussed
in the Appendices.

10 0
2
4
8
2

( t)=ddedI' Jd're'"'(v(r, t) v(0, t)), (d. ee)

o 10 t: (I, t) 2ett fd re' "'(=I(,'t)'d(0, t)), (2.2b)

10-10

I I I I2* 2' 2* 2' 2' 2' 2" 2" 2" 2"
k/ko

FIG. 1. Time evolution of C(k, t) (n = v2). The stirring
force is sharply peaked around k -k(), and the time is
measured in units of the circulation time at ko. The
parameters are P=105, R ~103, and Q,t(t=0)=2 4,
corresponding to k~ ~ 2~ and k ~~ 2~.

were obtained using an eddy-damped quasinormal
Markovian closure' of the hierarchy of correlation
function equations associated with (1.6) and (2.1).
These integral equations take the form

(SI +2Dkm)C(k& t}= T, (k, t) I

(8' + 2)dk )Z, (k, f) = T„(k,f) +E(k),

(2.4a}

(2.4b}

where E(k) is the spectrum associated with the
Gaussian stochastic force f. The "transfer func-
tions" T; and T, involve convolutions of the instan-
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k,SkSkd. (2.8)

Velocity fluctuations vanish rapidly beyond a vis-
cous cutoff, '

k, = k, (e/v'}'/4 (2.7)

Concentration fluctuations are carried quickly

down to length scales of order kd' by the kinetic
turbulence. This happens in a time of order t„
where t, characterizes the stirring of large scales.
The concentration spectrum rapidly acquires the
form4 8

C(k}-k '/', (2.8)

with a time-dependent amplitude.
At high Prandtl number, D is much less than p,

and concentration fluctuations cannot be dissipated
at the scale at which the kinetic cascade termin-
ates. The concentration continues to cascade to-
wards small scales, but with a different power-
law falloff of the spectrum

C(k)-k '. (2.9)

The characteristic time for a fluctuation to travel
one octave in 0 space is a typical time for the vel-
ocity at k~,

' '

t~= 1/vk~= Vv/e . (2.10}

The quantity td is like an effectively uniform

strain rate which stretches small-scale concen-
tration fluctuations. ' The 0 ' "viscous-convec-
tive" cascade of concentration fluctuations is ter-
minated when diffusion finally becomes important,
at wave vector' '

k~ = k~Ev/D. (2.11)

The physical picture outlined above is illustrated
in Fig. 2, which is the result of numerically inte-
grating the closure equations (2.4)." Regimes
with power-law spectra given by (2.8) and (2.9)

taneous spectra g„on t. over all wave vectors
(see Appendix A). The numerical results of I were
restricted to unit Prandtl number.

In this section, we illustrate the predictions of

standard turbulence theories' ' for passively ad-
vected mixtures (a = 0}, with a numerical solution
of Eq. (2.4) at high Prandtl number. We imagine
that a large-scale concentration inhomogeneity is
mixed toward uniformity by the usual Kolmogorov

cascade of velocity fluctuations, '

E (k) e 2/3k 5/3 (2.5}

The quantity & is the injection rate of kinetic ener-
gy. Assuming the fluid is stirred at a scale g, = k,'
(which we also take as the scale of the initial con-
centration inhomogeneity}, the spectrum (2.5)

holds over an "inertial range" of wave vectors

are clearly indicated. Technical remarks about

the numerical integration procedure necessary at
high Prandtl number are given in Appendix A. The

closure equations reduce to a particularly simple
form when 0» kd. Mixing in the viscous-convec-
tive range of passive mixtures can be studied

analytically in this limit. The results are given

im Appendix B.
The above theory predicts a mixing time for

large-scale concentration inhomogeneities con-
sisting of three contributions,

r, = f o+ f~ ln(kg/kg) +
)2

.
1

d
(2.12)

The first term is the time for a fluctuation to
reach kd, the second is the time to cascade from

kd to kd, and the third is the dissipation time act-
ually necessary at k', . (Corrections of order unity

should multiply all three terms. } Making use of

(2.10), (2.11), and the relation, '

t~ = to/R (2.13)

one can rewrite Eq. (2.12) as

l.nP
Pd33

=to 1+~~(2+R (2.14)

Evidently, the mixing time z„.„, for large R is of

order f, unless lnP»p'/', in which case Eq. (1.7)

holds. As discussed in the introduction, unphysi-

cally large Prandtl numbers would be required to
obtain mixing times significantly longer than f,.

III. MIXING IN ACTIVE BINARY MIXTURES

As fluctuations cascade toward the ultraviolet,
concentration gradients are enhanced dramatically.
Qne might expect that the a term in Eq. (2.1a),
which allows concentration gradients to react back
on the velocity, eventually becomes important. As

was discussed in I, two quadratic conservation
laws play a role. In addition to the squared inte-
gral of g,

ctot 2 d & r

the quantity

(3.1)

E t ~ d+ vr t + V (3.2)

is conserved in the absence of dissipation and

forcing. The dynamical coupling between Vg and
v tends to produce equipartition between the kine-
tic and gradient terms of (3.2). For large o. , the
system actually supports wavelike excitations which
produce this equipartition. ' For more realistic
values of a, however, these waves are always
over damped.

In I, it was argued that the cx coupling has no
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FIG. 2. Time evolution of C(k, t) for passive mixtures (0. = 0). The stirring force and the time units are as in Fig. 1.
Here one has P=9&&104, R ~103, and Cg t(t=0)=1. The inset displays ~,(A)= T~(q)dq. It would be flat if the Kolmo-

0gorov ideas about local cascades were perfectly obeyed.

effect until k exceeds kd. At this point, the k '
viscous-convective concentration cascade begins.
Since C(k) is continually transferred toward large
wave vectors, the root-mean-square fluctuations
in the concentration gradients,

it was shown, modulo possible logarithmic cor-
rections, that"

(3.6)

)qq),', =f dqq'c(q).
0

(3.3)
where B, is the root-mean-square concentration
gradient at time t = 0:

co =aB2(k)/v,

where

(3.4}

))'(q)=f qqq(('(q).
0

(3.5)

In I we derived the rate (3.4) from a linearization
of the equations (1.6) and (2.1) around a configu-
ration in which there was a uniform concentration
gradient imposed on the system. The relaxation
rate (3.4) can also be obtained from the closure
equations (A3) and (A4} by using a nonlocal expan-
sion without the need for any linearization. " In I

must increase. When ~V(j)~, , becomes sufficiently
large, concentration gradients are converted into
velocity fluctuations and immediately dissipated
by viscosity. Since QV(j)f, , can no longer grow,
the ultraviolet cascade of concentration flucutations
is terminated prematurely.

The characteristic rate at which concentration
gradients are converted into kinetic energy and
dissipated is'

p l kd (3.6)

where

(3.9)y,'=&y'(r, f=0)&=C...(0).
For large Prandtl numbers P»R, the k ' cascade
never reaches the diffusive cutoff k,'.

B =8 iVy(s, f = Or &]'~'

=kg(()'(~r f =0)]')'.

We have used (3.7) to define the characteristic
wave vector k, of the initial large-scale unhomogene-
ity. The first multiplicative factor in (3.6} ac-
counts for stretching of concentration gradients
during the inertial range cascade, while the sec-
ond takes into account stretching in the viscous-
convective range. The cascade terminates when

just equals the strain rate vk~2= Ve/v at which
concentration fluctuations are transferred from
one octave to the next. Using (3.4), (3.6), and
(3.7}, we find
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2D-dk k'C (k) .
dt

(3.10)

If D is small, and concentration gradients dissi-
pate before they can grow significantly, concen-
tration fluctuations will get hung up at k*. In
contrast to the mixing time estimate (2.12}for
passive mixtures, we find that (provided kq'&-k~)

7„,=f,+t,ln(kq/k, }+
1 (3.11)

The third term dominates in the limit P» g,
provided p, is not too small,

1 I'ng P
D(k*) oI& v' R

(3.12)

Eliminating k& from (3.8), we can reexpress the
other principal result of this paper,

Although concentration gradients are dissipated
at k*, the concentration itself persists. Indeed,
an immediate consequence of (1.6) is that

to system. Equation (3.14) allows a to be obtained
from experimentally measured quantities, how-

ever.
The result of numerically integrating the closure

equations (2.1) at high Prandtl number, with a = v',
is displayed in Fig. 1. The spectrum rapidly ac-
quires a peak at k*, which should persist for a
time given by (3.13). Details of the numerical
integration required to produce Fig. 1 are' dis-
cussed in Appendix A.

Qur analysis neglects the "intermittent" or
spotty dissipation fluctuations observed in real
turbulence; such effects are usually rather small. '
The closure approximation used here constitutes
a kind of "mean-field theory" of turbulence. Ar-
guments suggesting an intermittent probability
distribution for (Vg) in the viscous-convective
range have been developed by Kraichnan. ' It
would be interesting to see in detail how this in-
termittency alters the estimates presented in this
paper.

k*=, gk, . (s.ls}
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APPENDIX A: NUMERICAL INTEGRATION OF THE EDDY-DAMPED QUASINORMAL MARKOVIAN CLOSURE

In I we used the EDQNM closure' to derive the following set of equations for the velocity spectra E„(k) and

the concentration spectrum C(k) in three spatial dimensions:

(8, + 2Dk2}C(k) = T,(k),

(s~+2vk )E„(k)= T, (k)+F(k) q

(A1)

(A2)

with

q(k&- f f qk qq k 4'k~~. (q&]k'q. (k) k'qq. (k)lk*-1 (2)
~a

kpg Apl v

I

sinP &'
+ e,'p k &I

p'q'(p'-q')[a'(p'-q')k'C(p)C(q) -ap'C(q)E„(k)]

and

T, (k) ff qk qq( =) —q]] (&q (p)[k'C(q) q C.(k)] q(k q )p'-C('k&k(q)-&'-'

(As)

(A4)
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The double integrals are restricted by momentum
conservation to momenta of magnitudes p and q
such that the triad (k, p, q) forms a triangle. E(k}
is the power spectrum Of the forcing, assumed to
be Gaussian white noise for convenience, and b~
is the usual kinematical coefficient'~"

) I 'p'+(p'-s')(&*-q')I, (»)

where P is the angle opposite to k in the triangle
formed by k, p, and q-.

The triad relaxation times 8~f' ~(f), (i = 1,2, 3) are
taken to be1, s

8~(f) = (1 e'-&Sr)/pkpq&' (A6)

.where

and

~(1) ~C + ~V + ~C

~(2) ~V + ~V + ~V

Vk~ = ok+ V&+ V, y
(3) V C C

k ) 1/2

0

(AV)

pk ) 1/2

+c k dq«'c(q)
I

(A }
i

The effect of (A9) is dominant for k» k~ when the

C~ and C are both adjustable constants that we
set to C~ = 0.360 and Q = 1.' It was shown in I
that (A3) and (A4) were compatible with the con-
servation laws (3.1) and (3.2) and their associated
absolute equilibrium spectra.

Some comments on the technique used to inte-
grate the closure equations numerically may be
helpful. It is well known"&' that the usual loga-
rithmic wave number discretization involved in
evaluating (AS) and (A4) has the effect af eliminat-
ing from the transfer integral the contribution of
all the nonisosceles triads whose elongation factor
satisfies 1/A(E) &2'~~ —1, E being the number of
k points retained in each octave. Because the in-
tegrand in (2.3) vanishes for k =q, we have to use
the results of the nonlocal expansion discussed in

Appendix B to get any transfer af concentration
fluctuations deep in the viscous regime. Since the
validity of the cascade picture is deeply rooted in
the conservation law associated with (3.1), we
have added explicitly to the local transfer (A4) a
contribution

f k/W(Z)

(T (k))„,=16
—

) dqq E„(q)8
0

, ae
x k' —2Ac(k)) . (Ag)

fluid velocity reaches its steady state, and irrel-
evant for k& k~, where the transfer is predominant-
ly local.

We conclude this section with a remark concern-
ing the numerical procedure used to obtain re-
sults for u g0. The nonlocal contribution (A9)
has been added to the discretized version of the
transfer integral (A4) as in the passive case.
However, because it represents creation of small-
scale concentration fluctuations, it violates, if
taken alone, the conservation of the total kinetic
and gradient energy (3.2). To restore that con-
servation law we must carry out the nonlocal ex-
pansion for the Z (k)C(q) contribution to the energy
transfer (AS) as well. The relevant triads are
those of Fig. 3(b}, and the result of the expansion
1S

2 "
~ ~ 8

T, (k) = ——
dp 8j,",p'—

k~(~)

„~,8 c(P)&
P ).x P'sp p. I

k'E. (k} (Alo}

It can be checked that (A9) and (A10) conserve en-
ergy up to a term, which is numerically insignifi-
cant when compared to the total kinetic energy.
The cascade process is not affected by this small
degree of nonconservation, but it is nevertheless
distressing that we have not been able to derive
expressions for T„and 7.; from the nonlocal ex-
pansions that satisfy exactly both conservation
laws, even though the original transfer integrals
(A3) and (A4) comply with exact detailed conserva-
tions of both these quantities. '

Cq

cq

(b)

FIG. 3. Types of interacting triads contributing to
(a) (A9) and (b) (A10).
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APPENDIX 8:
MIXING IN THE VISCOUS-CONVECTIVE RANGE

One can gain some analytical insight into the
mechanism of mixing at k»k„, with ~ =0, by
considering the contribution to the transfer inte-
gral in (A4) of wave number triads like the one in
Fig. 3(a). By definition, the shape parameter

max(k, P, q)
min(k, p, q)

(Bl)

„({»,s'{:(k)
~~(~))Bk

One sees easily that both the spectrum (2.9) and the
absolute equilibrium spectrum C (k) = k' [corre-
sponding to equipartition of C (k) over all wave
vectors 0] cause the transfer integral in (B2) to
vanish exactly.

is large for the interactions represented by this
type of triads that are responsible for the process
of mixing in the viscous scales. Using the method
of Ref. 16, we can expand (A4) in powers of (1/A)
and get'

k@

[T.(&)] =» ~Peg,'f'E. (f)
0 k

We can use (82) further to analyze the actual
evolutions towards the inertial range spectra. If
we introduce the change of variables"

g = In(k/k, ), e(x) =C(n(g}),

ave get, setting D = 0,

a, a(*) ={)( . — -2~),Be
I, Bx Bx

Here the quantity g is defined by

f kg

g =
J) gP 8& ~~»E

(B4)

(B6)

a e(g {)={) ——-2)++ &(~)
8 Q BQ

Bx' Bx
(B6)

and treat, for simplicity, X as a time-independent
constant. The solution of (B6) is

This characteristics rate becomes time indepen-
dent and cf order 4c/v after the energy spectrum
reaches its steady state.

Equation (84) is a diffusion equation in the x
variable, and can be exactly solved by a simple
Fourier transform. To simulate the influx of
concentration variance thxough k~ from the inertial
ranges, we add a source term to the right-hand
side of (84},

(, )=4, .J & (,o) p-

d{',, ~, exy — +X/SO 8 Nr)+e**a{-x)),

I

such tha, t

@)
Iq if g&0

0, if @&0
(Bs)

is the Heaviside function.
In the limit ] ~, (B7) gives a steady state of

absolute equilibrium at k& k~, and the spectrum
(2.9) when k&k~. In reality, of course, the abso-
lute equilibrium part of the solution is preempted

by the inertial range behavior (2.6).
We can use (B7) further to understand how a con-

centration fluctuation, initially at some wave vec-
tor k= k,e", gets transferred to the smaller scales.
The first term of (87) describes this fluctuation
as centered at time g around a wave number k'

(B9)

and Gaussianly distributed around it arith a width
4 Qf. For fu11y developed turbulence this width is
of the order lf/f~, and thus extremely large at
the times when the inertial ranges are achieved.
This result is sharply in contrast with the one
obtained in I from the continuum version of a sim-
ple "shell model. " There, the fluctuations also
followed the characteristic lines (BQ), but with
no spread at aQ. No spread occurs because the
shell model does not incorporate the absolute equi-
librium solution, and yields a first-order differ-
ential equation in the continuum limit.
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