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Hydrodynamic theory of biaxial nematics
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Biaxial nematics are usually regarded as characterized by a symmetric, traceless tensor

having three different eigenvalues. It is argued that this definition is too restrictive and

that a natural extension would embrace any system that breaks all three rotational sym-

metries while preserving translational invariance. That is, biaxial nematics need not have

orthorhombic symmetry, but may be triclinic, hexagonal, cubic, or even isotropic. A non-

linear hydrodynamic theory is presented which emphasizes the fundamental similarities

between the different biaxial nematics and clarifies the changes in the static and dynamic

behavior as the discrete symmetries vary. The Goldstone modes of any biaxial nematics

are identified as two pairs of orbital waves with a complex, and one orbital diffusion with

a purely imaginary, dispersion relation. If the longitudinal and transverse variables

decouple, it is the longitudinal rotation angle that diffuses.

I. INTRODUCTION

Recently, - a biaxial nematic phase in potassium-
laurato-1-decanol —water mixture was observed

and reported by Yu and Saupe. ' This confirms the

lang-held belief of its existence and opens a wide

field of new and interesting phenomena for future

study. ' The purpose of this paper is to present

the hydrodynamic theory of biaxial nematics, de-

fined as a system that breaks all three rotational

symmetries but none of the translational ones.

Depending on the discrete symmetries, these sys-

tems can vary widely. Usually, biaxial nematics

are visualized as consisting of oriented ellipsoids

with three different axes, or equivalently, of orient-

ed bricks. This paper refers to this type of liquid

crystals as "orthorhombic nematics. " "Biaxial
nematics, " on the other hand, will be reserved as a
general name for any system that breaks all three

rotational symmetries, 3 in order to distinguish such
a system from the ordinary, uniaxial nematics

breaking only two. In addition to the biaxial
nernatics having either orthorhombic or other fam-

iliar symmetries such as triclinic, hexagonal, or cu-

bic ones we may also encounter those with a sym-

metry group forbidden in the lattice. For instance,
there is no reason to exclude a fivefold or sevenfold

symmetry, or more exotically, the point group of
an icosahedron. This last case will turn out to be

an especially simple, yet complete model system

that illustrates nicely the generally complex collec-
tive behavior of biaxial nematics.

Any systems that spontaneously break the same
continuous symmetries obey hydrodynamic equa-

tions of identical structure. They have the same

variables and are characterized by equal number of
propagating and diffusive modes. In comparison,
the discrete symmetries are less consequential.

They determine the number of independent elastic
and transport coefficients and are thus relevant to
the question whether certain modes are coupled, or
others are degenerate. The dynamics of solids '

serves as a well-known example here. Any solid

has, in addition to the conserved quantities, the
displacement vector as three extra hydrodynamic
variables to account for the broken translational
symmetries. And irrespective of the crystal point

group, the collective modes are three pairs of elas-

tic waves, a heat and a defect diffusion. However,
due to the difference in the discrete symmetries,
glass has two independent elastic constants, while a
triclinic crystal has 21.

The situation is completely analogous in biaxial
nematics. Here, the additional hydrodynamic vari-

ables are the generator of the three infinitesimal ro-
tational angles d 8 and, as will be shown below, the
collective modes are a pair of sound, two pairs of
orbital wave, a heat and an orbital diffusion. If the
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longitudinal and transversal variables decouple, as

they do for certain directions of the wave vector, it
is the longitudinal angle (denoting the rotation
around the wave vector) that diffuses, while the
transversal angles and velocities join to form the
modes of orbital wave.

One point needs to be clarified in this context.
As is becoming customary in the literature of
uniaxial nematies ' and superfluid He, ' orbital
wave denotes those collective modes that have the
form

co/q =+it —ip,
where a and p are simple positive functions of
various elastic and transport coefficient. In the
uniaxial nematic substances known to us, the real

part o, is rather small and the orbital wave decom-

poses into a slow mode of orbital diffusion and a
fast one of velocity diffusion. However, there is
no general symmetry argument to enforce such a
behavior. And in little damped systems, uniaxial

or biaxial, a may well be much larger than P,
rendering the orbital wave propagating. In con-

trast, orbital diffusion, generally of the form

to/q = ip, —

is always strictly evanescent, independent of ma-

terial properties.
The biaxial nematodynamics described above

will be shared, quite obviously, by any system con-

sisting of identical objects that are devoid of con-
tinuous symmetries, if they are orientationally or-

dered but not positionally. And by altering the
structure of the elastic and transport tensors, the
different discrete symmetries of these objects also
enter the continuous mechanical description of bi-

axial nematics. However, there is no one-to-one

correspondence between the symmetry groups and

the sets of hydrodynamic equations. This is be-

cause we are dealing with finite rank tensors, and

the lower the rank, the less discriminate the tensors

become with respect to the different symmetry

groups. For instance, a tensor of the rank n does

not distinguish a m-fold symmetry axis from a
continuous one, if m ~ n. Hence, a very restricted
number of slightly different sets of hydrodynamic

equations is sufficient to cover the infinite variety of
biaxial nematics. %'e may, for instance, encounter
"quasi-isotropic nematics", liquids consisting of
oriented objects (such as icosahedrons), which,
though lacking in any continuous symmetries, are
symmetric enough to have their elastic and trans-

port tensors mimic isotropic behavior. (In this

sense, hexagonal nematies may be called quasi-
uniaxial. ) Quasi-isotropic nematics are very simple

systems, much simpler even than the ordinary
uniaxial nematics. They are characterized by only
two elastic and one transport coefBcients, in addi-

tion to those already present in an isotropic liquid.
Yet their collective behavior is biaxially nematic in

an essential way, highlighting the relevant features

just as the elastic theory of glass does within the

group of solid systems. A closer examination of
this model nematics, irrespective of whether it in
fact exists, is likely to enhance our intuitive under-

standing of any biaxial nematics.
Next we shall discuss the relation between biaxi-

al nematics and the various superfluid phases of
He, each of those breaking an array of different

continuous symmetries. The 8 phase, for example,
breaks phase symmetry and three relative spin-
orbit symmetries. ' lt is invariant under a certain
combination of spin and orbital space rotation, but
not under any other rotation that deviates from
this combination —such as one in the orbital space
alone. In other words, if a strong spin-orbit cou-

pling is turned on to eliminate the spin density 8
as an independently conserved quantity" (i.e., set-

ting to =Be/BS=0), and if the superfluid density is
set to zero, the 8 phase, still breaking the orbital
rotational symmetry, will behave as a biaxially
nematic system, incidentally, as an isotropic one.
Not surprisingly, the nematodynamical equations
to be presented in the next chapter emerge out of
the 8-phase dynamics' by this prescription. In a
much more restricted sense, something similar can
be said about the two other superfluid states of
He; Both the A and A& phases "contain" the bi-

axially nematic case, ' though its extraction is not
easily interpreted in physical terms as in the 8
phase.

In the next section, we shall first derive the non-

linear biaxial nematodynamic equations, which are
valid in the presence of arbitrary nonsingular tex-
tures; then we shall discuss the explicit dependence
of the elastic and transport tensors on the discrete
symmetries. Finally, the complete spectrum of col-
lective modes is obtained for quasi-isotropic nemat-

ics generally and for orthorhombic ones with
selected directions of the wave vector.

H. THE HYDRODYNAMIC EQUATIONS
AND THE COLLECTIVE MODES

OF BIAXIAL NEMATICS

%e start by investigating the general static prop-
erties of biaxial nematics, without specifying the
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discrete symmetry of the system under investiga-
tion. %'e may take the entropy density s as a func-
tion of 8;, V;8J, and the conserved quantities
which are the densities of energy, mass, and
momentum, being e, p, and g, respectively. This is
customarily expressed in the form

de= Tds+pdp+v dg

+fijd V;8j+iti;d 8;

Although the rotation vector 8 is only infini-
tesimally well defined, it is quite possible, even ad-
vantageous, to work with them if due attention is
paid to a commutation rule which has become
known as the Mermin-Ho relation' in the literature
of superfluid He:

we shall take Eg as the only textural contribution
to the energy, Eq. (I). In this case, with

(('ij =+ijklVk8l ~

] ~Kj kl
pi =

2 V&8 Vk8l
l

BKiJkl /88 = Kggjkle~~ +Kg„~e„~~

+Kijnl~nkm +Kijkn ~nlm

the molecular field is explicitly given as

+i = KigklVJ. Vk8i

+Vk8IVj8m( eqim+iqkl+&qjl+qmik

(5)

(5V —V5)8=58 x V8, (2) + eqlm +kqij eqim +qikl +~qij +qmkl )

where 5 and V stand for any first-order differential
operator such as V; or 8/Bt. The equilibrium tex-
ture is given by minimizing the energy, leading to

%,.=0,
where the molecular field %'; is defined as

Vjfji 0i+eijkttljVl8k

The last term in this expression follows directly
from the Mermin-Ho relation, Eq. (2). To be more
explicit, we go on to consider the thermodynamic
conjugate variables, v;, p, , T, f;j, and P; that are
also functions of the hydrodynamic variables. By
virtue of the Galilean invariance, we still have

v=g/p .

Assuming that T and p continue to be character-
ized by the three usual susceptibilities

aT aT a~ a~
as '

ap
=

as
'

ap
'

the new part is given by the gradient energy
]

eg ——, KggkiVi8j Vk8l

obtained by expansion to leading orders in V;8J.
Note that in nematics less symmetric than
orthorhombic ones, terms of the form PpV;8J or
5$ Vi 8J are not excluded by the symmetry. Howev-
er, these terms are "self-destructive": They result
in nonuniform textures even if the temperature or
pressure are changed uniformly. And these equili-
brium textures, reminiscent of cholesterics, are no
longer biaxially nematic, since they are likely to
break the translational symmetries, too. Therefore,

s+V;(sv; f; )=R/T—,

] e Rg;+V;~ ——,(V'X +);+V (II;k —~;k)=0,

8;+(v V)8; ——,(V Xv); —Y~=O.

(10)

(12)

All the fluxes with superscript R are contained in
the expression for the entropy production

R =f;"V;T+II;",v;, + Y;"4, ,

'
and given by expansion in the forces V; T,
vj= —,(V;vj+Viv;), and 4;:

R
&k

Ril,j = pkj
R

Y; a

j3ikl

+ijkl

%k VkT

Ukl

+k

(14)

The elements of this (Onsager) matrix, generally re-
ferred to as transport coefficients, are phenomeno-
logical parameters, wave number and frequency in-
dependent. Under the assumption that these ele-
ments are even under time inversion, the Onsager
reciprocal relation has already been incorporated.
If some of, them are odd, such as due to a possible
(though less likely) existence of a preferred direc-
tion that is itself odd under time inversion, an ad-
ditional minus sign has to be added in front of
these coefficients located in the upper half of the
matrix. Finally, the nonlinear Erikson stress ten-
sor has the form

We may now proceed to the dynamical part by
setting up the equations of motion for the eight hy-
drodynamic variables. They are

p+V g=0,



yields only surface contribution. With the Maxwell

relation

Kijki =Kklij

we can, therefore, take the elastic tensor to be in-

variant under the following permutations of in-

dices:

Kij kl Kkjil Kklij Kilkj (16}

(Note the difference to the corresponding relations

in crystals. ) To account for large angle variations,

a set of three orthonormal vectors,

ei with a=1,2, 3

can be introduced and attached to the local orien-

tation of the system given by the axes of symmetry,
i.e.,

The elastic tensor is then given as

a P y 5
ijki Kapy5~i &j &k ei

where K ~ displays the same invariance under
permutation of indices as K;jki. The following
symmetry considerations are generally valid only
for K~~. In a uniform texture, of course,
e; =5;~, and there is no difterence between the
elastic tensors with latin and greek indices. Tri-

flgk =g.&k+Pkj~ ~g

With all the Auxes of the hydrodynamic equations
of motion, Eqs. (9}—(12},known and given in
terms of the hydrodynamic variables, their spatial
derivatives, and the phenomenological parameters
of elastic and transport coef5cients, the hydro-
dynamic equations of biaxial nematics is closed
and the theory complete. So far, only the informa-

tion of the three broken continuous rotational sym-
metries has been utilized. Next, we shall investi-

gate the inQuence of the discrete symmetries. This
information enters the static properties only

through the elastic tensor K,zkl, while it affects the
dynamics also via the transport matrix of Eq. (14).
Being expansion coef6cients, these two matrices
have to reflect the symmetry of the system. This
determines their structures, especially the number

of independent elements.
Starting again with the static part, we shall first

examine the elastic tensor K;~kl. Employing Eq.
(2), one can show that

K~ (3), K p,p(6), and K pp(3) . (20)

Hexagonal nematics are characterized by six elastic
coeAicients:

K»» =K2222 K1212+2K1122 s

K1212 K2121 & K3131 K3232 &

K»33 =K2233~ K1313=K23Z3s

(21)

Of these, the last three groups have to be set to
zero to retrieve the Franck energy, because uniaxi-
al nematics do not resist a local rotation around
the director. Cubic or quasi-isotropic nematics do
not differ from their solid counterparts, they are
characterized by the same three or two elastic coef-
ficients, respectively.

Next the dynamic part, i.e., the elements of the
Onsager matrix, Eq. (14), will be examined. First
we note that the invariance of the viscosity tensor,

v,ski, under permutations of indices is the same as
that of the elastic tensor of crystals, enabling us to
copy the corresponding results. Thus triclinic,
orthorhombic, hexagonal, cubic, or quasi-isotropic
nematics have 21, 9, 5, 3, or 2 independent viscosi-
ties, respectively. In orthorhombic or more sym-
metric nematics both a;k and Pk,z vanish, while a~p
and (y ')~p are diagonal in the local frame given

by the symmetry axes. (By virtue of the Onsager
relation, the latter two tensors are symmetric and
can always be diagonalized —though by no means
necessarily in the same coordinates for less sym-

metric nematics. ) For hexagonal nematics two
eigenvalues of the tensor a, for cubic and quasi-
isotropic ones all three, are equal. The same is
true for y '. Finally, there is the reactive trans-

port tensor A, which in orthorhombic nematics has
the form

clinic nematics have no further symmetries, hence
all 36 elements given by Eqs. (11), out of a total of
81, are independent. With the respective numbers

of independent elements in parenthesis, they are of
the type

K~,(3), K~p p(6),. K pp(3),

K~p(6), K~@,(6),

K~p (6), K~p,r{3), Kp ~{3).
The symmetry group of orthorhombic nematics in-

cludes three mutually perpendicular mirror planes,
leaving only 12 elements, all with an even number

of same indices, nonvanishing:
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~Jkl =
cx c( eplÃeJ' +~pJlek )ep

although only two coefncients are independent.
This is because the vanishing term

AX~,(Epee'~ +eppek )&p

with an arbitrar'y A, can be added to Eq. (22).
Adopting the symmetric convention of zero trace,
me have X A. =0, in orthorhombic nemstics,

k] A2 2 A3

in hexagonal nemstics, and

A, ) ——A,2
——A,3

——0 (24)

p+p~3 =0s p~3+&' —~3333~3' =0 s

and two pairs of orbital maves,

()1 (l('3131 ~71)~1 +( 2 +~3 ~2)u2

P 2
—2323V2 —( 2 + 3

—2) 3131

(26)

(27)

where the second pair is obtained by substituting 2
for 1 and vice versa in the indices of Eq. (27) and
putting a minus sign in front of the velocity u~.
The tmo pairs of orbital waves are obviously sus-
tained by the transverse variables. The roots of
Eq. (27) are given by

co/q =+(r —d )' —id+,
where the three abbreviations

r =(—, +A3 —A2)(E3)3i/p) ~

(28)

1

d+ =
~ 3&3& ~}'i+&z323~P)

have been introduced. The solutions closely resem-
ble those of orbital waves in uniaxial nematics,

in cubic or isotropic ones. The last equation is
quite consistent with an amusing result by Volo-
vik, ' mho hss shown that the corresponding coefB-
cient in unisxial nematics is 1 for sticks snd —1

for discs, so it should be zero for cubes or balls.
Now me are in a position to calculate the collec-

tive modes. Putting the spatial variation in an
orthorhombic nematic system along e, we obtain
two difFusive modes, one of o =s/p, and another of
83,

po —a3T"=0, y383 —E333383' ——0,
one pair of sound,

they are purely imaginary if r &d, and propagat-
ing if r && d+. In s weakly damped system,

ere the dissipative coefficients p1 snd %2323 ap
proach zero, d+ will be very small, too, while r,
consisting of reactive coefficients only, is not efFect-

ed. In such a system, orbital waves will propagate.
In constrsst, the diffusion of the longitudinal rota-
tion angle 83 is general, irrespective of any inequal-
ities of material dependent parameters.

Through cyclic changes of all the indices of Eqs.
(25), (26), and (27), the corresponding results for
the spatial variation along the other two symmetry
axes can be easily generated, where 1~2, 2~3, and
3~1 lead to the result along e ' and 1~3, 2~1,
and 3—+2 to those along e . The dispersion rela-
.tion of the modes along these three axes already in-

volve most of the elastic and transport coefficients
of orthorhombic nematics: Out of a total of 12
elastic and 17 transport coefficients only three
each, EC~i22, X~~33, E2233, snd the viscosities with.
the same subscripts do not contribute. In quasi-
isotropic nemstics, there are no preferred direc-
tions, hence, Eqs. (25) —(27) are generally valid.
With A,~ vanishing snd y3 ——

y&, quasi-isotropic
nematics sre very simple systems, characterized by
only two elastic (X3»3,E3&3&) and one transport
coeincients (y3) in addition to those already present
in an isotropic liquid. In this system, it is almays
the longitudinal rotation angle that diffuses. In an
orthorhombic system, on the other hand, when the
direction of the wave vector is less symmetric, the
structure of the spectrum mill be more complicat-
ed. However, as is easy to see, with a and P of the
Onssger matrix vanishing, first sound and heat dif-
fusion remain uncoupled to the other modes, hence,
alterations in the spectrum arise from couplings be-
tween the longitudinal rotation angle and the
transverse variables. And due to time inversion
properties, one of the five modes remain difFusive.
Under the assumption that the transport coeffi-
cients themselves are even under time inversion [cf.
remark below Eq. (14)], the only reactive coupling
of the angles is to the velocity, hence, this diffusive
mode must be an orbital one, involving a linear
combination of the three angles only.

%'e can compare these results with the spectrum
of the uniaxial nematics. There, in addition to
first sound and heat difFusion, me have tmo pairs of
orbital waves for any direction of the wave vector
except when it is perpendicular to the director, for
which case the one director motion corresponding
to the longitudinal rotation also difFuses. So the
qualitative new feature of biaxial nematics is that
there is ahoays a purely difFusive mode, which we
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may identify as the Goldstone mode of the
uniaxial-biaxial transition.

III. CONCLUSIONS

There is an infinite variety of biaxial nematics.
From the least symmetric triclinic ones over the
popular orthorhombic system to the quasi-isotropic
nematics possessing the point group of, say,
icosahedrons, all obey a few sets of closely related
hydrodynamic equations. On the other hand, the
number of phenomenological parameters in these
systems vary considerably. While triclinic nemat-
ics are described by 36 independent elastic and
double as many transport coefficients, orthorhom-
bic nematics manage with 12 and 14, and isotropic
nematics get along with only 2 and 1, all in addi-
tion to those already present in an isotropic liquid.
A general hydrodynamic theory is presented that
describes all these systems and is valid in the pres-
ence of arbitrary nonsingular textures. The equa-
tions are solved for special cases to obtain the spec-
trum of collective modes. They are the usual pair
of sound and a heat diffusion, in addition to two

pairs of orbital waves and one orbital diffusion. If
the longitudinal and transverse variables decouple,
as they do generally in isotropic nematics, and also
for special directions of the wave vector in ortho-
rhombic ones, it is the longitudinal angle that dif-
fuses, while the transverse angles and velocities join
to form the modes of orbital waves.

Note added in proof. I have received two un-
published manuscripts meanwhile, by W. M.
Saslow and by H. Brand and H. Pleiner. Both are
about the case of orthorhombic nematics. The
spirit of all three works is similar though discre-
pancies exist. They can be seen by comparing the
number of independent elastic and transport coeffi-
cients. For instance, both seem to need three, in-
stead of two, independent elements in Ajk;, cf. Eq.
(22}. In addition, Brand and Pleiner claim to ftnd
15 rather than 12 different elastic coefficients.
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