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The statistical properties of periodic impulse maps may be obtained from the charac-
teristic functions. Series representations for the characteristic functions, the force correla-
tions, and the momentum diffusion coefficient are presented. These results are applied to
the sawtooth map for integer values of the perturbation parameter e, in which case the
series may be summed explicitly. It is found that the diffusion coeAicient has the quasi-
linear value for

~
e+2

~
& 2, it vanishes for e= —2 and —1, and it is infinite for e= —3.

I. INTRODUCTION

"Diffusion is a distinctive random process. " (See
Ref. 1, p. 326). Hence, the idea that a diffusion
coefficient can exist for a deterministic system
seems paradoxical. Nevertheless, numerical experi-
ments affirm that deterministic motion can be dif-
fusive with the diffusion coefficient given approxi-
mately by the quasilinear value when the nonlinear
parameter is large (Ref. 1, Sec. 5). Furthermore,
analytical calculations of corrections to the quasi-
linear value of the diffusion coefficient have
provided formulas which agree very closely with
numerical results. These high-order analytical cal-
culations are equivalent to keeping only the first
few terms of the representation of the diffusion
coefficient D as an infinite series of force correla-
tions.

In Ref. 2 and 5 external noise was added to the
system, and the systems under study were not
deterministic. In Ref. 3 a formalism was developed
for the noiseless, deterministic case in which the
existence of D is no longer certain, in part because
of the presence of regular accelerating regions' of
phase space. However, it is reasonable to expect
that the diffusion coefficient exists for the stochas-
tic region of phase space. The method of Ref. 3 al-
laws the calculation of D for the stochastic region
alone. Still, it has not been proven that the dif-
fusion coefficient for the stochastic region of phase
space is finite.

In the present paper we present a deterministic
system for which the diffusion coeAicient is a
nonzero, finite number. This system is the
sawtooth map

p'=p+e s(x), x'=x+p',

where s(x) is given by Eq. (18) and is shown in

Fig. 1. When
~
@+2

~
& 2 the sawtooth map is a C

system (Ref. 6, pp. 53—55}. When
~
@+2

~
& 2 and

e is an integer we show that the momentum dif-
fusion coefficient is given exactly by its quasilinear
value (sr'} /6 Lett. ing e be an integer allows sum-
mation of the series for the diffusion constant be-
cause only one of the gt [see Eq. (4)] is nonzero.

In Sec. II we develop the characteristic function
formalism for periodic impulse maps. We obtain
series representations for the characteristic func-
tions, the force correlations, and the diffusion coef-
ficient. These results are applied to the sawtooth
map in Sec. III.

Exact statistical results have also been obtained
for a deterministic dissipative mapping by Jensen
and Oberman, also by the use of a characteristic
function formalism.

II. PERIODIC IMPULSE MAPS
AND CHARACTERISTIC FUNCTIONS

We consider a map M defined by

Pn+1 Pn+ef(xn 4

xn+ i =xn+pn+ is

(la)

(1b)

where f(x) is periodic and (without loss of general-
ity) has the period 2m. M is called an impulse map
because it corresponds to a particle receiving an
impulse (momentum change) at integer values of
time, Eq. (la), while otherwise freely streaming,
Eq. (lb). The standard (or Chirikov-Taylor)
map' is an example of such a map with
f(x)=sinx. The map M is area preserving for ar-
bitrary f. Impulse maps can be easily written as
second-order difference equations

xn+i 2x +xn —ni =&f(xn }.

Periodic impulse maps are actually doubly
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S(X) eiefix) y ( )
ih

(4)

We assume that fp ——0 so that the average impulse
on a uniform distribution of particles vanishes.
This permits the definition of a momentum dif-
fusion coefficient.

The characteristic functions for some measurable
region R in the phase space are defined by

R
Xk (mp, mi, ..., mk )

FIG. 1. Plot of the sawtooth function s(x) vs x.
k

J&n +j &Ospp ) R
j=p

(5)

periodic. Consider two initial conditions which
differ in momentum and position by multiples of
2w: xo =xp+27T)lp, Pp ——Pp+2mmp for some in-
tegers mp and np. It is easy to see that Eq. (1) im-
plies that the orbits (xk,pk ) and (xk,pk) always
differ by multiples of 2m:

xk {xo Po }=xk{xoPo)+2nnk'
and

pk (Xp pp ) =pk(~0 pp)+2~~0 ~

This periodicity allows one to determine many of
the properties of M by studying the reduced map,
i.e., by letting the phase space be a torus with sides
of length 2m. We denote this torus by T.

To analyze M we use the characteristic function
method of Ref. 3. This method relies on the
periodicity off to expand both f and its exponen-
tial in a Fourier series:

f(x)= g fie',
l =—to

where x„+j is a function of the initial conditions
(xp,pp) through Eq. (1). The angular brackets
denote an average which is defined by

1(F(xo po})a —=
y, (R }

dxodpoF(xo po)

where the integrals are over the region R and p(R)
is the measure of R. We have assumed that R is
an invariant region of phase space [M(R }=R]so
that Xk is independent of the label n.

Characteristic functions completely determine
the statistical properties of M. To see this define
the joint probability distributions

R k
pk{yo,y ".,yk} —= g5(y, —,( o,po)}

j=p R

where 5 is the periodic, Dirac 5 function:

(6)

5(x)—:g 5(x —2irn).

Pk is the probability of finding a particle at yj at
time j{j=0, 1,...,k) given that it was initially in R.
It is easy to see that Xk is merely the Fourier
transform of Pk .

k
Xk"=f dyp J dyi. ..J dykexp igmjyg pk(yo "yk}.

j=p

As was shown in Ref. 3, the calculation of Xk follows from the recursion relation

+k (~o,m1, ...,mk )= ~ gl(~k+)+k —1(~0 1 " ~k —3 ~k —2 ~k ~k —1+ ~k +R R (10)

This is obtained by inserting Eqs. (2) and (4) into Eq. (5). The characteristic function X, is given by the ex-
plicit phase-space average

Xi (mo, mi) = (exp[i(mp+mi )xo —imppp])a.

The simplest form for g1 is obtained if R is the torus T, which is an invariant region for the reduced map

Xi(mp, mi)=5 o5, p.
T

(12)
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If M were ergodic then T would be the unique invariant region. In the general case, however, there may be
many invariant regions (e.g., the standard map) ~

Consider the class of characteristic functions with only the first and last two indices nonzero. The recur-
sion relation (10}maps this class onto itself:

R'k(mo»" Omk —I mk) g gl( ke)'k 1(—m00" 0 ™kmk —I+ mk+I} (13)

Repeated application of Eq. (13) allows an explicit solution for

Xk(mo, O, ...,O, mk»mk)= g ~ ~ g g 2 l(mk~)
l1=—M lk 1

———m

gnsk —2I~+I2( le}g!) —2I2+I3( 2&}'

Xglk 3 2lk 2+lk (Ik —2e}+I(mo Ik 2ik ——I). (14)

The momentum diffusion coefficient is defined by

1D"= lim [pk(xo'po} —po]2)»
k ~2k (15)

and can be written in terms of the force correlation

C,"=—(f(;)f(;;)}", (16a)

k —1

D"=e —,Co+ lim g 1 —~ CJ", (16b)
k .j

&CR+yCR
j=1

(16c)

where the last expression is valid when the C~" falls
off rapidly enough with j. Inserting Eqs. (3) and
(5) into Eq.'(16a) we find

III. SA%TOOTH MAP

For the sawtooth map we let f(x)=s(x) where

s(x) =x, —m &x &m,

s(x +2mn )=s(x), (18)

is the sawtooth function (Fig. 1). This map is a C
system when

~
@+2~ &2 and is therefore ergodic

in the torus

T=[xp,
i

—m &x(n, —n &p &~I.

I

erally believed that D" exists if R is chosen to be a
stochastic region of phase space.

C,"= &f'(x, ) &„,

Cj"——gf~f„XJ(m,0, ...,0,n).
m, n

(17)
The function fl and gl(e) become, by Eqs. (3) and
(4),

The term Co yields the "quasilinear" value for D".
Note that Eq. (14) combined with Eq. (17) yields
an explicit solution for CJ".

The characteristic function (5) and correlation
functions (16a) are well defined regardless of the
properties of the map. The expression for D",
however, is valid only if the invariant region is
chosen so that the series (16) converges. It is gen-

( —I)I-', I~Ol'
0, l=0

sin[a(e —1)]
m.(e—l)

We can, therefore, immediately obtain the correla-
tion functions from Eqs. (14) and (16):

Cj+i ——
sin(n. 1ka)

I 1'1 k, lk I
—alk+lk+I

ll~, l~~

(20)

where a=@+2, 10——0 and lj+& 0 The first few of the Cz are easily evaluated
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Co ——ir /3,

Ci ——0,

—2 ~ sinmka
ir'ir k = i

where a—:
~

a [
—(2m + 1) with the integer m is defined by 2m &

~

a
~

& 2m +2.
Note that Cq ——0 whenever a (and, therefore, e) is an integer. In fact, for integer values of e (when

~

a
~

& 2) we will show that CJ =0 for all j & 0. We can obtain this result because precisely one gi(e) of Eq.
(19) is nonzero for integral e:

gi(e) =b,(1 —e)= O' I ()
1, I —@=0

(21)

where 6 is the Kronecker function. Substitution of Eq. (21) into Eq. (14) together with Eq. (12) gives

Xi, (mo, O, . . ,O, m. s im~) = g 6( m»—
i am—r, +li )h(ms —ali+lq)

I) '. ..'lk —1

X /k(li —ali+ lq ) . .6(ls i —als i+ is i) b (ls q
—mo)h(ls ~)

(22)

lk i
——0

Ik p
——mp,

lk ~J+~~ alk J+lk ~J ~~
—0

(23a)

(23b)

This finite difference equation with the two initial
conditions can be solved for mk =Ip and mk
= —I i. This process yields

for the characteristic function. There are k —1

sums in Eq. (22) and k + 1 Kronecker deltas. This
implies that for any mp there is only one pair
(ms i, ms) for which Xs is nonzero.

To determine that pair we begin with the last
sum and work backwards, finding

(ne).
p (26)

for integral e satisfying
~
a+2

~
& 2, which proves

that the diffusion coefficient exists and is given by
the quasilinear value for these values of e.

When
~
a

~
& 2 the eigenvalues y+ have modulus

one and the sawtooth map is no longer a C system
or even ergodic. In spite of this we can determine
the correlations. Setting ms i ——0 in Eq. (24), we
find that Pz( m0c, . . . ,0, m)its nonzero only if
k =3n for

~

a
~

=1, and k =2n for a=O, for some
integer n. This yields a solution for mk and final-

ly, from Eqs. (17) and (19), the correlation func-
tions

k —1 k —i7 +
mk —mp

7+
k k
+

mk i
———mp, k&1

y+ y—
(24)

1, a= —1, k =3n

( —1)", a=O, k =2n

( —1)", a= I, k =3n
(27)

Xk(mp, o, ...,o,mk) =0 (25)

for k & 1 and mo, ms+0. In fact, one can show
that Eq. (25) holds even for

~
a

~

=2. This result,
with Eq. (17) implies CJ =0 for j& 0 and hence,

where y+ ———,[a+(a —4)'~ ], when ~a
~
Q2. Note

that y+ are the eigenvalues of the linearization of
the sawtooth map. It is easy to see that when

~
a

~
& 2 both mq i and mq are nonzero integers

and, therefore,

with Ck ——0 for other values of k. These results
may be inserted into the formula (16b) for the dif-
fusion coefficient D. The result is D =0 for e= —2
and —1, and D = 00 for e= —3. The vanishing of
D is due to the linear stability of the map for
e= —2 and —1. The divergence of D in the case
e= —3 indicates the presence of accelerator modes.

The accelerator modes for the case e= —3 may
be found by searching for fixed points of the re-
duced mapping which correspond to increases in
the momentum of the full mapping. One finds
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TABLE I. Properties of the sawtooth map for integral values of e. Stability refers to the
linear stability of fixed points. The stream constant is defined in the text.

Value
of e

6=n
fe+2( )2

e= —2, —1

Stability
Ergodic

DT

Hyperbolic
Yes
(m)2

6

Parabolic
No

(~e)'
6

Elliptic
No

Elliptic
No

Parabolic
No

that the reduced mapping has first-order fixed
points at

p=0
and

1k —1S"=@2lim —g I —&
k~wkj i k

The results of Eq. (27) imply that the stream con-
stant Sr has the value 2/2 for e= —3.

x= ™,0&
/
m

/
&

/
e/2/ IV. CONCLUSIONS

which correspond to momentum increases (in the
full mapping} of 2am each time step. Hence, —3
is the only integral value of e for which there exist
stable, first-order accelerator modes.

When accelerator modes are present, as in the
case e= —3, the momentum spread increases
linearly with time. To characterize this spread we
define the stream coefficient

1S"= lim ( [pk(xp, pp) —pp] )sk~~ 2k2

in analogy with Eq. (15). One can immediately
show that

The results of this paper are presented in Table
I. The row labeled "stability" refers to the nature
of orbits near fixed points {see Ref. 6, Appendices
27 and 28). In the hyperbolic (elliptic) cases, orbits
near the fixed point correspond to a hyperbolic {el-
liptic} rotation about the fixed point. We note the
the diffusion coefficient exists and is nonzero for all
of the hyperbolic cases and one of the parabolic
cases. The diffusion coefficient vanishes or is infin-
ite in the elliptic cases and one of the parabolic
cases.
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