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The destabilization of a normal mode of the uniform stationary state of a spatially extended system may initiate a
whole cascade of bifurcations of families of states of increasing complexity. We discuss methods for the linear-
stability analysis of the new solutions based on symmetry and continuity requirements which may be applied when
no explicit analytic representation is available. We always find a family of simply periodic traveling-wave states
bifurcating from the uniform stationary state (primary bifurcation). Stabilization of these simply periodic states is
connected with a secondary bifurcation of a family of doubly periodic states, which upon stabilization may in turn
be connected with a tertiary bifurcation of triply periodic states, etc. Each of the families may contain solitary states
as limiting cases. The general theory is applied to a few representative examples.

INTRODUCTION

Ever since Hopf published the pioneering paper,
Abzweigung einer Periodischen LOsung von einer
Stationiiven Lisung eines Differentialsystems,’
bifurcation theory has found continuous interest,
and there exists today a wide and vast literature
on the subject (see Ref. 2 and references contained
therein). However, most of the work refers to
dynamical systems with a finite number of state
variables. The study of bifurcation and branching
in field theories has found attention in mathema-
tics only very recently.?® In physics, this interest
has been mainly stimulated by the study of insta-
bilities in spatially extended dynamical systems
described by a set of fields.”"!!

Bifurcations occurring in systems at thermo-
dynamic equilibrium are known as phase tran-
sitions and have been extensively studied. On a
deterministic level, their description forms the
well-established Landau theory, and in the last
decade the renormalization group has brought
clarification and understanding of the effects of
fluctuations.

Of high current interest are instabilities occur-
ring in systems driven by a set of (time-independ-
ent) control parameters into states away from
thermodynamic equilibrium. Instabilities occur-
ring in hydrodynamic systems, such as the Bénard
and Taylor instabilities,!? as well as current in-
stabilities in strongly temperature-dependent
metallic conductors'® have already been studied
for a long time. Interest in these phenomena was
renewed by the development of the laser,'* by the
observation of current instabilities in semiconduc-
tors,'® of instabilities in chemical reactions,'® of
optical instabilities,!” and others. Today, the oc-
currence of such instabilities has been observed
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or conjectured in many different areas both in
physics and in other sciences. The theoretical
description of these phenomena is to a consider-
able extent independent of the specific system.

Such instabilities in nonequilibrium systems are
phase-transitionlike phenomena, showing many
similarities to phase transitions in systems at
thermodynamic equilibrium: An instability is
associated with the undamping of a normal mode
and the breaking of symmetry, and in spatially ex-
tended systems one expects the occurrence of
critical fluctuations with important effects on the
bulk behavior. But there exists one important
difference: In driven nonequilibrium systems, not
only spatial symmetries but also the symmetry un-
der time translations may be spontaneously broken
at an instability, leading to time-dependent (non-
stationary) states even under stationary driving
conditions. (The special case of the bifurcation
of periodic states from a stationary state in a sys-
tem with a finite number of degrees of freedom
was the subject of the paper by Hopf mentioned
above.)

In the present paper, we study such instabilities
on a deterministic level by means of time-evolul-
tion equations for the set of fields ¢(?, t) describ-
ing the macroscopic states of the system, i.e.,
we disregard the effects of the fluctuations. This
theory will thus be the analog of Landau theory
for driven systems. As mentioned above, fluc-
tuations will become important close to the bifur-
cation point, but the macroscopic field equations
supplemented by stochastic Langevin forces are
expected to be a good starting point also for the
investigation of fluctuation behavior, in the same
way as the thermodynamic Landau potential is a
good starting point for the renormalization group.

We focus attention on a special class of insta-
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bilities where a spatially uniform time-independ-
ent state ¢, loses stability at a critical value o,
of the control parameter @, and bifurcates into a
set of stationary waves or of traveling waves (TW)
(which are stationary in a moving frame).3%:18

In a spatially extended system, the successive de-
stabilization of a branch of normal modes leads to
the bifurcation of a whole family of new states ¢
with broken space-time translation symmetry.

We label each member of the family at a given
value @ of the control parameter by its bifurca-
tion point «,, using the bifurcation wave number
q =q, =21/A, for identification. In the infinite sys-
tem, there exists, in general, a continuum of bi-
furcation points, i.e., a bifurcation line’'!® a,> a,
(Fig. 1). In a finite system, or in a system with
periodic boundary conditions in a finite periodicity
volume, the set of bifurcation points will be dis-
crete with a spacing going to zero as the volume
goes to infinity.

In order to be a candidate for physical realiza-
tion at asymptotically large times (an “attractor”),
the state ¢y must be stable. The task is there-
fore to select the stable members of the family
¢1wla, a,). The linear stability of such a state is
governed by an eigenvalue problem. Our main
goal is to show what general conclusions can be
drawn about the stability of the TW states on the
basis of symmetry and continuity requirements
alone, when no explicit analytic solution is avail-
able.'®

A simple continuity argument®''® shows that all
TW states adjacent to the bifurcation line @ =a,
are unstable for a, #@,. In special cases, the only
stable member of the family is the TW state bi-
furcating at @ =a,. In general, other TW states
may become stable above a certain critical value
a =a*>a, of the bifurcation parameter (see Fig.

)

FIG. 1. Normal bifurcation of a family of TW states.
Along the bifurcation line o = o) > o, TW statesbifurcate
with zero amplitude. To each point (¢, ,a),a=>a,>a,,
there corresponds the TW state which has bifurcated at
o, . Any state can be expanded in powers of the amplit-
ude by keeping either o, fixed (path A) or « fixed (path
B), or along a more general path. ’

1). The existence of such a stability limit a* in
the family of simply periodic states will be con- .
nected with a secondary bifurcation of a family of
doubly periodic states from each of the simply
periodic states. In a certain neighborhood of their
birfurcation point all these doubly periodic states
will again be unstable, and the question arises if
they become stabilized above a stability limit a**
which would then, inturn, be connected with a
tertiary bifurcation of triply periodic states, etc.
The destabilization of a normal mode may thus
initiate a whole cascade of bifurcations of families
of states of increasing complexity, with interest-
ing topological implications.

It is important to allow for a large enough phase
space in the model description of the system.
Many attempts have been made to reduce the bi-
furcation problem of spatially extended systems
to the treatment of a single or a few amplitudes.
Such an approach is only acceptable, if at least
slow spatial variations of the amplitudes are in-
cluded by taking at least second spatial deriva-
tives in the evolution equations into account.
Otherwise, one may miss nonuniform (e.g., soli-
tary) solutions relevant to the problem, and one
may find a given solution to be stable which in
reality is unstable against nonuniform amplitude
modes. Similarly, the proper treatment of sec-
ondary or higher bifurcations may require either
more amplitudes or higher spatial derivatives.

The rest of the paper is organized as follows:
In Sec. I, we study the stability limit of the sta-
tionary uniform state for a general class of dy-
namic systems, and deduce the properties of the
bifurcating TW states at their bifurcation points.
In Sec. I, the stability of the family of TW states
is considered. We present our methods for the
stability analysis which may be applied when no
explicit analytic representation of the TW states
is available. Section III finally contains a detailed
discussion of the bifurcation behavior of a few
representative systems, which serve to demon-
strate our method.

1. STABILITY LIMIT AND BIFURCATION

We consider a general class of systems des-
cribed by a set of (macroscopic) fields

O(T, 1) ={0,(F, 1), ¢5(T, 1), - - ., §,(F, 1)}

and a set of parameters @ ={a,, 0, ...} which can
be externally controlled. The time evolution of
the fields is assumed to be given by

%.?:1;[2, a] (1.1)
togethe}- with appropriate boundary conditions,
where B is a nonlinear partial-differential op-
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erator acting on the state ¢(T, t), inducing a flow
in the state space Z{¢}. We consider systems
which are invariant against translations in space
and time, i.e., we exclude an explicit dependence
of the operator BonT and ¢ (uniform and auto-
nomous systems).

The basic assumption of this class of field
theories is the locality in time, which is based
on the existence of different time scales for the
macrovariables and the eliminated microvaria-
bles. In order to avoid memory effects, the state
space has to be chosen appropriately large, such
that all “slow” variables are included. The as-
sumption of locality in space, on the other hand,
is not essential, and our results may be general-
ized to this case by taking B as a nonlinear inte-
gral operator.

A. The stability limit of the stationary state

In many systems, there exist branches of sta-
tionary states which are time independent and
spatially uniform, or which may be considered
approximately uniform for certain boundary con-
ditions (e.g., in current instabilities, where the
self-Hall field always causes a nonuniformity,
which may be neglected under certain conditions).
The stability of such a stationary uniform state ¢,
is determined by the time evolution of small per-
turbations 6¢(T, t),

ab%ir, t) _ -i(ﬁs, a)- 5_41(;., 1), 1.2)

where L(¢,, @)==V4B| 4, is a linear operator
(Fréchet ﬁeﬁvative%act"fn_g’ on the tangent space

of ={¢}in ¢,. Because of spatial and temporal
translational invariance, the perturbations 6¢(T, t)
have the form of plane waves -

59 (F, ) =5 ¢35, (A Fuh (1.3)
This leads to the linear eigenvalue problem
[L5(9y @) —iwl] -593, =0, (1.4)

where 1 is the identity, and we are looking for the
branches of (generally complex) frequencies
w,(q, @) (v=1,2,...,n) belonging to the real wave

vector q. I L is a real operator, then there ex-
ists for each mode (vq), with frequency w, (g, @)
a mode (v, —q), with frequency

w, (-9, @)=-w}(q, a). (1.5)

Other symmetries cause further degeneracies in
the spectrum. The state ¢, is called linearly
stable if all modes are damped, i.e., if

Imw, (g, @)<0 (1.6)

for all ordinary modes, with w,(0, @) #0. For hy-
drodynamic modes, with (0, @)=0, the coeffici-
ent of the leading term of Imw,(q, @) in powers of
q has to be negative. The stability_limit with re-
spect to ordinary modes is given by

max(v, §) Imw,(q, @) =0. 1.7

To each point @, on the stability boundary there
corresponds a critical mode with wave vector!®
4=q,, lying on a particular branch which we call
v =1. The critical frequency

w, =Rew (q,, 2,) (1.8)

may either be zero (soft-mode instability) or non-
zero (hard-mode instability). In the case of hy-
drodynamic modes, the corresponding criteria
are given in terms of the coefficients of the lead-
ing terms of Imw (§, @) and Rew,( q, @), respect-
ively. In the following, we restrict the discus-
sion to ordinary modes.

We consider a path in control space passing
through the point a_ on the stability limit, and
let o stand for the control coordinate along that
path with values increasing as one moves from the
stable region into the unstable region. We ex-
plicitly assume that there exist stationary uniform
states both in the stable and the unstable region.
In some cases the control space has to be chosen
properly, such that this condition is satisifed. In
order to follow the way in which more and more
modes become undamped as the control parame-
ter is increased beyond a,, we expand the disper
sion of the critical branch w (g, a) for fixed a

‘around the most weakly damped mode g(a) deter-

mined by [6 Imw, (g, @)/8q]| ;oo =0 (Fig. 2):

Imw, (g, a) =T (a) - D(a)[g - g(a)F +0([g — g(a)]?), (1.9)

Rew, (g, @) =w, (@) +v(a)[g - g(@)] +d(a)[g = q(2)]?+O((g - g(a)F), - (1.10)
where I'(e,) =0, D(a)>0. Expansion in powers of a - a, yields

Imw,(q, @) =T (@ -a,) =D (g -, +0((a - a. ), (@ - a,)g -q,.), (¢ -q.)%), (1.11)

Rew,(q, @) =w, + (W, o = V.4, o )@ = ) +v.(q - q,) +d.(q - q.’

+0((@ - (@ -a,)g -q.), (g -49.)0).

(1.12)
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FIG. 2. Behavior of the branch w; @, @) containing the
most weakly damped frequency for values of the control
parameter close to @,. At a>a,, all modes with wave
vectors between ¢,4 and g, ; have become undamped.

where w_, q,, v, D, d. are the values of the corres-
ponding functions at @ =a,, and w, ., 9. 4, Ve, 0o o
are their derivatives at @ =a_, respectively. We
have written these equations for the case of a sin-
gle component q. The extension to the multidi-
mensional case is straightforward. Setting

Imw, (g, @) =0, one obtains the “bifurcation line”
giving the values a =a,(q) of the control parameter,
where the mode with wave vector ¢ becomes un-
damped (Fig. 3). One obtains from (1.11)

a,=a,+[D./T  )Ng-q.) +0(q-4q,)°). (1.13)

Substitution into (1.12) yields the frequency on the
bifurcation line

w,(q) =w, +v.(q - q,) +A (g - q.

+0((g -q.)%, (1.14)

where

A=W, 4 =00, o)D/T,) +d, - (1.15)

asa,fa)

A

f f

b1 b2
a

c

9 q

FIG. 3. Bifurcation line @ = @, (¢) giving the control
parameter @, at which the mode ¢ becomes undamped.
The nonuniform states can be obtained by performing
an expansion in @ - @, at constant ¢ (pathA) or in g,
at constant o (path B).

[

B. Primary bifurcation of a family
of periodic traveling waves

We now turn to the problem which set of
states the system may assume after the stability
limit is exceeded, either as the result of an in-
finitely slow change of the control parameter, or
asymptotically for large times after a sudden
change. From now on, we restrict the considera-
tion to the case of one space dimension, and fo-
cus on the special class of traveling-wave (TW)
states ¢,(¢£) depending on space and time only in
the combination £ =x —uf. The TW’s are station-
ary solutions of (1.1) transformed into a frame
moving with velocity u,

u(:?d)) +1§[_qi, a]=0.

We first search for periodic solutions ¢5(£)=¢(&
+A) of period A. Such a solution may be expanded
into a Fourier series

(1.16)

n=4c0
91'(5)=‘_1’s+ Z 9(”)6"'”5, q=i_‘”. (1.17)
-

For real fields, ¢™=¢*"", We want to follow
how any such state bifurcates out of the uniform
state ¢, and use the amplitude A =| ¢)| of the
first Fourier coefficient as an expansion parame-
ter. (Solitary states are obtained in the limit A
-~ . In this case one may use a norm as expan-
sion parameter.) The expansion may be performed
either at fixed period A =A, (fixed g =q,, path A in
Fig. 3), or at fixed control parameter o =a, (path
B in Fig. 3). We expand all amplitudes ¢™, |n|
#1, as well as a —a, (for fixed q) or g - g, (for
fixed o,), and the wave velocity « in powers of A.
To the lowest order in A, which determines the
behavior at bifurcation ¢ satisfies the equation

[L,, (s> @ —iug,i)- ¢M=0. (1.18)

Therefore, the Fourier coefficient ¢ is an eigen-
mode of (1.4), and the period A,=2m/q, and the
pulse velocity «, at bifurcation are given by

(1.19)
(1.20)

0 =Imw,(gs, ),

gy =Rew1(q,,, Clb) =‘-'-’y(qb) .

Thus, at every a =a,> ¢, there bifurcate, in gen-
eral, two TW states out of the unstable stationary
state, corresponding to the two normal modes
which become undamped at a, (see Fig. 3). For
a,—~ o, the solutions degenerate into a single one.
Near a,, the relation between @, and g, is given
by (1.13), and w, has the form of (1.14). We now
discuss some specific cases of bifurcation be-
havior.
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1. Hard-mode instability at q.# 0

For w,#0, ¢.#0, one finds the result
Uy =u, + (v, —uc)(i%qﬂ)

c

2
+0.g. v, (228 Y so (-0, (12D
c
where u,=w_/q,, and A, is given in (1.15). One
obtains two pulse velocities, depending on g,> g,
or g,<q,. The term proportional to (g,-¢.)/q, is
determined by the difference of the group velocity
v and the pulse velocity « at @ = o,. Physical ex-
amples of this behavior are the laser threshold'4:2°
(with A, =0) and the laser pulse threshold.?°

2. Soft-mode instability at q.# 0
For w,.=0,4,.#0, we find

- - 2
uy=v, (2)712.)4. (a.q, _,,c)(zgq_qg>

c ¢

+0((g, - 4. . (1.22)

If all undamped modes are soft, i.e., if w,=0 (and
therefore v, =A,=0), one has u,=0. This case oc-
curs, for instance, in the Bénard instability.?!

3. Hard-mode instability at q, =0

In this case, it is more convenient to introduce
the variable 7 =t- x/u instead of £ =x —ut, because
the solution with ¢, =0 is associated with u =,
The pulse velocity is then given by

1 1 v, o (V2 A\ 4 4
;;-;:40_0_)?‘10+<‘J,§—w§ 4 +0(q3) (1.23)

Examples are chemical instabilities.??

4. Soft-mode instability at q, +0
For w.=0, ¢.=0, one finds for ¢,#0
Uy =0, +A. g, +0(q3) - (1.24)

Examples are current instabilities in semicon-
ductors.?®?* The g, =0 limit of this family of peri-
odic states represents a solitary state traveling
with # =v,. In addition, there may occur other
branches of solitary states, the pulse velocities of
which cannot be determined from (1.20) since both
sides vanish identically for ¢, =0.

C. Primary bifurcation of families
of multiple periodic waves

In the above discussion, we have considered the
bifurcation of periodic TW states growing from a
single undamped mode of wave number g, or from
a pair (g, —¢). Inthe case of q,#0, two modes

with, in general, incommensurate wave numbers
5,> 9s, Pecome undamped at the same a,> a, (see
Fig. ‘:;‘), each traveling with its own phase velo-
city u, , =‘*’(%1'2)/qb1 . This may give rise to the
primary bifurcation o’t? a doubly periodic state of
the form

Oa(x, 1 @, @) =p(x —ut, x —u,t; @, @),
where
2(&1 +n1A1) 52 +n2A2; a, ab) =9(£17 &2; a; ab)

(n,,n, integer), growing from a linear combination
of the two undamped modes. Similarly, undamp-
ing of additional (parts of) branches at higher
values of @, may lead to the primary bifurcation
of multiply periodic states. In the present paper,
we focus attention on systems in which only singly
periodic states bifurcate from the uniform state.

" IL STABILITY OF BIFURCATING WAVES
AND SECONDARY BIFURCATION

A. Expansion to higher powers in A
for the singly periodic states

Expansion to higher powers of A at constant A
=A, yields power series for a - o,, u —u, and the
higher Fourier coefficients ¢™ of the TW state
¢r(& a,A,). The type of bifurcation is determined
By the leading term of o - a,,

o —0,=9,(a,)A™, (2.1)

which defines the “bifurcation exponent” »,. The
bifurcation is called “normal” if the zero-amp-
litude solution is approached from o> a,, i.e., if
9,(a,)>0, and “inverted” in the opposite case.
Note that 9,(a,) may change sign at a particular
value of o, (Fig. 4). At this point, the type of bi-

a9 b1 b2/ b3 Iba

VAN Py g

9 Ty T2 T3 pg Fps a

FIG. 4. Amplitude A, of the traveling waves as a re-
sult of an expansion along pathA (see Figs. 1 and 3).
Shown is an example in which the bifurcation of periodic
TW states changes from inverted to normal as a, in-
creases,
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furcation is determined by the next higher term
9,(a,)A"2, with a bifurcation exponent 7,.

B. Stability of traveling waves

Our next task is to select the members of the
family ¢,(; @, A,) according to their stability
properties. We test the nonuniform solution ¢,
against small perturbations 6 9(5, ¢), which ot;ey
the linearized evolution equation

208(¢,1) _, 269(5, 1)
ok

3 +L(pp(E; @, A,) - 89(E, ) =0,

(2.2)

where the linear operator L=-v4B(p) d=dp(E) 18
the derivative of B at the nonuniform solution Pr-
Because L is still time independent in the moving
frame, we are looking for solutions of the form

095, ) =89 (ke ™™,
leading to the eigenvalue problem

(Borts oy ) -u ) - 092(01=108,(6).  (2:3)

The stability of the TW states is thus determined
by the spectrum of [L(¢,) - (ud/dt)1): The state
¢r(t; @, A,) is stable if Rex >0 for all modes ex-
cept the Goldstone mode (see below).

C. Method

We now list a number of principles'® which in
some cases lead to definite conclusions about the
stability of ¢,, and, in general, give considerable
1nS1ght into the spectrum and the eigenmodes of

ACTE (wd/de)1).
1. Breaking of translational symmetry

The nonuniform- states ¢,(£; @, A,) are states of
broken translational symmetry. Therefore, a set
of equivalent states ¢,(; @, A,) is generated by
translations. The infinitesimal translation rep-
resents a Goldstone mode (GM)

3p,(& a,A )
5 4_’)\—0' ¢T 3,5 b
with eigenvalue A =0. Thus, one eigenfunction of
(2.3) is always known, and is obtained directly
from the nonuniform solution ¢, without solving
the eigenvalue equation (2.3)

2. Periodicity of the TW state

The operator I:(_g,.(l;';a, A;), @) has at least the
symmetry of the TW ¢,. I ¢, is periodic with
period A, i.e., invariant under the discrete group
{T,} of translations nA, L(¢,) is at least invariant

under {T,}, and under certain conditions even un-
der the higher group {T,,} of translations nA/m .
Therefore, the Bloch theorem applies: The eigen-
functions have the form

69 (£) =u »(£) exp(igt),
with
u (& +A/m) =u 5 (£),

and the eigenvalues of Eq. (2.3) are multivalued
functions (g, @) of the reduced wave vector over
the Brillouin zone (BZ) -mn/A < q <mu/A.

3. Zero-amplitude result

The bifurcation analysis rests on the assumption
that the amplitude A of ¢, can be used as expan-
sion parameter which implies A -0, i.e., ¢ ¢,
as a—a,. Therefore, at bifurcation, the spectrum
A(g, &) =1,(g) is determined by the spectrum w,(q)
of the uniform state at @ =q, via

Ap(q) ==[w,(Q) -u,Q],

where @ =g +K, and K is a reciprocal lattice vec-
tor. Thus, the TW state bifurcating at o, >, is
at bifurcation unstable against all modes which
have become undamped between «, and @,. These
modes may constitute one or several unstable
branches in the BZ.

4. Noncrossing rule

For a general g in the BZ, no crossing of eigen-
values can occur with increasing A. At the sym-
metry points ¢ =0 and g =+ mua/A the noncrossing
rule holds only for eigenvalues belonging to eigen-
functions with the same transformation behavior.

5. Perturbation theory

The curvature of the A(g) curve near a symmetry
point may be obtained from k -  perturbation
theory. This is a standard procedure in band-
structure calculations?® needing no further com-
ment, and we will give the corresponding results
without explicit demonstration.

D. Secondary bifurcation of doubly periodic states

Consider a stable TW state ¢, (¢; @,A,). The
discussion of bifurcation from this state (“sec-
ondary” bifurcation) proceeds along the same
lines as that of the primary bifurcation from the
uniform state considered in Sec. I. The stability
limit o/®(a,) with respect to ordinary modes is
given by

minRex, (g, 0?(a,)) =0. (2.4)
For hydrodynamic modes and the Goldstone mode,
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Rexr, (g, @) has to be replaced by the coefficient of
the leading term of Rex, (g, @?) in powers g or

q- q_GM, respectively. The undamping of a normal
mode at @ =a®, g =42 outside the stability range
will give rise to the bifurcation of a doubly peri-
odic state

g_’z(x, t; a, o), o) = (_bz(x —u,t, X = Upl; @, of), o)),
with
@28, +u,A, £; +usM,; @) =¢,(£), £y; @),

where the second period A, and the corresponding
velocity u, are determined at bifurcation by

Ay =21/4?, uP=u +Imr (q,, o@)/q?. (2.5)

Since all periodic TW states ¢.(£; @, ;) with
A,#2m/q, are unstable against at least one band
of modes in the limit A -0, stabilization of such
a state above a critical amplitude A it requires

this branch A, (g; @, A,) to cross the imaginary axis.

Thus, there always exists a range of amplitudes
below A «it where continuous bifurcation of doubly
periodic states occurs. This behavior is illustra-
ted in Fig. 5 for the case that L is invariant under
{T ).} so that the BZ has extension —2r/A < g'< 21/
A and the GM lies at the edge of the BZ. For A
-0, the state is unstable against the lowest band
1, (q) [Fig. 5(a)]. As A increases towards A i,
Rex,(g) has to intersect the A =0 line [Fig. 5(b)],
in order to become positive in the whole BZ ex-
cept at g, for A>A ., [Fig. 5(c)].

The same type of arguments may be repeated
for the stability of doubly periodic states leading
to tertiary bifurcation of triply periodic states,
etc. It is a very interesting problem under what
conditions a bifurcation of a strongly nonperiodic
state (“spatial chaos”) may occur.

III. EXAMPLES

We illustrate the general considerations by three
specific examples described by a time-evolution
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equation of the form
3% _p(0)—p28 200
57 b(¢) Lryalbye o (3.1)

where the “flow vector” b(¢) is the derivative of

a potential V(¢). The bifurcation behavior is
found to depend in an essential way on the sym-
metry properties of V(¢). We shall supplement
the general considerations by studying the “phase
portrait” (“characteristics”) of the TW states

¢r (&), £=x-ut, inthe (¢, p =d¢/dt) plane (“phase
plane”), given by

_3%’=4,’ (3.2a)
Z=b(@) 40 -uy. (3.2b)

A. One-component field without internal symmetry

As a first example, we study a field ¢ with the
flow

aV
b(p) =ag¢ — ¢? -Y¢3=—8—<—¢> (3.3)
derived from a (2-3-4) potential
V(p)==3 ag® +5 ¢° +5y ¢t (3.4)

without any internal symmetry. Such a flow has
various applications. We mention here the con-
nection to current instabilities in semiconduc-
tors?* where ¢ « excess field (deviation from uni-
form electric field) in the sample, a« total cur-
rent through the sample, and v is the drift ve-
locity of the carriers. The flow [Eq. (3.3)] is
also found in the driven and damped sine-Gordon
chain, when an expansion is performed around
one of the stable uniform states. Such an expan-
sion is particularly useful for driving fields close
to the amplitude of the periodic potential.?%2”

For simplicity, we study the casey =0, although
in this case Eq. (3.1) does have an additional sym-
metry, apart from translational invariance with
respect to x and ¢: It is also left invariant by the
transformation ¢~a - ¢.

! % ta)! ! *a (b)! ! % e

! ' ! ) ! ! '

| | | i ! |

i , N i i I | i

| 4 AN 1 | | | |

~ = i i ; !

NN e i P9 i |9

S i [ ) ¥ I i i
_2x 2r _2x bITh 2w 2w 2r

A A A A A A

FIG. 5. Change of stability of a TW with period A, #2x/g. and bifurcation of a doubly periodic TW. The spectrum of
the TW is shown for three different amplitudes: (a) in the limit of vanishing amplitude the spectrum of the TW (heavy
line) approaches the spectrum of the unstable uniform state (broken lines), (b) for amplitudes A in a range below A ;,
part of the lowest band has become stable, (c) for amplitudes A >4, the TW is stable. In the range of amplitudes
where the lowest band intersects the A= 0 line at the wave vectors +¢ % a family of doubly periodic TW’s with periods
A{D'= A and AP =21/¢{? bifurcates from the singly periodic TW’s with period A.
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Equation (3.1) then has two uniform stationary
solutions =0 and ¢®=a. Because of the sym-
metry mentioned, it is sufficient to study ¢{.

Its normal-mode frequencies are

w(g) =vg +ia ~iq®. (3.5)

Thus, ¢{ is stable for o <0 and becomes unstable
at o, =0 against a soft g, =0 relaxation mode,
giving rise to the bifurcation of the uniform state
¢® =@ which is stable for a>0 (“interchange of
stability””). The bifurcation is normal with bifur-
cation exponent » =1. Successive undamping of
45 #0 modes along the bifurcation line g, = a2
generates by normal bifurcation with bifurcation
exponent » =2 a family of periodic TW states
¢.(8; @, @), with period A,=2r/g, traveling with
u=v. In the limit @, =0 one obtains a solitary
wave emerging from and returning to the uniform
state ¢ =a. In addition, there bifurcates at
=0 a family of solitary states with velocities
ranging from u =—« to # =+, which are all un-
stable because they connect the state ¢ with the
unstable state ¢{V=0.

These statements can be confirmed by studying
the phase portrait (3.2). For « =v, the character-
istics ¥ =y(¢) are given by

L1y2=V(p)+C == a¢®+5¢°+C, C=0 (3.6)

which are shown in Fig. 6. At C =0* one has the
bifurcating periodic zero-amplitude solution, with
period A, =2r/a?. For 0<C <a3/6, one finds
periodic solutions of increasing amplitude, with
periods increasing from A =A, to A ==. At C =a%/
6, one has the uniform state ¢ and a solitary
state emerging from and returning to ¢#. For C
>a%/6, all TW solutions are unbounded. For u#uv,
no periodic solutions exist. The only bounded so-
lutions are solitary states connecting ¢2 with the

FIG. 6. Phase portrait of the flow [Eq. (3.3)] as de- .
termined by Eq. (3.6). The family of periodic TW’s
(closed curves around the unstable uniform state ¢§”= 0)
is separated by a solitary solution (emerging from and
returning to ¢{¥ =) from unbounded TW's (indicated
by broken lines).

unstable state ¢{v.

We focus our attention on the periodic TW states
or(¢; 0, 0,) with u =v. Their stability is deter-
mined by the spectrum of the operator

I:=-E‘§—a+2¢,.(§;a, a,). 3.7

Since [ is Hermitian, it has only real eigenvalues
A. The state ¢,(¢; @, @,) is invariant under the
translation group T,, and so is the operator (3.7).
Therefore, the BZ is (~n/A,n/A), and the GM
occurs at ¢ =0 (Fig. 7). The spectrum A =- a, +¢°
of the zero-amplitude solution @ =a, +0 contains
two unstable bands (broken lines in Fig. 7). With
increasing amplitude of ¢, at fixed a,, i.e., fixed
period A =A, [path A in Fig. 1(a)], the BZ remains
unchanged, and gaps develop at ¢=0 and g=x71/A,
(full lines in Fig. 7). Since there remains no sym-
metry in ¢, other than T,, all eigenfunctions be-
long to the unit representation of the small group
even at ¢=0, and the lowest band A,(g) cannot
cross the GM fixed at g =) =0. Therefore, all
periodic TW states with period A <~ are unstable
against at least part of the band r,(q).

If we follow the spectrum at fixed value @ of the
bifurcation parameter (path B in Fig. 3), the peri-
od A(a,) increases and the BZ shrinks with in-
creasing amplitude. For o, + @, we approach the
solitary state which has a discrete spectrum. It
contains one negative eigenvalue which again can-
not cross the GM at A =0, ¢=0. Thus, also the
solitary state is unstable, but only against one dis-
crete mode. In the current-instability case, this
instability may be removed by coupling the sample
to an external circuit with sufficiently low imped-
ance, such that the solitary state can, in fact, be
stabilized.?* In the driven and damped sine-Gor-
don chain the solitary state corresponds to the

.critical nucleus for the creation of a kink-antikink

pair.2®

4 A
FIG. 7. Spectrum of the unstable state ¢’ =0 (broken
lines) and of a periodic TW with period A for the flow
(3.3). The Brillouin zone (BZ) has extension 2r/A, and
the Goldstone mode (GM) lies in the center of the BZ in
the second-lowest band.
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B. One-component field with reflection symmetry

As a second example, we consider a field ¢ with
flow

vV
b(¢)=a¢-¢3=-5—5 (3.8)
determined by a (2-4)-potential
V(p)==% ad®+3 ¢%, (3.9)

with reflection symmetry ¢ — — ¢. The uniform
stationary state ¢{=0 has a spectrum of normal-
mode frequencies

(3.10)

Its softening at a,=0, g, =0 leads to the bifurcation
of a pair of stable uniform stationary states ¢&+¥
=% a‘/z, and with increasing a along the bifurcation
line a =g2 to the bifurcation of a family of periodic
TW states ¢, (£; @, A) with period A, traveling with
u =y. The bifurcation is normal and the bifurca-
tion exponent is » =2 for both the uniform and the
nomuniform states. This family of periodic states
has as its limit for A -« a pair of solitary states
connecting ¢® with ¢, In addition, there occurs
again at o =0 a bifurcation of solitary TW states,
with ##v connecting ¢® or ¢ with the unstable
state ¢{M.

The phase portrait of the TW states withu =v is
shown in Fig. 8. The characteristics y =y(¢) are
determined by

w(q) =vg +ia —ig®.

(3.11)

At C =0* one has the periodic zero-amplitude so-

lution with period A, =27/a2. For 0<C <0?/4 one
finds periodic solutions with increasing amplitude
with periods increasing from A =A, to A =o. At

C =0a?/4 one has the pair of uniform states ¢2:%

P =V(p)+C==Fa¢’+i ¢*+C, C=>0.

FIG, 8. Phase portrait of the flow [Eq. (3.8)] as de-
termined by Eq. (3.11). The family of periodic TW’s
(closed curves around the unstable uniform state Qf}) =Q)
is separated by two solitary solutions (connecting the two
stable uniform states ¢ >¥=+va) from unbounded states
(indicated by broken lines).

and a pair of solitary states connecting ¢§2’ with
¢® . For C>a?/4, all solutions are unbounded.
For u #v, the only bounded solutions are solitary
states connecting ¢@ or ¢® with the unstable state
L.

The stability of the periodic TW states ¢, (£; @, A)
is determined by the spectrum of the operator

B=mt 0436265 0,0). (3.12)

dt
Again, L is Hermitian and thus has only real
eigenvalues. The periodic states have the sym-
metry ¢n (& +A/2)=~-¢,(£). Since L is even in
¢r, it is invariant under T,,. The BZ is (- 271/
A, 27/A), the GM lies at the BZ boundary, and the
spectrum of the zero-amplitude solution contains
one unstable band A ,(q) (Fig. 9). Now, this lowest
band is not pinned to negative values by the GM, -
but could, in principle move up to positive values
above a critical amplitude of ¢,. We have there-
fore performed a k - p. perturbation expansion®s
around the GM which shows that the curvature of
A, (@) at g =gy =27/A remains negative for large
amplitudes. For asymptotically large A, we find

1,(9) =—120A exp[- A(a/2)"2)(g -20/A¥.  (3.13)

Thus, also in this case all periodic states are un-
stable against at least part of the band A,(g). The
solitary states connecting ¢® with ¢{), on the
other hand, have no negative eigenvalue and are,
therefore stable

Actually, in both cases in Secs. IITA and ITII B,
the same results could have been obtained by
making use of the fact that the operators (3.7) and
(3.12) are of the Sturm-Liouville type.?®* We em-
phasize, however, that our approach is more gen-
eral and applies also to operators which are not
of the Sturm-Liouville type.

N
/oM oM
lg— ~
|\\ A e
~

. o d

I S~ 7 |
.27 2

A A

FIG. 9. Spectrum of the unstable uniform state ¢ ¥ =0
(broken lines) and of a TW with period A for the flow
(3.8). The Brillouin zone (BZ) has extension 47/A, and
the Goldstone mode (GM) lies at the boundary of the BZ
and belongs to the lowest band.
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C. Two-component field with continuous symmetry

As a third example, we study a complex field ¢
with flow

b(¢)=a¢—|¢|2¢=-§gr, a real (3.14)
derived from a potential
Vip)=—3a|¢|?+3|¢|*, (3.15)

which is invariant under the continuous group of
rotations and reflections in the complex ¢ plane.
In this case, the time-evolution equation (3.1) is
known as “time-dependent Ginsburg-Landau equa-
tion.” It describes with v =0 the onset of convec-
tion in the Rayleigh-Bénard instability®':2° and
with v =group velocity of electromagnetic waves
the onset of coherent laser action at the laser
threshold,'*'?® as well as chemical instabilities.??
It is further related to the dynamics of the super-
conducting phase in thin wires.30732

The uniform stationary state ¢{=0 has a spec-
trum of two degenerate normal modes

w(g) =vg +ia -ig?, (3.16)

which soften at @ =0, ¢ =0. These modes may be
taken as an amplitude mode (Red¢ and Imb6¢ in
phase) and a phase mode (Reb¢ and Imd¢ by 7/2
out of phase). Because of the continuous sym-
metry, there now occurs a bifurcation (normal »
=2) of a contimuous set of uniform stationary states

ds(a, 6,) =V exp(i6,), (3.17)

which are stable with respect to radial variations
and neutral with respect to azimuthal variations.

Nonuniform TW states &, (x —ut) are expressed in
terms of amplitude R(£) and phase 6(¢),

0.(£)=R(E)expi6(¢), R, 6 real. (3.18)
One finds from (3.1),
a% do dRdo _
R;i?—+(u_v)REE—+2EdT—O, (3.19a)

2
% +(u_v)d% _R(Z_z) +aGR —R*=0. (3.19b)

For u=v, Eq. (3.19a) yields the first integral

J=R? i =const, (3.20a)

dg
and Eq. (3.19b) can also be integrated yielding

1 ‘ﬂ% 2 1 J2 1 2,1p4

(X)) =21 L 3.20b
Z(ds) 5 gF 2 OR®+iR%+C. ( )
Equations (3.20a) and (3.20b) represent the phase
portrait in the coordinates (R, dR/dkt, J) which is
shown in Fig. 10. For u #v, there exists only un-
bounded solutions except a set of solitary states

IR

dR/dE

Al
24NN

R
FIG. 10. Phase portrait of the TW’ s of the Ginzburg-
Landau flow [ Eq. (3.14)] as determined by Eq. (3.19).
In the plane J = 0 the protrait is identical with Fig. 8.
The heavy broken line represents the rolls. Each plane
J = const<J  contains a stable and an unstable roll.
Around the unstable roll we find doubly periodic waves
which are separated from unbounded states by a solitary
solution emerging from and returning to a stable roll.

connecting ¢,(a, 6,) with the unstable state ¢’ =0.

In the (J =0) plane, the solutions are periodic
amplitude waves ®@)(¢; o, A, 0,) with period A as
in Eq. (3.11), apart from an arbitrary constant
phase factor exp(ig,). (In this case it is more con-
venient to return to Cartesian components, ¢ = ¢’
+i¢’’, in order to avoid the phase jumps of 7 at
the zeros of R) They bifurcate due to the undamp-
ing of ¢ #0 amplitude modes of the uniform sta-
tionary state ¢ along the bifurcation line a =¢2.
This family of solutions has as its limit for g—0
a set of solitary states (one for each 9,) connect-
ing ¢,(a, 6,) with - ¢,(a, 6,) (Fig. 10). The bifur-
cation is normal with bifurcation exponent » =2.

The undamping of ¢ #0 phase modes (Re6¢ and
Imd¢ by 7/2 out of phase) of the uniform station-
ary state ¢{ gives rise to the bifurcation of a
family of constant-amplitude TW solutions

LUE; o, , 0,) = (o —k2)2 expli(kE +6,)],

2

RE)=(a =k, 0(E) =kE +6,, !
such that

J=k(a -k*)=+R*(ac -R?)", (3.22)

=1 (@ =k%)(a +3k?) =1 R?(4a - 3R?).

These states describe the rolls in the Bénard prob-
lem and the coherent waves in the laser. The bi-
furcation is again normal with bifurcation expon-
ent » =2. For fixed a> a, =k?, the curve |J(R)|

has a maximum at R = (2a/3) of height J, = (4a3/
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27)”2, corresponding to a roll of wave number &,
=Ya/3. For every value of J with |J| <J there
exist two rolls, a large-amplitude roll with wave
number %,(J, @) <k, which will be shown to be
stable, and a small-amplitude roll with wave num-
ber k,(J, @)>k, which will be shown to be unstable
(Fig. 10).

From every unstable roll there bifurcates a
family of doubly periodic solutions (see Fig. 10),
as will be further discussed below [Eq. (3.35)].
Each of these families hasas its limit a solitary so-
lution starting from and returning to the stable
roll belonging to the same value of J. These sol-
itary solutions correspond to saddle-point con-
figurations in transitions changing the wave num-
ber of the rolls.’!

The linearized time-evolution equation for the
perturbation 6¢(%, t) of a TW state has the form

6d>(£ t) ( ST - 2R? 5¢) R%?95p*

=—16¢, (3.23)

with

N 2
L =—:T—oz+2R2 +R2% K | (3.24)

where K is the operator of complex conjugation.
Thus, the operator L contains linear and anti-
linear operators. It is most convenient to rep-
resent the perturbation 6¢ =7 +is as a two-com-
‘ponent spinor

8¢ =(Z> (3.25)

with real components , s, such that multiplica-
tion by a complex constant ¢ =a +ib is represented
by the operator ¢ =ai —1ibo,, and the operator L
is represented by the real hnear Hermitian opera-
tor

. 92 2\3

L= (— Y a +2R >1

+R% , cos20 +R%0, sin 26, (3.26)

where o,,0,,0, are the Pauli matrices. Lis
equivalent to the Hamiltonian of an S =% particle
in a potential V =~ o +2R? and a field B=
—R?(sin24, 0, cos26) in spin space. The local o,
direction may be turned into the direction of B by
the real unitary transformation

0= exp(ieoy)(:)

7 cosf +s sind (
B -7 sinf +s cosé N

<

). (3.27)

m

The transformed operator
L= exp(i@oy)I: exp(—i60,)

depends only on the derivatives of the phase 6(£)
which may be expressed by Eq. (3.20a) in terms
of J and R,

(3.28)

We now discuss the spectral properties of this
operator in the various states.

The uniform stationary states ¢,(a, 90) Eq.
(3.17), have spectra

Mg =2a+4?, (3.29a)
for the amplitude modes and
A(9) =47, (3.29b)

for the phase modes. 1,(0)=0 is the GM which
restores the broken rotational symmetry.

For the constant-phase amplitude waves
& A)(&;0, A, 6,) in the (J =0) plane, the operator L
is invariant under T,/2, and the BZ is (-27/A,
27/A). The eigenvalue problem decouples into two
independent equations for the amplitude modes
(r, 0) and the phase modes (0, ). The amplitude
modes have a potential — o +3R?, and their spec-
trum A“)g) is identical with that of Eq. (3.12).
The phase modes with spectrum r®’(g) have a
potential — @ +R?, i.e., the periodic potential R?
splits the twofold degenerate modes of the uniform
stationary state ¢{) in such a way that A“)(q)
22€)q). Since the states® {)(£;a, A, 6,) break the
translational and the rotational symmetry sepa-
rately, there occur two GM’s. The lowest branch
of the amplitude modes contains the GM

_om 09
’VGM

Y I (3.30)

90=0

restoring the translational symmetry, and the
second branch of the phase modes contains the GM

e - 18
rsM=0, sSM= T :9

=‘P(f")(§)|eo=o (3.31)

restoring the rotational symmetry. Both GM’s
occur at the edge of the BZ, q=2n/A (Fig. 11).
Thus, the constant-phase amplitude waves are
unstable against both a branch of amplitude modes
and a branch of phase modes. The solitary state
obtained in the limit A -~ has one negative eigen-
value 1) <0 belonging to a phase mode. The GM
(3.31) has one node, and corresponds therefore to
the first excited state of the phase modes, where-
as (3.30) is nodeless and represents the ground
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FIG, 11. Spectrum of the unstable state #1’ =0 of
a periodic TW state of the flow [ Eq. (3.14)]. For the
state ¢£‘)= 0, amplitude and phase modes are degenerate
(thin broken line). The spectrum of a periodic TW con-
sists of bands of amplitude modes (heavy lines) and of
phase modes (heavy broken lines). The BZ has extension
4r/A, The amplitude Goldstone mode is at the edge of
the BZ and belongs to the lowest amplitude band (see
also Fig. 9). The phase Goldstone mode is also at the
edge of the BZ but belongs to the second-lowest phase
band.

state of the amplitude modes.

For the constant-amplitude states #£)(¢; o, k)
Eq. (3.21), the operator L is still translationally
invariant. The eigenmodes are coupled amplitude
and phase modes with eigenvalues3?

Ai(g) =a =k +g2+ [(a - R2)? +4R32 ]2, (3.32)

For these states, a translation A¢ can be compen-
sated by a rotation A9 =-PRA%, i.e., they are still
invariant under a continuous group consisting of
such combined transformations. Therefore, there
exists only one GM which occurs on the A_ branch
at ¢ =0. One finds for small q,

A_(q) =[(a = 3R2)(a +k?)]g? +O(q?). (3.33)

The branch 1, (¢) is positive for all ¢ and a >,
=k? the branch x_(q) is positive for all g and
a>oa, =3k% but is negative for small ¢ and o, > o
>a, (Fig. 12). Thus, the large-amplitude rolls
(a>ay) are stable, and the small-amplitude rolls
(ag>a>a,) are unstable againt long-wavelength
perturbations. This stability boundary a, =3k? is
known as the “Eckhaus instability.”3

For the unstable rolls (a, > a > a,) with wave
number % =k,(J, @), the eigenvalue A =0 is degen-
erate: In addition to the GM at ¢ =0 there occur

two A =0 modes at
q=qP=+[2(3k? - a)]*2. (3.34)

These give rise to a secondary bifurcation (normal,
r =2) of a family of doubly periodic TW -states of
the form

PNE; ALK, A, 6,) =R (&) exp[i(K £ +0(¢) +0,)],

(3.35)
R(E+A)=R(£), 6(t+A)=0(t),

[

A(a)

Aelq)

\ e

(2)

g d

FIG, 12, Spectrum of an unstable (small amplitude)
roll according to Eq. (3.32). In addition to the Goldstone
mode of the roll located at ¢ = 0 there are two eigen-
functions with eigenvalue A =0 and wave vectors q{”
=2[2(3k%-a)]V/?, value  is the wave vector of the
roll. The undamping of these additional modes gives
rise to secondary bifurcation of doubly periodic solutions
around the unstable roll (see Fig. 10).

which have already been included in Fig. 10. Here,
A and K depend on the amplitude A of the periodic
part of R: A(A;J, @),K(A;J, @). For J+0 and

A -0 one has A = 21/¢?, K ~k,(J, @). For A ap-
proaching a maximum value, one obtains a soli-
tary solution with A -« ,K -k (J, @). For J-0,

K -0, the state @(¢; o,K, A, 6,) becomes singly

_ periodicand coincides with the state ®#(¢; @, 2A, 6,)

with a period twice that of the amplitude R (£), as
follows from continuing &%’ in the form (3.18),
with 6(£) =6, in the first half and §(£) =0, +7 in the
second half of each period. This can also be seen
by comparing the bifurcation wave numbers of the
two states: From (3.16) we find ¢’=va, where-
as from (3.34) one obtains with the help of (3.22)
for J -0 the value ¢ =2Va.

For these states #@(t; a,K, A, 6,), L is invariant
under T,, and the BZ is (—=n/A,n/A). Since now
the continuous symmetry is completely broken,
there occur two GM’s

Fom =B con_p (Q +Z—z) (3.36)

restoring the translational symmetry, and

FSM=0, SM=R

(3.37)

restoring the rotational symmetry, both at ¢ =0.
Figures 13(a) and 13(b) show two possibilities for
the spectrum of these doubly periodic states.

The broken lines represent the spectrum at bifur-
cation, which has threefold degeneracy at A =q =0.
Two of these eigenvalues belong to the GM’s[(3.36)
and (3.37)], the third one A, moves away from A,
=0 with increasing amplitude. Figures 13(a) and
13(b) correspond to the two cases A;<0 and A,>0,
respectively. The corresponding mode (7, 3;) be-
longs to a different representation as the two GM’s,
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FIG. 13. Spectrum of an unstable roll (broken line) and
of a doubly periodic solution (heavy lines). The Brillouin
zone (BZ) has extension A=271/¢{? ., Two Goldstone
modes (GM; and GM,) corresponding to the two periods
of the solution are located at A = 0, ¢ =0 in the center of
the BZ. The third A= 0 mode of the uniform unstable
state acquires a gap which could open either (a) above
A=0 or (b) below A= 0,

and A, may therefore cross the value 1, =0, i.e.,
one may have a transition from the situation of

Fig. 13(a) to that of Fig. 13(b). In any case, the
small-amplitude states ¢ are unstable. Infor-
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mation on the stability for larger amplitudes could,
in principle, be obtained from a k - 5 perturbation
calculation for the curvature of the GM’s at ¢ =0.
However, the solitary state has already been shown
to be unstable.?! This suggests that one has for
large amplitudes the situation of Fig. 13(b) which
would render all doubly periodic states unstable.
For J—0, the situation of Fig. 13(b) is consistent
with the results of Fig. 11 for all amplitudes. This
may be verified by replacing A in Fig. 11 by 2A
and shifting the origin to the edge of the BZ, as
required by the correspondence between the states
3?2 and ¢4) described above.
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In general, at a point @, on the stability boundary
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