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This paper studies the iterative properties of the two-parameter family of maps x„+,——1 + ax„' + bx„'. These maps
can have either one or three extrema. Multiple extrema lead to a complex region of iterative stability and to new

types of iterative behavior. In particular, the Feigenbaum critical line (locus of 2 -cycle accumulations) present for
b-0 terminates at two tricritical points T and T' with coordinates (a,b) = (0, —1.59490) and (

—2.81403,
1.40701), respectively. There is also a "dual" critical line terminating in two additional tricritical points
T = ( —3.189 80, 2.543 71) and T' = (0.955 61, —1.149 81). Behavior near the tricritical points is controlled by a
new fixed point f,'of the functional recursion relation f„+,(x) = [I/f„(1))f' (xf„(1)).This fixed point has two relevant

directions and, therefore, behavior near a tricritical point depends on two new universal numbers Br" = 7.284 69
and BT ' = 2.857 13.Crossover and scaling behavior near the tricritical points are explored.

f(x) = &+ax'. (1.2)

In particular, the main bifurcation sequence has its
limit at , =-1.40116. There is' a simple sequence
of 2" cycles for a, & a & —,

' and a corresponding in-
verse-bifurcation sequence of more complicated
2" bands' for -2 &&a, . The vicinity of the point
a, is characterized by a scaling behavior. ' For ex-
ample, the position a„of the superstable 2" cycle
for a& a, and large n varies as

I. INTRODUCTION

Iterative properties x„~= f(z„) of one-dimension-
al continuous maps provide what is probably the
simplest examples of nonlinear dissipative dynam-
ical behavior and have attracted considerable at-
tention in recent years. " Changing a single con-
trol parameter in such maps may lead from stable
fixed-point behavior via a sequence of bifurcations
to chaotic or quasichaotic behavior. Feigenbaum'
showed that the limiting form of such bifurcation
sequences exhibited scaling properties character-
ized by universal numbers, in strict analogy to
critical behavior in statistical mechanics, and in-
deed, that the renormalization-group ideas devel-
oped in the statistical-mechanics context4 could be
fruitfully carried over. Such bifurcation sequences
are also seen in higher-dimensional models"'
and in experiments. ' They represent one possible
kind of "transition to chaos. " Feigenbaum's uni-
versal numbers have, in fact, cropped up in some
higher -dimensional systems. '

The prototypical one-dimensional map is the so-
called logistic map,

f(x) =)tx(I -x),
which for 0 & X & 4 maps the unit interval [0, I] onto
itself. Equation (1.1) is equivalent under change of
origin and rescaling to the symmetric quadratic
map, '

a„—a, =A/bs,

where 5~ = 4.66920 is one of Feigenbaum's univer-
sal. "critial exponents" and the nonuniver sal ampli-
tude A = 9.349. (The actual exponents in statistical
mechanics are really related to Inb~. ) So far, we
have discussed only the logistic map (1.2). It is
known, however, that the behavior of the logistic
map provides a precise model for a large class"
of single-peak functions: The ordering of n cycles"
and the critical behavior"" are universal; only
the nonuniversal constants a, and A vary from
map to map.

It is the purpose of this paper" to study the be-
havior of a simple two-parameter class of maps
which includes (1.2}, the symmetric quartic maps,

f(x) = I +ax'+ bx' (1.4)

The distinctive feature of the maps (1.4} is that
for zb & 0 they have three extrema, at

x, =0, x, =a v'-a j2b, (1.5)

rather than one as (1.2). This multiple-peak or
multiple-valley structure makes possible a pletho-
ra 0(f new, interesting, and complicated iterative
behavior. It is the purpose of this paper to sur-
vey in a partially empirical and certainly nonrig-
orous way some of the new behavior in the context
of the two-parameter family (1.4}.

Section II of the paper treats general, noncritical
properties. In the one-extremum regions (ab& 0)
behavior like that of the logistic map is observed,
only the accumulation point p, is drawn out into a
"critical line. " This critical line terminates in
the regions ab ~0, where it is "pinched off" at
tricritical points T and p by the existence of be-
havior more complicated than a monotonic cas-
cade of 2"-cycle regions. When pb & 0, it is quite
possible for two stable cycles (but apparently no
more than two) to coexist. Superstable cycles
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must pass through one of the extrema (1.5). For
special values of (a, b} a single "doubly stable"
cycle may use two of them. Tricritical points are
associated with n- limits of doubly stable 2"
cycles.

We develop a special form of topological conju-
gacy, called duality. Dual points P and P have
the same iterative properties. The dual of the
critical line Tg' is another critical line TT' in
the a, b plane.

We determine the region of the a, b plane over
which the function (1.4) is iteratively stable, i.e. ,
possesses a set of points z of nonzero measure
with bounded itineraries.

Section III is devoted to the special properties
of the map (1.4} near the endpoints T and T' of
the critical line. Feigenbaum' showed that the
points on the critical line were associated with
a fixed point of a certain functional recursion re-
lation. The tricritical points T and T are associ-
ated with a different fixed point of the same func-
tional recursion relation. At this new fixed point
there are two relevant directions and, therefore,
two new universal numbers.

We discuss the scaling properties of the regions
near the tricritical points and the crossover be-
havior between critical and tricritical regimes.
The fixed points associated with TT' are different
from those associated with &T' but related to them
by topological conjugacy.

II. GENERAL PROPERTIES UNDER ITERATION
OF THE SYMMETRIC QUARTIC MAP

This section describes certain general, noncri-
tical properties of the map (1.4).

A. Preliminaries

The possible shapes of the symmetric quartic
. map (1.4) depend on the relative signs and magni-
tudes of the parameters a and b, as shown in Fig.
1. The curves have one local extremum in quad-
rants I and III and three in quadrants II and IV.
The number of intersections of y= f(x) with the
straight line y =z may be zero, two, or four. The
regions of each behavior are indicated in Fig. 1
and the corresponding curves are sketched in Fig.
2.

Itineraries x=—«„x,(x),x,(x), . . . of an initial
point x under iteration (1.4) are of several types. '
We refer to as bounded those itineraries such that
[x„f+~ as n-~. Itineraries such that (x„(-~
as n- ~ are unbounded. The set of z having
bounded itineraries is the iterative domain of f.
When the iterative domain af f has nonzero mea-
sure, then f is iteratively stable, otherwise, it
is iteratively unstable. We wish to explore in the
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FIG. 1. Four quadrants of the a, b plane, indicating
the number of intersections of y=1+ax2+bx4 with y=@.
Detail shows region near the origin. Note that there is
a small region of quadrant I where there are two inter-
sections and an even smaller region of quadrant IV
where there are four. Corresponding curves are
sketched in Fig. 2.

PA'
x

FIG. 2. Sketched shapes of the curve y=l+ax2+bx4
in the various regions of the a, b plane shown in Fig. 1.
Intersections with y =x are shown.

remainder of this section the character and extent
of the iterative domain of the map (1.4) for various
values of the parameters a and b.

We distinguish the following types of bounded
itineraries: (a) fixed points and other s cycles,
(b) itineraries which, as s ~, approach (are at-
tracted by) a fixed point or other n cycle, and (c}
other bounded itineraries, which we call chaotic. '~

The set of n cycles corresponds to the set of solu-
tions of

(2.1)

where we have denoted f l"~ —= fof ofo ~ ~ of and

f og(x}~f(g(x)). This set is countable and, there-
fore, contributes in and of itself zero measure to
the iterative domain of f. The n cycle zg

z„,z„+,=-z, is stable, if a finite region of nearby
z's is attracted to it, otherwise, it is unstable.
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In particular, it is stable (unstable) ).

—f " (x ) & 1 () I) .
~+1

(2.2}

since

(x '}',(xF(») =C I+ACi —
i

+BC i-c] (c (2.9)

When

(2.3)

There is a special form of topological conjugacy
which is exceedingly valuable in studying the itera-
tive properties of the quartic map (1.4). Note that

the n cycle is suPerstabfe. " A function f is itera-
tively stable if and only if it has one or more
stable n cycles and/or a domain of x's of nonzero
measure with chaotic itineraries.

When f is iteratively stable, we shall wish to
distinguish the number of different types of
(bounded} limiting behavior occurring in the
iterative domain of f. If all x's except for a set
of measure zero have the same limiting behavior
(e.g. , if all are attracted to a single stable n cycle
or if al.l have chaotic itineraries using the same
domain), thenf is unimodaf'8; if two distinct types
of limiting behavior occur with nonzero measure,
then f is bimodal, and so forth.

hr(a, x) —=x-a, hr'(a, x) =x+a,
and scale changes,

hs(a, x}=—ax, hs'(a, x) =x/a,

(2.5)

(2.8)

both of which take nth degree polynomials into nth
degree polynomials. For example, the general
symmetric quartic polynomial (C aO)

B. Topological conjugacy duality

It is useful before proceeding further to establish
two important symmetry properties. Let h be an
arbitrary locally invertible map and define

g=h 'ofoh, (2.4)

so f =h 0g oh ' Maps f. and g related by (2.4) are
called toPoIogzcally conjugate. '" Itineraries of
f and g are related to one another in a simple one-
to-one manner: any bounded (unbounded) itinerary
af f maps into a bounded (unbounded) itinerary of

g and conversely. Map g is iteratively stable if
and only if f is. Similarly, n cycles map to n cy-
cles, chaotic itineraries to chaotic itineraries,
etc.

For general h the functional forms of the topolog-
ically conjugate maps f and g will be quite differ-
ent. Two instances when this is not so are trans-
lations,

Q Q
f(x) =1-—+b —+ x' =G,(G,(x)), (2.10)

with

8
G, (x) = 1 ——+b»'

and

G (x) =—+x'.
25 (2.11)

Because G, ~ G, =G,' ~ (G, G, ) ~ G„ f is topologi-
cally conjugate to the map Q2. G, and, therefore,
through (2.8} to the normalized map

2 2

f =& '(d) Gpo, h (d), d= —+(( ——

(2.12)

The map f is called the dual of f and has the form

f (x) =1+ax'+bx',

with

a = (4b —a2)[ 8ab + (4 b —a') '] /32b ',
(2.13)

b =[8ab+(4b —a )']'/(8b)

Duality is reciprocal, (f) =f. All af the topologi-
cal correspondences mentioned after (2.4} hold
between f and its dual. For example, if f has an
n cycle using the point x, then f has a correspond-
ing n cycle using the point

7 = h '(d) o G (») = —+ x25 (2.14)

In particular, it follows from (2.14) that, if f has
an n cycle using a side extremum (x, =+ h('-a/2b,
ah&0}, then the corresponding n cycle of f uses
the central extremum (x, =0) and, conversely, "
if the n cycle of f uses the central extremum x, = 0,
then that of f uses one of the side extrema [»,
=+ (-a/2b)'i']

The duality relations (2.13) will be useful in
Secs. IIC and IID below. The points on the curve

E(x) =C +Ax +Bx (2.7) 8ab + (4b —a )
' = 0 (2.15)

f =he (C) oF ohs(C), (2.8)

is topologically conjugate under scale change to
the standard, normalized form (1.4}, with a=AC,
b =BC3 via

are all the dual to the origin. Remaining g axis
points (b = 0, a hh0) map to infinity under duality,
while remaining b-axis points (a=0, b a0) map to
the parabola b =a '/4. In addition, there is a line
af self-duality, (a, b) = (a, b}, which can be parmet-
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remark applies to D and g and their duals D and
g. This occurs because the origin is the dual
image of the entire line (2.15).

The iterative behavior of f is completely known

along the self-dual line, since g(x) in (2.1V) is the
well-studied' quadratic map (1.2). The map f is
iteratively stable for all -2 & q ~ —,

' and otherwise
unstable. At q values for which g has a stable 2'
cycle, x„x„.. . , x,„,f has two stable n cycles
xy x3 . . and x„x4, ~ ~ ~, and is, theref ore, bi-
modal. At e values for which g has a stable
(2n+1)-cycle, f has a stable (2n+1) cycle and
is unimodal. The main bifurcation sequence of

g ends at~ g = -1.401 16. . . , which translates into
(a, b) = (-1.57513, 0.17'I 58).

rized as

a =2c'(1+c}, b =c'(1+c)',

corresponding to

f =hz'(I+c) og ' oh&(1+c),

with

g(x) =1+ex'.

(2.16)

(2.1'I)

These special lines are shown in Fig. 3. The
mapping under duality of some sample regions of
the a, b plane is shown in Fig. 4. Notice that re-
gions A. and t. of Fig. 4 are adjacent, while their
duals A. and C meet only at the origin. A similar

FIG. 3. Mapping of special lines under duality (2.13).
The origin maps to the line (2.15). The b axis maps to
the parabola 5 =a~/4. Both the self-dual line and the
inverse origin have branches in quadrant IV, as shown
in the detail.

C. Stable, superstable, and doubly stable n cycles
(Ref. 15)

It is straightforward to solve the n-cycle condi-
tion (2.1) numerically and then to check stability
(2.2). The condition (2.3) for a superstable n cycle
requires that one or more of the points x»z». . . ,
x„of the cycle be an extremum of f. The central
extremum &,=0 may always appear; however, at
most one of the two side extrema can appear in
any given cycle, since the evenness of f guaran-
tees that the itineraries of x, = + v'-a/2b (ab & 0)
coincide after one step. Thus, each superstable
cycle can be classified+, —,0, 0+, or 0-, ac-
cording as it uses the indicated extrema. The
last two cases denote n cycles (n~ 2) which use
both the central extremum and one side extremum
and are, therefore, doubly stable. Doubly stable
cycles are, indeed, particularly stable. When
(1.4) has more than one extremum, all are quad-
ratic. Thus, if z is a member of a doubly stable
~ cycle,

f' &(x+bx)=x+O(bx"), n=4 (2.18)

-4 -2 2
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FIG. 4. Mapping of various regions under duality.
Region A is the dual of region A, etc. Regions that are
contiguous across the dual-origin line (2.15) do not re-
main so under duality.

instead af n = 2 (ordinary superstable cycle). The
argument following (2.14) shows that the dual of a
doubly stable cycle is also doubly stable, provided
only that the dual points &0 and z, are distinct. The
exceptional case, x,=x, =0, occurs only for a=0,
i.e. , for

f (x) = 1+bx', (2.19)

in which case f has a single quartic extremum.
Any cycle which uses this quartic extremum sat-
isfies (2.18) and will also be called doubly stable.

Suppose that for a particular set of parameters
(a„bg f has a doubly stable cycle. It is clear that
itineraries belonging to all points x sufficiently
close to any of the extrema zo, x, are attracted
to such a cycle. It turns out empirically (see
Sec. IID} that f is always unimodal. If f is doubly
stable for (a„b,), then f is unimodal for (a, b) in
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some neighborhood of (a„b,). Doubly stable points
will play an important role in the tricritical be-
havior which terminates the Feigenbaum critical
line.

We illustrate some of these notations by simple
examples. Regions of stable and superstable fixed
points (1 cycles} are displayed in Figs. 5 and 6.
Since f (0) = 1 by our choice of normalization (1.4),
superstable fixed points can only occur for (a, b)
values such that

I

-0.8
I

-04
I

0.4

—O. I

-O. I

-0.2

0.8

with (2.21)

df'(x, ) =-— =+1.
d& „„1

Over most of the 1-cycle region, f has only one
stable fixed point"; however, there is a narrow
region visible in Fig. 6 in which there are two in-
dependent stable fixed points. A typical example
of this behavior is shown in Fig. 7: The domains
of attraction of the two stable fixed points are dis-
joint and, between them, exhaust the iterative do-

x+(a, b) =x+=f(—x+) or x (a, b) =x =f(x ), (2.20)

and the various branches of the curve in Fig. 5
have been labeled accordingly. The condition
(2.20) reduces to (2.15). This is not an accident:
Had we chosen the more general normalization
(2.7), the condition for a superstable fixed point
associated with the central peak would have been
C = 0, which via (2.8) is topologically conjugate to
a =b =0. The discussion following (2.14) then shows
that the ~, superstable fixed points must occur for
(a, b} dual to (0, 0).

The regions of fixed-point stability shown in
Figs. 5 and 6 contain the superstabIe line and are
bounded [see (2.2)] by curves determined from

x,(a, b) =x, =f (x,),

FIG. 6. Detail of the stable fixed-point region shown
in Fig. 5. In the very narrow region of intersection of
the two branches of stability the function f(x) has two
independent stable fixed points.

main of f (except, of course, for a set of measure
zero, the unstable fixed points}. The map f is,
therefore, bimodal.

The superstable 2 cycles are shown in Fig. 8.
The xo superstable 2 cycle satisfies

O=x =f&'&(xJ =f&'&(0) = 1+a+b . (2.22)

The x, superstable 2 cycles can be found in analogy
with (2.20); however, it is much easier to invoke
duality and simply compute the dual of (2.22).

Intersections of superstable n cycle curves (e.g. ,
Fig. 8) require comment. The set of curves be-
longing to a single extremum cannot intersect ex-
cept at the origin. Similarly, curves belonging to
g, cannot intersect those belonging to g, since g,
and x have the same itinerary after one step. xo
curves can intersect x, curves, as illustrated by
Fig. 8. These intersections are of two quite dif-

I-8 -6 -4 -2
SUPER STABLE FIXED POINTS

u

x+
REGIONS OF STABLE FIXED POINTS

FIG. 5. Loci of stable and superstable fixed points in
the a, b plane. The superstable locus coincides with the
dual-origin curve of Fig. 3 and its branches have been
labeled x, or x according to the associated extremum.
The (cross-hatched) region of fixed-point stability in-
cludes the superstable locus. The upper edge of the
stable region corresponds to the tangency conditions
plotted in Fig. 1.

I, A

FIG. 7. Iterative plot of the function f(x)=1—0.75x2
+ 0.03@4. This function has two stable fixed points at
x& = 0.670 and x&=-3.662. The iterative domain off is
)x[ &5.475. The domains of attraction of x„and xs are
indicated below the graph. They exhaust the iterative
domain off (except for a set of measure zero) and inter-
lace with each other as shown.
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-3

FIG. 8. Superstable 2 cycles. The central-extremum
(x()) curve is just the line a+5+1=0. Each branch is
labeled according to the peak from which its stability
derives. The point A and its dualA are doubly stable.
Other intersections are nondynamical.

FIG. 10. Nesting regions of 1- and 2-cycle stability.
Where such bifurcations proceed to completion, they
end in a Feigenbaum critical line. The main critical
line TT' and its dual TT' are shown. The normal bifur-
cation sequence does not occur beyond these tricritical
points.

ferent types. At the intersection point there may
be two independent superstable cycles, each with
its own domain of attraction. At such points f is
bimodal and the curves are dynamically indePen-
dent. Alternatively, there may be a single doubly
stable cycle at the intersection point. In this case
f is unimodal and the curves are dynamically
couPled. In Fig. 8 only the intersection A, and its
dual image A are dynamical. The remaining in-
tersections are nondynamical.

Figure 9 shows the regions Of stable 2-cycle
behavior. Note the bimodal regions surrounding
the nondynamical intersections of Fig. 8. The
region of 1-cycle stability shown in Fig. 5 nests
snugly against the region of 2-cycle stability, as
shown in Fig. 10. In particular, following the

FIG. 9. Regions of stable 2-cycle behavior in the a, b
plane.

negative a axis away from the origin, one sees
the beginning of the main bifurcation sequence of
the quadratic map (1.2). Such sequencing is also
seen in other regions of Fig. 10. Whenever such
bifurcations run to completion, they terminate
in a Feigenbaum critical point. Regions of nesting
therefore indicate a Feigenbaum critical line.
Note, however, that the complicated topology af
the 2-cycle regions already requires that the cri-
tical line be broken into segments. We have cal-
culated the position of the main" critical lines.
They are included for convenience in Fig. 10 and
will be discussed in Sec. III.

Figures 11 and 12 show loci of superstable 4
cycles and 3 cycles. Dynamical intersections
(which will play a role in Sec. III) are indicated.
The general picture which emerges for the central-
extremum {x,) curves is one or more diagonal
lines running across the (a, 5) plane from upper
left to lower right and intersecting the negative g
axis at the known values for the simple quadratic
map (1.2) and in the standard sequence. " (Note
that there are two such 4 cycles, one associated
with bifurcation of the 2 cycle and the other in the
region of inverse bifurcations on the far side of
the critical line. ) In addition, there are a large
number af "fingers" in quadrants II and IV, some
very narrow. These poke in towards the origin,
cross no axes, and go off to infinity, apparently
along the linesb=0, g+b=0, g+b+1=0, and
g+b+2= 0. The g~ curves are obtained from the
central-extremum curves by duality (2.13). Wher-
ever an x, curve crosses (2.15) (see Fig. 3), the
corresponding dual passes through the origin,
creating the loops visible in quadrant IV.
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FIG. 11. Superstable 4 cycles. The 4 cycles necessary
for the bifurcation sequences leading to TT' and TT'
(Fig. 10) is present. Much additional structure is also
present. Several of the 4-cycle lines are too narrowly
spaced to be resolvable on this graph.

FIG. 13. Illustration of the box construction. A big
box and two possible small boxes are shown. If the
function remains inside any one (or more} of the boxes
over the appropriate domain, then it is guaranteed to
be iteratively stable.

D. Iterative stability

We now return to the question posed in Sec. II A
af determining the region af the (a, b) plane over
which the function (1.4) is iteratively stable. In
principle, this is just the union over g of the re-
gions af stability (see, e.g. , Figs. 5 and 9) of all
n cycles plus, in addition, those regions where

f has no stable n cycles but is iteratively stable
by virtue of chaotic itineraries.

Maps of the types I0 and IIO (see Figs. 1 and 2},
for which there are no solutions of x =f(x), have
unbounded itineraries for all g. Their iterative
domain is the empty set and they are iteratively
unstable. At the boundary between (I,+II,) and

(I, +II,}, y=f(x) is tangent toy=x, which is just
the condition (2.21) giving the upper edge af the
stable 1-cycle region. Just beyond this boundary
in (I, + II,} there are two fixed points, x .„(see Fig.
2) and x;„, with f'(x „)& 1 and f'(x;„)& 1. If
f'(x„,.„)& -1 (as is true throughout I,), then any
x with Ix I

& x „flows to x;„and any x with IxI
&x has an unbounded itinerary, so f is itera-
tively stable and unimodal.

In other regions of the (a, b) plane the situation
is more complicated and we must develop a meth-
odology for establishing iterative stability. Figure
13 illustrates one such criterion, which we call
the box constncction Let x .„=x,, .(a, b) denote
the solution of x =f(x) of largest absolute value.
Suppose

-6 -4 -2 0
FIG. 12. Superstable 3 cycles. 3 cycles occur in the

region beyond the main bifurcation sequence leading to
TT' and fT'. Otherwise, 3-cycle structure is broadly
similar to 2- and 4-cycle structures. Several of the
3-cycle lines are too narrowly spaced to be resolvable
on this graph. y(0) = 1, (2.24}

Ix...I& Iy(x) I v IxI & Ix...I. (2.23)

We refer to this as the "big-box" condition. It is
easy to see that points with

I x I
&

I x,, have
bounded itineraries, while those with x I

&
I x,, I

have unbounded itineraries. Similar "small-box"
constructions can be done separately for centeral
and side extrema, as suggested in Fig. 13. If any
or all of the extrema of f are boxable in the above
sense, then f is iteratively stable. For example,
in quadrant III, where f has a single peak at x, = 0,
the box condition (2.23) requires
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so the boundary of guaranteed stability is the line

-1=«.a.=f(«...) =f(1)=1+s+b,
and (2.24) is equivalent to

a+& & -2. (2.25}

f"'(x) 3 f"(x)&'
Sf(x) ff( ) 2 fg( ) ) (2.25)

is everywhere negative. In quadrant III, where f
is single peaked, it satisfies the hypotheses of a
theorem due to Singer, '"which concludes that
any stable z cycle attracts the peak. Thus, when
(2.25} is satisfied (i.e. , when the peak itinerary is
bounded}, f has at most a single stable s cycle,
while, when (2.25) fails (i.e. , when the peak itin-

—to

ao

0)

-8 -6 -4 -2 0

FIG. 14. Iterative stability via the box construction.
The cross-hatched region $ is guaranteed stable. The
regions U and their duals U are guaranteed unstable.
Stability of the regions D and their duals D cannot be
decided by the simple box construction.

When two peaks are independently (small-} box-
able, then f is at least bimodal. Systematic ap-
plication of the box conditions to all peaks and
over the whole (g, b) plane leads to a region $ of
guaranteed iterative stability, pictured in Fig. 14.
This rather complicated figure goes into itself
under duality.

Failure of the box conditions may or may not
imply iterative instability. For example, com-
parison of Figs. 9 and 14 already shows that the
region of stable 2 cycles extends beyond the bound-
ary of guaranteed stability into regions D, and D~
of quadrants II and IV, respectively. We develop
this situation in more detail. The map (1.4) is
infinitely differentiable and it is easy to verify
that its Schwartzian derivative

erary is unbounded), f has no stable s cycles. In
the former case f is iteratively stable and uni-
modal. " In the latter case f is iteratively un-
stable. '4 Thus, the region a+b& -2 of quadrant
III and its dual image in quadrant II are iteratively
unstable.

In quadrants II and IV, f has three extrema and
does not satisfy the hypotheses Of Singer's theo-
rem. We have proceeded empirically. The result
of our study may be summarized in a form that
applies over the entire (a, b) plane by the following
three statements.

(1}When all extrema have unbounded itineraries,
then f is iteratively unstable.

(2) When x, = 0 has a bounded itinerary and x,
have an unbounded itinerary or vice versa, then

f is iteratively stable and unimodal.
(3) When both x, and x, have bounded itineraries,

then f is iteratively stable. If the two itineraries
are asymptotically distinct, then f is bimodal; if
they are asymptotically convergent, then f is uni-
modal.

If all extrema lie outside the big box of Fig. 13,
then statement (1) applies and f is iteratively un-
stable. Such regions have been indicated IT (un-
stable} in Fig. 14. If all extrema lie inside the
big box of Fig. 13, then statement (3) applies and

f is iteratively stable. If the central extremum
lies outside the big box and the g, extrema lie
inside or vice versa, then there are two possibili-
ties: If an inside extremum is small-boxable,
then f is stable and unimodal [statement (2)], if
not, then the situation remains in doubt. These
doubtful regions are denoted D in Fig. 14. We
investigated them numerically by the following
method: We fix (a, h) and follow the itinerary of
the "inside" extremum for 32 steps. If the itin-
erary ever reaches the region ) x ( & ) x,„(a,h) [,
then it is unbounded and f is iteratively unstable.
If the itinerary remains within the range —

~
« „.~

& x&
~ x,„~, then we declare it bounded (for prac-

tical purposes) and f is iteratively stable and
unimodal. In practice, the distinction is sharp.
Figure 15 shows the results of a scan in (a, 5) in
region D, at a grid interval. of 0.015. Similar
structure occurs in the other D regions. What
appears is a complex set of spines or spicules
radiating outward from the known-stable region
$'. The major spicules are readily identifiable
with low-& regions of n-cycle stability, which we
have seen in Figs. 9, 12, and 13. Many other
spicules certainly exist in these regions, however,
they become rapidly more narrow as p increases
and slip between the mesh of our grid scan. Well-
defined regions of entirely unstable behavior are
also suggested by Fig. 15. The boundary between
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-0.5—

or

b„(a)=b, (a)+C(a)/6~, (3.1)

where the critical amplitudes A(b) or C(a) vary
smoothly along the critical line but 5~ is universal.

The new feature here is the fact that the critical
line terminates at the special points

-I 0—

-I 5

-2.0

-2.5

-3.0 0.5 I.O I.5 2.0
I I

2.5 3.0

FIG. 15. Iterative stability in the doubtful region D f
of Fig. 14. Regions S and U& are guaranteed stable and
unstable, respectively, by the box construction. Points
shown were determined iteratively stable by a 200 &200
scan, as described in the text. The major spicules are
readily identifiable with low-n (n = 2, 3) n cycles, as
indicated.

stable and unstable regions appears to be very
irregular and may have some fractal character.
All the above considerations could be further re-
fined by studying box constructions for the func-
tions fI" for s & 1.

IH. CRITICAL AND TRICRITICAL BEHAVIOR

A. The Feigenbaum critical line and its dual

The nesting 1- and 2-cycle regions shown in
Fig. 10 are the first stages of a standard bifurca-
tion cascade, 1, 2, 4, 8, . . . . When this cascade
proceeds smoothly to completion, it terminates
at a locus of accumulation points, which we shall
call a critical line. ' We already know two points
on the critical line: (a, b) = (-1.401 16, 0) on the
negative-g (logistic) axis and the intersection af
the critical line and the self-dual line given at
the end of Sec. IIB. There is no difficulty in find-
ing the rest of the critical line numerically. The
most efficient method is simply to plot the appro-
priate loci af central-peak superstable 4 cycles
(Fig. 11), 8 cycles, etc. , which rapidly converge
to the Feigenbaum critical line TT', a, =a, (b)
[or b, =b, (a)], shown in Fig. 10. Approaching this
line from the upper right always leads through the
standard cascade; continuing beyond to the lower
left reveals the usual sequence of inverse-bifurca-
tion bands. Asymptotically close to the critical
line the position of the superstable 2" cycles (or
any other reference feature one cares to choose}
varies [c.f. (1.3)] as

a„(b) =a, (b) +A(b) j5r

TABLE I. Sequences of doubly stable 2"-cycle points
(a, b) converging to the tricritical points T and T, which
terminate the Feigenbaum critical line. The corre-
sponding points for T and T' may be obtained by using
the duality relations (2.13).

Cycle

2

8
16
32

(0, -1)
(0, -1.50393)
(00 -1.582 25)
(0, -1.59316)
(0, -1.59466)
(0, -1.59490)

(-2, 1)
(-2.685 16, 1.342 51)
(-2.795 75, 1.397 88)
(-2.81150, 1.40575)
(-2.813 69, 1.406 84)
(-2,81403, 1.40701)

T= (0, -1.59490), T' = (-2.81403, 1.40701),

(3 2)

which we shall refer to as txicriti cal points in

analogy to the theory of thermodynamic phase
transitions. " The mechanism for the termina-
tion is the existence af new n-cycle structures
which pinch off the orderly sequencing character-
istic of the critical line. A variety of interrelated
structures exist, which we shall study in more de-
tail in Sec. III C. For the moment we mention
three such structures: (i} A tricritical point is the
limit of a sequence of doubly stable 2"-cycle
points. For example, the points T and T' are the
limit of the dynamically coupled points listed in
Table I, the first two of which are visible in Figs.
8 and 11. (ii} A tricritical point is the limit of a
sequence of dynamically independent 2"-cycle in-
tersections (the first few are also visible in Figs.
8 and 11). As a consequence of (i) and (ii) any
neighborhood of a tricritical point contains an in-
finite sequence of interlaced unimodal regions (as-
sociated with the doubly stable points} and bimodal
regions (associated with the dynamically indepen-
dent intersections). (iii} Finally, a tricritical
point is also characterized as a point at which the
critical line is pinched off by a sequence of nar-
row fingers (see the end of Sec. IIC) af high-order
out-of-order 2" cycles. Such a finger is already
visible in the 4 cycles (Fig. 8) in quadrant IV,
where it is still well away from T [the finger tip
only reaches (0.80, -1.25); however, the corre-
sponding 32-cycle finger reaches (0.03, -1..62)
and higher-order cycles close in rapidly].

Thanks to Feigenbaum' we know that the critical
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line is associated with a fixed point of the function-
al recursion relation,

l.e. y

functions f1ow near to fg, through the linear region
(3.8), (3.9), and then (3.1) follows. ] In particular,
if f,(x) =f(x-), then iteration under (3.3) gives

f =hs'(fi ~(0)) o f ~ hs(f ~(0)) (3.12)

with

f:i= Its'(f. (I)) 'f.'"' ks(f. (I)) . (3.3)

The factor f„(1}in (3.3} is chosen to preserve
normalization, f„„(0}=1provided f„(0}=1.At

any fixed point of (3.3) (and, as we shall see,
there are many},

f g —k (~)ofAt2) oit 1(a)

with

~ =1/f *(1),

(3.4)

(3.5}

i.e. , f * is topologically conjugate to f ~'~ under
rescaling by magnification factor u. The mapping
(3.4} takes a function f„ f *+6f near f * into an-
other function f„„=f~+5f' near f *, with

6f ' = $(6f ) +0 (5f '), (3.6)

where g is linear. The eigenvalues A„and eigen-
vectors z of Q satisfy

Z(e„)=A e (3.7)

and provide a convenient basis for describing the
region of function space near f*. For example,
if

5f= ae (3.8)

for some set of coefficients g, then

5f'=pa A e (3.9)

The fixed point (3.4) af (3.3) associated with the
Feigenbaum critical line has the form'

fg(x) =1+c x'+c x + ' '

with

g~~~ = -1.5276, g4~& = 0.1048, . . . ,

and

(y,~ = 2.502 91 .

(3.10)

(3.11)

There is only one "relevant"" eigenvalue A, =-5~
= 4.669 20. All other eigenvalues are "irrelevant, "

~
A

~
& 1 for m & 1, so the corresponding perturba-

tions (3.8) shrink under iteration. The fixed point

fp therefore has an inflowing critical hypersurface
of codimension one. The Feigenbaum critical line
is the intersection of this critical hypersurface
with the a, b plane. Any function f, on the Feigen-
baum critical line (but excluding the endpoints T
and T') flows to fp under iteration (3.3). [Nearby

(3.13)

Equation (3.14) is, in fact, a convenient way of
finding the fixed-point function fr. In addition,
putting x = 1 in (3.14) and using (3.12) and the de-
finition (3.5) of the magnification factor, we find

~ = Iim[f'"'(0) /f'""'(0)] (3.15)

which is numerically convenient.
The dual of the Feigenbaum critical lipe TT' is

another critical line TT', shown in Fig. 10. End-
points of this dual line are tricritical points lo-
cated dual to (3.2),

T = (-3.18980, 2.543 Vl},

f" = (0.95561, -1.14981) . (3.16)

The dual critical line passes through (0, 0) be-
cause TT' crosses (2.15) and through infinity be-
cause TT' crosses the a axis. The critical lines
TT' and TT' intersect at the self-dual line; how-

ever, they are dynamically independent: Feigen-
baum critical behavior uses the central extremum,
while its dual uses the g, extrema, in accordance
with the discussion after (2.14). The continuity
af the duality relations (2.13) guarantees that (3.1)
holds in the vicinity of the dual critical line. Does
the dual line lie on the critical hypersurface of the
fixed point fg? The answer is no. Indeed, the
iteration procedure (3.2)-(3.4} does not even lead
to a function with finite coefficients like (3.10}.
The reason is simple enough. The 2" cycles in
the bifurcation behavior of TT' use one of the side
extrema g, instead of the central extremum. How-

ever, the iteration (3.3) continually magnifies the
function around the origin, pushing the. active part
of the function near the x, extrema off to infinity.
To achieve a finite fixed point, it would be neces-
sary to translate the active peak to the origin be-
fore applying (3.3), (3.12), and (3.14). The infinite
fixed point which controls TT' is topologically con-
jugate to fP in this sense.

B. Tricriticality: Exponents

The tricritical point T is located as the limit of
the set of doubly stable 2" cycles situated on the

So, if f, is on the Feigenbaum critical line, then

(3.14}
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negative-b axis. Locating T' would appear to re-
quire a two-dimensional search. Luckily, this is
not so, as we now explain. For each n& 1 there
are several doubly stable points in quadrant II
(see Sec. III D). Each such cycle uses the extrema

x, and x+, however, the different doubly stable
points use them in different orders. The sequence
of doubly stable 2" cycles which converges to T'
turns out to use the two extrema in the order g„

Normalization requires f(x,) =f(0) = 1

=x,(a, b), so a=-2b, as exemplified in Table I.
Thus, the doubly stable points leading to T' all
lie on the line

= lim
I f&;"& (0)/f &;

""&
(0)] . (3.23)

f&n)( ) f&ii&(0) +g&n&x4+. . . (3.24)

then it is easy to develop the recursion relation,

g &iI+1& 45gf &ii&(0}]3g&il&

However, C~ =5z, so
2 tI

&- "'=e(4f& )' II I.f"(0)1'
m=&

(3.25}

Equation (3.22) can be used to find the coefficients
g~ „~ as follows: Let

f(x) = 1 —2cx'+cx' (3.17)
and inclusion of the additional factors in (3.12)
yields

and can be found by a one-dimensional search.
We turn now to tricritical behavior and start

with an analysis of the point T. Functions on the
b axis have the form

f(x) =1+bx' (3.18)

and are iteratively stable and unimodal for -2 &5

The iterative behavior of such functions as
b travels down the negative-b axis is entirely sim-
ilar to that of the functions (1.2): There is a main
bifurcation sequence (the beginnings of which we
have already seen in Figs. 10 and 11 and Table I),
which has its limit at b~= -1.5949013562288. . . .
For -2&b &b~ there is a corresponding sequence
of inverse-bifurcation bands. The vicinity of b~
is characterized by scaling behavior. For exam-
ple, the positions b„of the doubly stable 2" cycles
for b&b~ and large n vary as

I „-5,=a/(5&,'&)",

with 5~ =7.28469 and B=4.888, in precise paral-
lelism to (1.3). The number 6&ri& differs from 5z
because (3.18}has a quartic rather than quadratic
maximum' but is otherwise universal in the same
sense. The amplitude B is nonuniversal.

The origin of the scaling behavior (3.19) is the
existence of a new fixed point of (3.3), which we
denote I cf. (3.10}]

(3.19)

f +(x) = 1+c& &x +c& &x + ' ' ' (3.20)

where f„satisfies (3.4) with magnification factor

ar= 1./f g(1) = (I+c +c + ' ' ') (3 21)

There are several ways of finding the tricritical
fixed-point function. " Qne of the simplest ways
follows the logic of (3.12)-(3.15): when b =br,
f(x) =f r(x) -=1+I&~' Then.

-'(45)' II (f& '(o)1' (3.26)

a ~
= -1.690 30. . . . (3.27}

Results for C4„are given in Table II.
perturbation about the fixed point (3.20) deter-

mines scaling behavior, as outlined in Sec. IIIA.
There are two types of perturbations, 5f=5f "&

+ 5f&', with

and

&&f
&'& =a,x'+a~'+ ~ (3.28)

(3.29)

involving powers g~ with even or odd k, respec-
tively. Because f $ is a polynomial in x~, the

iteration of an even 5f cannot generate any odd

component. Hence, in terms of 5f =(~f&,&), we~&(e)

have

TABLE II. Coefficients of the tricritical fixed-point
function f r(x)=1+cd x +c8 '& +-. . . These coef-
ficients were obtained via (3.26) and its higher-order an-
alogs. Note that the sum rule (3.21) is well satisfied.

c(4 ~=-1.83411

c8 = 0.012 96

c'„~= 0.31190

Derivation of similar expressions for higher-order
coefficients is straightforward. We find from
(3.23)

and

f ~r = lim (f,)„ (3.22)
c(&t,

"= -0.062 02

c(20&=-0.03754(&)

c24 = 0.017 66
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Although 6f"' couples te both 6f' '~ and 5f' ',
6f ' couples only to 6f' '~. The reducibility of
(6f ) into a semiblock form implies that the eigen-
value problems (3.7) for the even and odd pertur-
bations do not mix and may be considered inde-
pendently. Both even and odd subspaces have, of
course, an infinite number of eigenvalues and
eigenvectors; however, in each case only one
eigenvalue is relevant ( ~

A
~

& 1}and the rest are
irrelevant ( ~

A
~

& 1). The largest even eigenvalue
controls flows in the 5 (x~) direction near tricriti-
cality and is just the universal number 5~) intro-
duced in (3.19) and determined numerically from

g&, ) =' =2.857&3, (3.30)

and that the irrelevant odd eigenvalues are just
the inverse odd powers af (3.30) (6I'~) '"+'l. To
see this, take f„=f$+6f and iterate (3.3) once to
get

superstable 2'-cycle spacings. Finding it and the
other even eigenvalues by solving (3.7) with (3.26)
is feasible but uninteresting. The largest odd
eigenvalues we denote 5~~' . We shall show below
that 5~ is simply related to the magnification
factor

(3.31)

1 f~(fg&f '(1}))6f"(&f"(I)).f$1 r

Equation (3.32) has the structure

a~ = g Mz ((ci ~j) a, , k, l = 2, 6, 10, . . . . (8.33)

The eigenvalues of M are the odd eigenvalues of
(3.7}. Because the coefficient of 6f ' in (3.32) is
a polynomial in z, a', cannot depend on p, for
l& k, so M is triangular and its eigenvalues are
simply M». To find M», we can set z = 0 in the
coefficient of 6f ' to get

M~~ =[f$(1)]' 'f g'(I) .
However, f r* satisfies (3.4),

(3.84)

(3. 35)

Differentiating (3.85),with respect to x and then
letting g-0 leads to

I =f $'(l)[f p(1)]', (3.36)

The first and third terms in the brackets are al-
ways even; only the second term can be odd. As
we mentioned earlier, we only need to work in
the odd k space to obtain the desired eigenvalue.
Thus, to linear- order, we have

6f ' '(x) =a', x'+a', x'+ ' ' '

I

dimension equal to 2. This hypersurface evident-
ly intersects the a, b plane at T and controls the
scaling behavior there (see Sec. IIIC). It is by no
means obvious that the tricritical point 7' at the
other end of the Feigenbaum line is also on the
tricritical hypersurface belonging to f$. We have
verified numerically that it is by observing that
lim„(f ~)„=ff, [via (3.23), (3.26), etc.]. It fol-
lows that behavior-near 7' is described by the
eigenvalues 5~', 5~', and a~.

We turn now to the tricritical points terminating
the dual critical line T7'. Duality guarantees that
scaling behavior near T and T' is described by the
universal numbers 5~~') and 5&~'). It does not follow,
however, that T and T' flow to the fixed point f f.
and, indeed, they do not (cf. the situation with the
dual critical line). Direct iteration in analogy to
(3.22)-(3.26) shows that 7 and T' flow to another
tricritical fixed point, given by

(3.38)

(3.39)

Note that (8.36) is just af the form (2.4), with h(x)
= Wx, h '(x) =x', and so f -* is topologically conju-
gate to f $. These amusing relations are not hard
to derive: When applied to points on the b axis,
the duality relations (2.10) and (2.11) read

so finally,

Maa —[f5( }]''=&'' (3.37)
so

G, (x) = 1 +»', G, (x) = g', (8.40)

which gives (3.30) and the irrelevant odd eigen-
values.

Because there are two relevant eigenvalues at
the fixed point f r, the tricritical hypersurface,
which flows to f f, under iteration (3.3), has co-

f r('P) =f r(x) = G,(G&(~)) = (I—+»')'=[f (~~)l'.

(3.41)

Thus, in analogy with (3.23)
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tervening iterations. These scaling variables are
a natural set of coordinates near the point T. They
may be taken to be

Similarly,

(3.42)
u, = b br -- a tane, u, =a/c os(),

where the slope of the critical line is

tang = -1.2347,

(3.46)

(3.4V)

f-„*= lim (f r)„, (3.43)

and substitution of (3.41) leads to (3.38).

C. Tricritically: Crossover and scaling functions

The tricritical fixed-point discussion of the pre-
ceding section sets the stage for an examination of
the structure of n cycles, etc. (the phase diagram}
near the points T, g', and their duals. It is a
property of the iteration (3.3) that, if f„has an
m cycle, x„x„.. . , x, with even m, then f„„
has two m/2 cycles, x,/f„(1), x,/f„(1), . . . , and

x,/f„(1),x,/f„(1), . . . . If the m cycle af f„ is su-
perstable, then both the m /2 cycles of f„„are
superstable (f„„is at least bimodal). If m is
odd, the f„„has an m cycle, x,/f „(1),x,/f„(1), . . . ,
x,/f„(1), x /f„(1), . . . . Again, f„superstable im-
plies f„„super stable.

In the linear region (3.6)-(3.9) near a fixed
point, these considerations take a particularly
concrete form. Consider, for example, a func-
tion f„with a 2 cycle which lies near f g but not
on the tricritical hyper surface. Such a function
has the form

(6(1)}rt (n) cf((()(2))nu ) (3.48)

which is valid with a single function p independent
of n, provided n» 1 and ) u, (, ~ u, [ «1 but for ar-
bitrary values af the scaled combinations (br)"u.
Equation (3.48) must, af course, incorporate the
known behavior on the b axis and along the critical
line. On the b axis u, =0, u, =b —br, so (3.19)
gives

as illustrated in Fig. 16. Cycle structure near T
has much regularity, when described in terms af
zg, and u, . For example, if there is a superstable
2" cycle at (u„-u,), then there is a superstable
2" ' cycle at (6~') u„()(r2)u,}, a superstable 2" ' cy-
cle at [(br'))'u„(() r2 )'u, ], etc. provided only that
all coordinates remain small enough so the points
have not departed significantly from T (i.e. , from
the tricritical hypersurface}.

These considerations allow a scaling" descrip-
tion of the crossover from critical behavior along
the Feigenbaum line to tricritical behavior along
the b axis (region 2 af the scaling variables in
Fig. 16). The position u(")(u,} of the superstable
2" cycles in this region has a simple scaling form,

with

bf(x) =a,e, (x) +a~,(x), (3.44)

where e, (x) and s,(x} are the eigenvectors belong-
ing to 5~' and 5~'&, respectively. The iterate func-
tion (which has two 2" ' cycles) is

with

bf'(x) =6 ' a,e,(x)+()„'a~, (x),

(3.45)

Ui

i.e., it has moved away from the tricritical hyper-
surface by a factor 5&~') in the even subspace and
6(r') in the odd subspace [see (3.28) and (3.29)].

Now, consider the neighborhood of the tricritical
point 7.'. Any point in this neighborhood lies near
the tricritical hypersurface and therefore maps
after a few iterations into the linear neighborhood
af f g. It follows that the near neighborhood of T
inherits the scaling structure af (3.44) and (3.45),
only in variables appropriately skewed by the in-

FIG. 16. Scaling variables for the tricritical point T.
Equation (3.46) defines scaling variables (u&, u2) with
reference to the point T, the b axis, and the critical
line. In region 2 there is crossover between critical
behavior near the critical line and tricritical behavior
near the b axis.
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8:(0)=a. (3.49) l50

(3.50)

On the other hand, at fixed uu, 0 (3.48 t agr
as u, -0, so at lar e x

compar ing
ge x 8'(x}-x" and,

s&"&- (5t,'&}-[(5I;&)"s,]~-C(5"

(8T ) Ui
Il} 3

IOO—

(3.51)

we deduce that the critical amwe deduc
' '

mpl&tude C(a) vanishes
as a", with

(i)
ln5& —ln5y

y — (2)
——0.4237,
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FIG. 20. Superstable 8 cycles associated with the ex-
trema xo and x (x, has been omitted for simplicity).
Otherwise, this is the same as Fig. 18 except for the
larger scale. Note the additional doubly stable points.

FIG. 21. Doubly stable 2" cycles in the region between
T and T'. The points T and T' are marked by crosses.
In this region there are one 2 cycle, two 4 cycles, four
8 cycles, etc. All the n —~ limit points are presumably
tricritical.

hood. Figures 17-19 show two sets of doubly
stable 2"-cycle points converging to T, one on the
u =0 (b) axis and the other located at (5r "u„
6r' "I,}=(66.4, 10.3). Figure 20, which is on a
larger scale, shows two additional doubly stable
points, and it seems likely that there are many
more at larger values of the scaling variables.
The self-similarity observable in the scaling plots
suggest that the tricritical points may form a Can-
tor set. At each level of n, we may label a 2"
doubly stable cycle mentioned above as right (R) or
left (L) relative to its parent. We can then specify
a tricritical point by a sequence of R's and L's.
Conversely, any such a R-L sequence specifies
a tricritical point. For instance, the tricritical
point T is R =(R,R, . . . ) and the tricritical point
T' is L". In Fig. 21, we have also plotted the lo-
cations of two additional tricritical points T,
= (0.35031,-1.7980) and T, = (0.9704, -1.3767}.
In terms of the R-L notation, T, is RL" and T, is

LR". We have not at this stage located the criti-
cal lines associated with these tricritical points,
nor have we explored the question of what fixed
point they flow to under the iteration (3.3). Pre-
liminary evidence shows other doubly stable points
for the 8 cycles and above, which may well belong
to additional tricritical sequences.
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