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Known analytical results are used to analyze molecular-dynamics experiments of shock waves in the one-

dimensional Toda lattice. (This lattice provides a physically realistic model which contains the hard-sphere and

harmonic lattices as limits. ) Both explicit solutions and rather general theoretical properties have been employed.

The leading edge of the shock front is well represented quantitatively by a single isolated soliton. Once compression

is properly taken into account, the interior of the shock wave is accurately described by a slowly varying Toda wave

train. A sharp transition in the dynamical response exists as the shock strength passes a critical value; this critical

value is identified mathematically by the spectral transform for the Toda lattice. Finally, a local spectral transform is

used to measure, directly from the numerical data, the wave-train characteristics of the shock profile.

I. INTRODUCTION

When a piston pushes steadily at velocity u~ on a
real three-dimensional material, a shock wave
travels out in front of the piston at velocity u, .
Between the shock front and the piston, the densi-
ty, particle velocity, pressure, and internal
energy of the shocked material are higher than
in the unshocked material. The wave near the
center of the piston can be thought of as being
planar, or one dimensional, if edge effects are
negligible. In many c ircumstances this planar
shock wave has a steady profile which results
from an effective dissipation, whose origin is
particle flow in directions transverse to that of
propagation. A shock wave can also be smoothed

by dispersion, which does not, however, ensure
that the wave will be steady.

In a one-dimensional world, dissipation due to
transverse particle motion is, of course, im-
possible. Though dissipation could be introduced
by artificial viscous damping in order to make the
shock wave steady, dissipation is not necessary
to smooth a shock wave, since dispersion by it-
self wi11 do so. If a one-dimensional, dispersive
chain is nonlinear, the nonlinearity will act with

the dispersion to produce collective excitations
(solitons and soliton wave trains) which smooth
the shock wave and transport its energy down

the chain.
In this paper we study shock waves in a par-

ticular one-dimensional, dispersive, nonlinear
chain —the "Toda lattice. " For the Toda lattice,
analytical expressions are known for the solitons
and soliton wave trains. Furthermore, there
exists a nonlinear transformation from the posi-
tions and velocities of the particles in the chain

to these collective coordinates. We study the
structure of the Toda shock profile by using
analytical expressions for the solitons and soliton
wave trains, along with the theoretical trans-
formation to these collective excitations, to
analyze numerical representations of the shock
profile. The experimental data were obtained
from earlier molecular-dynamics computations. '2

We summarize our results in terms of three
regions of the shock profile: the shock front,
the rear of the shock profile near the piston, and
a transition region between the front and the rear.
(l) The entire shock profile may be described
as a slowly varying soliton wave train. (2) Near
the shock front, the solitons in the train are far
enough apart that they behave as isolated solitons.
For small values of the piston velocity, these
solitons are separating logarithmically with time;
for large values of the piston velocity, they are
locked in a very regular periodic profile. For
all values of the piston velocity, one formu-
la gives the speed of the shock front (speed of
the leading soliton) as a function of the piston
velocity (3) As .one moves through the transition
region from the front to the rear of the shock
wave, the local wave number increases to a value
of &, the highest wave number which the discrete
lattice can support. In this "binary" or "optical"
mode, the displacement of adjacent particles is
equal and opposite. This increase in the wave
number is rather gradual for small values of the
piston velocity, while it is very rapid (almost
immediate) for large values of the piston velocity.
Also, the lattice behind the shock front occupies
a length which is foreshortened by the distance
that the piston has traveled into the material.
This compression introduces a local pressure
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which must be taken into account in order to fit
the shock profile to a soliton wave train. (4) At
the reer of the shock near the piston, the lattice
is compressed and is in the binary mode for all
values of the piston velocity. For large values
of the piston velocity u~, the velocities of the
particles near the piston relax to a finite-ampli-
tude, steady oscillation about u~ as time in-
creases. For small values of the piston velocity,
these particles "thermalize" to zero temperature;
that is, the amplitude of the velocity oscillations
decays to zero as time increases according to a
t ' ' decay law. The numerical experiments indi-
cate a critical value of the piston velocity, , above
which the rear of the shock experiences steady,
nonthermalized oscillations and below which it
thermalizes. We establish the existence and exact
value of this critical piston velocity by using the
nonlinear transformation theory.

Because this paper is self-contained, it seems
appropriate to list explicitly those results which
we have not found in the literature, and hence
are presumably new: (1}The use of the mathe-
matics of the Toda lattice under time-independent
boundary conditions (solitons, soliton wave
trains, and the nonlinear transform) to analyze
and empirically fit time-dependent shock waves
on discrete chains, (2) the formula for fitting
shock speed as a function of piston velocity
for all values of this velocity, (3) the math-
ematical existence of a critical value for the
piston speed (as established by using the non-
linear transform appropriate to shock boundary
conditions), (4) the importance of the binary mode
and the limitation of long-wavelength modes to
the fronts of weak shock waves, and (5) the use
of the spectral transform to measure numerically
the soliton and soliton wave-train content of the
shock profile.

We emphasize several points. (1) For most
values of the piston speed, the shock profile is
predominantly in the binary mode. Since, in this
mode, the displacement of adjacent particles is
equal and opposite, the lattice can be replaced
by a two-particle lattice which is repeated
periodically. This "binary approximation" is
very easy to use. Its range of applicability is
directly opposite to that of the "continuum" or
"long-wavelength" approximation in which the
lattice difference equations are replaced by par-
tial differential equations. For shock waves on a
lattice, this long-wavelength approximation is of
limited use because of the predominance of the
short-wavelength optical mode. In the text we
discuss the validity of these various approxima-
tions as they apply to shock waves on the chain.

(2) We emphasize that we are discussing shock

waves in conservative systems, and thus a con-
servative mechanism for the smoothing of shock
waves. On a one-dimensional chain, dispersion
causes the front to spread, while nonlinearity
(if present) restrains this spreading. These two
mechanisms (dispersion and nonlinearity} acting
together produce solitons. The leading soliton
defines the shock front, and the shock profile
is a soliton wave train. This conservative
mechanism for the smoothing of shock waves
should be contrasted with the more familiar
mechanism of (weak) dissipation. The two dif-
ferent mechanisms produce shock profiles with
different structures and shock fronts urhich move
at different speeds as a function of the piston
velocity. This fact is discussed in some detail
in the text, both with respect to shock waves on
discrete chains and in continuum systems such
as the Korteweg-de Vries (KdV) system.

(3) When describing basic physics, dissipation
is not present. Dissipation is introduced when the
full system is replaced by a small subsystem,
which then interacts with its environment through
a dissipative mechanism. For example, a shock
wave in a three-dimensional system is approxi-
mated as one dimensional; in the process, de-
grees of freedom which are transverse to the
shock direction are replaced by some form of
weak dissipation. Our results apply only when
such dissipation can be ignored.

The results which have just been summarized
are established in Secs. V and VI. In Sec. V, we
take analytical expressions for solitons and soli-
ton wave trains and fit them to the shock profile,
thereby interpreting the numerical observations
in terms of fundamental nonlinear excitations.
We also examine the validity of the binary and
continuum approximations in different regions of
the shock profile. In Sec. VI, we use two forms
of the nonlinear transform to measure the actual
nonlinear excitations in the shock profile. In
Secs. II, III, and IV, we define the problem, fix
our notation, and summarize some mathematical
formulas.

II. DYNAMICS AND SHOCK-WAVE
BOUNDARY CONDITIONS

In this section, the shock-wave problem is
formulated with special attention given to (1) the
meaning of two different boundary conditions that
generate shock waves, (2) the significance of two
different sets of units, and (3) the originof an ef-
fective pressure in the interior of the shock wave.
Consider a one-dimensional, monatomic chain of
N particles, each of mass m, interacting with
nearest neighbors only through a pairwise addi-
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tive potential P. The position of particie u at
time t is denoted by x„(t), its velocity by x'„(t). The
classical Hamiltonian II is given by

N

Jf = g —,'mx'„(t)+ P y(x„-x„,}, (2.1)
n=y n=g

from which the classical equations of motion
are obtained

mx„(t}=- =y'(x„„—x„)—y'(x„—x„,).
+n

that moves out in front of the piston at shock
velocity u, .

In actual symmetric-impact shock-wave experi-
ments, two flying plates approach each other at
velocities +u~ and collide, sending shock waves
out from their interface at velocities +u, . This
experimental situation can be modeled by shrink-
ing peri-odic boundary conditions (PBC). Con-
sider an N-particle lattice whose length I, is
forced to shrink at a constant rate,

(2.2} L(t}=Na, —2u~ t (2.5)

x„(0)=uaa,

x„(0)=O.
(2.8}

The equilibrium lattice spacing (ao at zero pres-
sure and temperature) is defined by

y'(a, ) =0.
Next we describe the two boundary conditions

for generating shock waves. The simplest way
to generate a shock wave in a one-dimensional
chain is to impose piston-shock boundary condi-
tions. The special particle n =0 is assumed to
be infinitely massive, moving steadily at piston
velocity u~:

x,(t) =u, t. (2.4)

As the piston particle approaches its neighbor
(n =1), the two "collide, " initiating a shock wave

In our shock-wave studies, quiescent initial
conditions have been assumed; that is, the initial
temperature and pressure are zero and particles
1 (n (N are initially located motionless at their
lattice sites:

This shrinking generates two shock waves moving
into the interior, one from each boundary. If this
N-particle lattice is periodically repeated,

x„,„(t)=x„(t)+L,(t), (2.6)

then each interface (for example, between parti-
cles n =N and N +1, or rather, its periodic image
u =1}resembles the interface in the symmetric-
impact experiment.

Because the shrinking-PBC shock-wave scheme
is closer to the way real-world shock-wave ex-
periments are performed, we prefer it to the
piston scheme; the only significant differences
observed in computer experiments are a quicker
approach to the asymptotic shock-front shape and
a slower approach to the long-time thermalization
at the rear of the profile (near the "piston") for
the PBC compared to piston boundary conditions.
These differences arise from collisions of equal-
mass particles as contrasted with collisions be-
tween a particle and an infinitely massive piston.

If the spatial derivative of the pair potential is
expanded in a Taylor series, the equations of
motion become

mx„(t}=Q"(a~)[(»„„—x„-ao) —(x„—x„,—ao)]+—,
' Q"'(a,)[{x„„—x„—a~}S—(x„—x„,—ao}']

+, y (a,}[(x„„—x„-a,}'—(x„-x„,—a,)'] + ~ ~ ~

This equation helps to motivate the following development, which we outline here briefly.
The natural physical units used are the mass m, the distance aa (equilibrium lattice spacing), the time

a&0', where the fundamental harmonic frequency +0 is defined by m&asa= p (ao); the velocity co =aors (long-
wavelength harmonic sound speed), v =u~/co (the scaled piston velocity}, u =u, /c, (the scaled shock ve-
locity}, and the energy mc 0. (2.8}

The reduced variables and equations are-defined as follows: The time

s=ut, (2.9)

the displacement

)
x„(t)—x„(0) x„(t)

a& ao (2.10)
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the pair potential
4 (»)

0

the cubic anharmonicity
0"(s.)
yll(g )

the quartic anharmonicity

os ytle (c )
4 6 e'( ) '

and the equations of motion are

p„(s) = tt'(r„„—r„)—f'(r„-r„,}
=x„„—2r„+r„,—o.,[(r„„—r„)' —(r„—r„,)'] + o4 [(r„„—v„}'—(r„—r„,}] + ~ ~ ~ {2.11)

The initial conditions are

r„(0)=i'„(0)=0.

The boundary conditions are

v, {s)=vs (piston),

r„,„(s)=r,(s)- 2vs (PBC).

(2.12)

(2.13)

f„(s) P„(s)=exp(q„, —q„}
—exp(q. —q...).

The initial conditions are

q.(o) =P.(0) =o,

and the boundary conditions are

(2.20)

(2.21}

For our study, we have chosen a particular
pair potential, the Toda pair potential, ' which

can be written with 0. = a, as

q~(s} =2avs (piston),

q„,v(s) =q„(s)-4nvs (PBC).
(2.22}

g(r}=, [exp(- 2nr)+2nr 1]. - (2.16)

This potential smoothly interpolates between the
"harmonic" and "hard-sphere" potentials as the

anharmonicity parameter 0. runs from zero to
infinity.

For mathematical convenience, a further scal-
ing of the Toda equations can now be made; for
the displacement let

q„(s) =2ar„(s),
with the momentum given by

P,(s) =q,(s).

(2.16)

(2.1V)

The mathematical units and seduced equations
used in our analysis are the length aJ2a, the
velocity c,/2c. (piston velocity, 2au~/c, =2nv),
the energy mca~/4o. ', and the Toda potential

V(q) =exp(-q) +q —1.
The Hamiltonian is

(2.18)

a= g —,'P*„(s}
n=J

N

+ exp q„, —q„+q„-q„,—1 . (2.19}

The equations of motion are

mc'„ /» & (»y(x)=," exp —Sal ——&I +Sal ——& I
—SI,4n' &a, &. i,s,
(2.14)

or in reduced form,

[Equations (2.20), (2.21}, and (2.22} in these units
will be used in our analysis. ]

Notice that, in these mathematical units, no

parameters appear in the Toda potential nor in

the equations of motion. The one parameter, the
product av, appears only in the boundary con-
ditions. Another set of units exists in which the

unit of velocity is the piston velocity u~ and where
the one parameter av appears in the equations
of motion, but not in the boundary conditions.
Those units were used in the numerical computa-
tions. In both cases, however, it is clear that
particle-velocity histories, as functions of time s
or shock profiles as functions of space n, depend

only on the product ev, regardless of separate
variations in 0. or v. For example, the shock
velocity p =u, /c, is a function of the product av
only. This parametrization of profQes by ov
is possible for any three-parameter (energy
mc 0, length s~, anharmonicity o.) pair potential.

We close this section with a detailed discussion
of the compression of the lattice caused by a shock
wave. This compression is essential to the local
description of the dynamics in the interior of a
shock wave in a Toda chain, especially near the
piston. Consider a small chunk of Toda lattice
within the interior of the shock wave. This small
lattice is moving at an average velocity equal to
that of the piston u~ and with an average lattice
spacing compressed to a& &ao. The physical ori-
gin of this compression is clear —the shock front
and the piston particle move at different speeds.
If the shock front, moving at speed u„reaches
particle s at time t, then the compressed length
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occupied by the n shocked particles is

sam =(u, —u~)t.

Using u, t =nao and the strain $ defined by

$ =1 —a&/ao,

(2.23)

(2.24}

we find from Eq. (2.23) that the compression
strain due to the shock wave is

u V

us
(2.25)

where the second expression is in terms of the
scaled speeds v =uJc, and p = u/c~.

Next, we show there are two equivalent ways
to incorporate this compression into a model of
the small chunk of lattice, one through boundary
conditions and the second through a time scaling.
Suppose that lattice sites in a compressed chain
are given by

s = s exp(n(), (2.30)

so that d/ds =exp(n$)d/ds, the equations of mo-
tion for the small model lattice with compressed
lattice sites become

P."'(s) =exp(qA', —q."')—exp(q'."—q.",', ),

&a+sr=A + ~
(o) (o)

Alternatively, the effect of compression can be
put into the equations of motion by substitution of
the relationship between displacements measured
from uncompressed and compressed lattice sites
[Eq. (2.26)J

P(k)(s) exp(q(K) q(E) i2nt)
—exp(q„"' —qP, ', +2 n(}.

We now note the fact that when time is scaled ac-
cording to

or, in terms of the mathematical units,

q(o) q(c) (2.26)

The most natural expression of periodic boundary
conditions for the small model lattice is given by
the compressed lattice-site scheme,

q(4) q(C )
&n+ar = &n (2.2'l)

In the uncompressed lattice-site scheme, these
boundary conditions. become

0,+pp =0 (2.28)

where ihe lattice displacement s (negative for
positive compression} is

(2.28)

The equations of motion [Eq. (2.20)] for the small
model lattice with uncompressed lattice sites are

p' (s) =exp(q'" —q'") —exp(q'" —q",' )

subject to periodic boundary conditions [Eq.
(2.28)]:

Displacements from these compressed lattice
sites can then be expressed as

(s)
(g)
ft y

Co

where the actual positions of the particles x„are
independent of the chosen lattice-site scheme.
The relationship between displacements measured
from uncompressed and compressed lattice sites
is

~(o) ~(4)

subject to periodic boundary conditions [Eq.
(2.2V)]

4c) (c)
&n+ N

This is exactly the same form as for the $ =0
case. Thus, the effects of compression can be
taken into account in the Toda chain by putting
the compressional argplitude a$ either into the
boundary conditions via Eq. (2.28) or into ihe
equations of motion via the scaled time unit of
Eq. (2.30), a feat made possible only for the
exponential repulsive potential. We emphasize
that, for a shock wave, conservation of mass
gives for the compressional amplitude [see Eq.
(2.25)]

QV
(2.31)

which is a function only of shock strength Q. v.
Finally, the rescaling of time by Eq. (2.30) is
equivalent to rescaling the fundamental harmonic
frequency:

(u, = a), exp(ng}. (2.32)

III. SUMMARY OF NUMERICAL STUDIES

Shock waves in the Toda lattice have been stud-
ied by Holian and Straub' and by Straub, Holian,
and Petschek~ using the numerical method of
molecular dynamics, namely, solving the equa-
tions of motion subject to shrinkizg-periodic
boundary conditions for the Toda pair potential.
These boundary conditions simulate the symme-

This is an explicit statement of the quasiharmonic
theory of lattice dynamics for the Toda, or ex-
ponential, lattice under compression.
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t pact of two semi-infinite chains originallytric impac
moving a +a~, int + in that the periodic boundary be-
haves like the interface from which two shock
waves emerge, traveling at +N,. Figures 1-3
show the particle-velocity profiles, or time his-
tories, of a sequence of particles down the
initially quiescent chain, for three shock
strengths: av =0 (harmonic), av =0.525 (weakly
anharmonic) and av =52.5 (strongly anharmonic,
approaching the hard-rod, or one-dimensional
hard-spheres limit), respectively. In Table I
the salient features of these computer experi-
ments are summarized. No significant qualitative
differences in these observations are found if,
instead of the Toda potential, Lennard- Jones
(inverse-power) or Morse (exponential) potentials
are used.

At the front of the shock, the leading pulse in
the nonlinear cases approaches constant shape
(amplitude and width) and speed, while in the
linear case the pulse forever broadens due to
dispersion. The oscillations in the transition
region behind the front decay exponentially, but
at qualitatively different rates in the linear and

1 ear cases. in the linear chain e exponen-
rows liketial decay time, or shock thickness, grows e

t'+ due to linear dispersion, while in the non-
linear chains, the shock thickness, where most

ws like t andf the elastic energy is stored, grows e an
is, therefore, a constant fraction of shocke d

t 1 The initial oscillatory frequency ~,ma eria .
is determined from the arrival times o e irs
and second peaks in the shock wave. For the
linear lattice the peaks separate slowly with time

TODA CHAIN, PBC SHOCK, av = 0.525
2.0
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FIG. 2. Molecular-dyn~~ics particle-velocity prof&les
for a wea y armkl anh rmonic shock wave (O.v= 0.525) gen-
erated by shrinking-periodic boundary conditions.

thats = ~ot as the wave travels down the chain, so
For a weakly nonlinear sho

edwave ov= .( v =0.02) we have experimentally observe
an even slower spreading with time, so that
&u~/too-(inn) ' -(lns) ', confirming an earlier pre-
diction based on analysis of Korteweg-de Vries
(KdV) shock waves. ' For moderate-strength
shock waves (e.g., nv-0. 5), the temporal spread-
ing is o servbserved to be even slower than logari

ior ofmic, approaching the steady binary behavior o
very strong shock waves (av»1 .

The oscillations long after the shock wave hahas

2.0
HARMONIC CHAIN, PBC SHOCK, av = 0

I I I TODA CHAIN, PBC SHOCK, av= 52.5
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FIG. 1. Molecg)ar-d~~~ics particle-velocity profiles
(time histories) for a harmonic shock wave (a,v= 0) gen-
erated by shrinking-periodic boundary conditions.
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FIG. 3. Molecular-dynamics particle-velocity prof&les

crated by shrinking-periodic boundary conditions.
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TABLE I. Summary of molecular dynamics experiments in one-dimensional, nearest-
neighbor Toda chains.

Shock strengths

Initial pulse (copt =—n/p, n ~)

Amplitude, max(xggp)

Width, ~ (particles)

Speed, p=Q /cp

0,'v=0
(see Fig. 1)

Linear,
dispersive

1.3
-ni/3

(harmonic)

0 & G. v « 1
(see Fig. 2)

Soliton

(~ )
i/2

1 + Qv+r ~ r2

(continuum, KdV)

Qv» 1
(see Fig. 3)

Soliton

2n v/ln4e v

(binary)

Initial oscillatory envelope

Thickness, relaxation time

Frequency, coi/cop

Exponential
decay

i/3

Exponential
decay

-1/inn

(for O. v &0.1)

Weak exponential.
decay

2' v/ln4u v

(binary)

Final oscillations (cup t ~).

Amplitude, max(igg&} —1

Frequency, cu /(dp

Power-law
decay

(~ t) i/2

(harmonic)

Power -law
decay

(Mp t —n/p)

2 exp(a v/p, )

(quas }Lharmonic)

No decay,
steady oscillations

1 —1/z v

2~+ v/ln4n v

i/,
(binary)

passed, that is, at the ream of the profile near the
piston, show a transition with shock strength av
from dispersive harmonic behavior at ev =0 to
hard-rod binary-collision soliton behavior at
av =~. In the linear case shown in Fig. 1, the
long-time-tail (t '+) decay of a given particle's
velocity begins at t=0 when the shock wave is
initiated; in the nonlinear case shown in Fig. 2,
the shock front is much sharper so that the decay
starts at ruet= n/p, the arrival time of the shock
wave at particle m. For nv&1, the final ampli-
tude of oscillation damps down to zero and the
frequency ~ is equal to the maximum allowed in
the compressed chain by the quasiharmonic
theory. For av) 1, as shown clearly in Fig. 3,
the final amplitude is nonzero and the frequency
approaches that of binary collisions, which is
higher than the infinitesimal-amplitude quasi-
harmonic frequencies. Careful analysis of the
experimental time histories show that this
transition occurs sharply at the critical value
av =1.

Because of the importance of this critical
transition, we discuss it in more detail. The
long-time thermalization process was studied
experimentally' by measuring the second-order
cumulant of the velocity distribution, which be-
comes the thermodynamic temperature when the

system reaches equilibrium:

((»„—(x„),)'}, (3.1}n
Qp

Here the angular brackets indicate a time average
over several collision times, or oscillatory
periods, centered at time t:

~+i@I
(f& = — «'f(t'). (3.2)

T„(t) -=
—,'A'(t}, o.v«1

A'(~), o.v»1.
(3.3}

An approximate calculation of these time averages
allows us to relate the function T„ to the ampli-
tude A of the long-time oscillations in particle ve-
locity. For such a calculation, it is convenient
to choose some multiple of the long-time oscil-
latory period 2x/&u for the time interval r over
which to average [Eq. (3.2)j, and to treat the amp-
litude over this interval as essentially constant.
For very large values of o.v compared with unity,
the wave form for a long-time oscillatory velocity
is a square wave of amplitude A(~). For small
values of av compared with unity, the wave form
is sinusoidal with a slowly time-dependent ampli-
tude A (t). In these two limits, the second-order
cumulant is then computed to be
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The factor of & in the small av case is the result
of the time average of sin'~ t, while the factor
of unity in the large av case is due to the time
average of a square wave.

A numerical experiment for a PBC shock wave
at av =1.05 demonstrates the validity of this
relationship between "temperature" and ampli-
tude. The second-order cumulant was fit to high
accuracy by the form

lant of the velocity distribution

0, av«i

l!- 2A'(~), o.v»1.
(3.5)

T„(t}=e+ B
n

(3.4)

For av =1.05, A(~}=0.04'?, and since the wave
form is more nearly sinusoidal than square wave,
the av~1 form of Eq. (3.3) implies e =T„(~)
=0.0011. The consistency of these two measure-
ments confirms our notions on the relationship
of temperature to amplitude.

Furthermore, note from Eqs. (3.3)-(3.5), that
the nature of the long-time behavior of A(t)
changes dramatically at av =1:

This fit was made for long times after the arrival
time for the shock wave (eat„=n/?J. }, namely,
200«oo(t- t„)&1000. The values e =0.0011 and
B=1.09 were found. The final amplitude could
not be observed directly, even at these long
times; however, from observations of somewhat
larger av shocks, we have noticed that the final
amplitude can be fit to the following simple func-
tion with virtually no error:

0, av(1
(3.5)

1
1 —

y
cv&1 ~cv

Because the kurtosis deviates from zero in pro-
portion to the square of the temperature, it is
difficult to measure for av& 1; nevertheless,
for av=3, a significantly nonzero value of
C„(~)=- 0.11+0.01 was seen experimentally. We
therefore conclude from our analysis that shock
waves below the critical strength of av =1
thermalize to zero final temperature. On the
other hand, shock waves above the critical
strength reach a nonzero final temperature, but
do not thermalize, since the velocity distribution
is demonstrably non-Maxwellian.

The shrinking-PBC's are compared in Fig. 2
with the piston boundary conditions in Fig. 4 for
av =0.525. Notice that in the PBC experiment,
the shock front approaches its asymptotic form
sooner and that the coefficient of the long-time
oscillatory tail is much larger. In the piston ex-
periment the infinitely massive piston particle
does not pump up the leading soliton as fast and
allows the shocked material to equilibrate more
quickly than in the symmetric-impact PBC case.

TODA CHAIN, PISTON SHOCK, av= 0.525
2.0 p

I

)Io+( ), I
A(f) =&

+
(2 }|'s(f—t„}

+
~

oIP) 1

1.5—

)I
I

For shock waves below the critical length, the
oscillatory amplitude goes to zero with a t '~
long-time tail. Above the critical strength, the
amplitude approaches a constant with a different
long-time tail, namely, t

As shown in Ref. 2, thermalization or equili-
bration behind the shock front, requires that the
velocity distribution be Maxwellian (Gaussian),
in which case lhe fourth- and higher-order cumu-
lants are zero. Following the same approach that
led to Eq. (3.3), we may relate the oscillatory
amplitude to the kurtosis, or fourth-order cumu-

0.5

N& ~ I II
a I I

0 20

31 61 IOI

40 60 80
CUpf

FIG. 4. Molecular-dynamics particle-velocity profiles
for a weakly anharmonic shock wave (no= 0.525) gen-
erated by piston boundary conditions (compare with Fig.
2).
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IV. SPECIAL SIMPLIFIED MODELS

In this section, four simple models are pre-
sented which, under certain conditions, are ap-
plicable to various parts of the shock profile.
For example, the leading pulse at the shock front
ought to be describable by the first model con-
sidered, an isolated Toda soliton propagating
into an undisturbed lattice, with width and speed
fixed by the piston speed 2nv. Here mathematical
formulas for this and the other simple models
are presented. Where appropriate, der ivations
are given in the Appendices. (Data fitting, or
comparison of the predictions of these models
with experiment, is carried out in Sec. V. ) The
second model considered is the Toda periodic
wave train, which should be able to describe the
interior part of the shock wave. For weak shock
waves, the leading edge ought to be well repre-
sented by the third model, the long-wavelength
continuum limit. Two cases are discussed —the
Korteweg-de Vries and continuum steady-wave
solitons. For strong shock waves, the leading
edge should be well suited to the fourth model,
the binary-collision approximation, which should
also be useful for describing the final long-time
oscillatory state, regardless of shock strength.

A. Toda soliton

A soliton is a localized, steady, traveling-wave
excitation in a nonlinear lattice. For the Toda
chain, the analytical expression for the momen-
tum of an isolated Toda soliton is

P„(s)=2 sinh'y $coshy

+cosh [2y(n+ ps) +5]j '. (4.1)

B. Toda periodic wave train

The periodic wave-train solution for the Toda
lattice takes the analytical form

P„(s;k, &u) = —ln
d 9{z„;q}

ds ez „q
where k is the wave number (in units of 1/sa) and
ru is the frequency (in units of &uo) of the wave
train. The phase is

kn —sosz„= +5,

and the nonlinear dispersion relation among k,
v, and q is

=-4v lne z = ——, lnq q~jgz 2m

with the 8 function defined by the rapidly con-
vergent infinite series for 0 ~ q ~ 1:

e{z;q} = g (-1)"q~exp(2zinz) .

This periodic traveling wave can be considered
to be a three-parameter wave form pararneterized
by k, co, and the phase-centering parameter 5,
with the e-function amplitude parameter q deter-
mined by the dispersion relation. The phase
speed of the wave train is

jl = (al/k.

Near the harmonic limit, the wave form is best
written (using representations of the e function)
as

do

p„(s) =4~ g 1 „sin(z kl)
I, 1 —q

'

The Toda soliton is a two-parameter wave form
with parameter y fixing the amplitude, speed,
and width, and with parameter 5 merely centering
the initial location of the excitation. The ampli-
tude of the momentum pulse P„ is given by

x cos ks —(ds+ —+6 il
)

and the dispersion relation is then given by

(4.5)

A =2(coshy —1}. (4.2} &u=
~
2sin —

~

—2 g „cos(kl)2) g=, 1 —q"

sinhy (A +-,' A')'&

y in[1 +-,'A +(A +-,'A'pz]

The full width at half maximum (FWHM) is

(4.3}

Toda solitons can travel in either direction with
constant supersonic speed

(4.6)

As the amplitude parameter q-0, the harmonic
(Fourier) solution for a linear lattice is re-
covered:

k kP„(s)-4~qsin —cos ke —&us+ —+5
~2 2 )

cosh '{2+coshy} in[3+ —,'A +(8+3A+—,'A')'k)
y in[1 +zA+(A+~As} Z]

(4.4}

and

k
QP 2 Sin

2
'

The higher the amplitude of a Toda soliton, the
narrower it is and the faster it travels.

Near the soliton limit, an infinite-product repre-
sentation of the e function is conveaient. It gives
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P„(s}=2Q smhy

I
„{coshy +cosh [2y{»—y, s}+y -4@I]] '

(4.V)

and the dispersion relation is

2.0

OO -x/a

Q =(Q '+ 1
[sinh (y- 2/i) ]*)

vrhere the scaled parameters are

{4.8) 0

~ I.O

3

Q=-2&'{inq) '.
The phase velocity is noir vrritten

g = (u/k =Q/y .
Notice that except for constants, the representa-
tion in E]I. (4.'I} of the Toda periodic wave train
is a sum of Toda solitons [see Eq. (4.1)], one cen-
tered at y, and the rest translated by / periods
from y (4Q is the wave-train period). If the
period 4Q is allowed to go to infinity, keeping y
constant, thus isolating the solitons, the dis-
persion relation becomes

sinhp~

giving for the vrave form

0
0

ka0
FIG. 5. Dispersion curves for the decompressed Toda

chain: frequency cu versus wave number k at constant
amplitude parameter q (q = 0 at the harmonic limit, q = 1
at the soliton 1imit).

s'

q„(s)=- q(», s),

P„(s}- 2 s inh'y (cosh y +cosh [2y (» —p s) + y ]} ',
vrhieh is the single Toda soliton.

For a wave train on a compressed lattice, the
dispersion relation Eq. (4.8) becomes

Q =Q exp(o.'t'),

[compare with E]I. (4.32)]. The Toda dispersion
relation is shown in Fig. 5 as frequency versus
wave-number curves at constant amplitude pa-
rameter, for the uncompressed Toda chain. For
q& ~, the near-harmonic expression, Eq. (4.8),
is eomputationaBy more quickly convergent;
for q& —,', the near-soliton form, Eq. (5.'I} is
faster.

C. Continuum approximation

The discrete (integer) Lagrangian coordinate
labeling each mass point is now a continuous spa-
tial variable n. The displacement fieM does not
vary much from neighbor to neighbor, so that g
can be expanded in a Taylor series:

q(»+ I, s) =q{», s) +q'(», s)+-,' q" (», s)

+ ~6q '(», s}+.~ ~

The second-order, ordinary differential equations
of motion [Eq. (2.V)], can then be written as a
second-order, nonlinear, partial differential equa-
tion (retaining up to third degree in the displace-
ment field and fourth order in spatial derivatives,
i.e., quadratic anharmonicity and linear disper-
sion, respectively):

The third mathematical model is the long-wave-
length, or small-wave-number (h- 0) limit, where
exeitations span several particles and the exact
Toda equations can be replaced by a continuum
approximation. In this approximation displace-
ments form a continuum field in space ~ and time

In Appendix A, it is shomn that by including only
terms up to quadratic degree in the field q, the
long-wave, moderate-amplitude, right- running
solution to Eg, (4.9) satisfies the Korteweg-
de Vries (KdV) equation
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P+P + g4P +2PP

where the momentum field P is given by

p(n, s) -=q(n,s) ™p„(s) .

(4.10}

The nonlinear KdV equation supports a localized,
steady, traveling pulse, or KdV soliton'

in the discrete chain of particles. These occur
for the mode whose wavelength & =2 (i.e., k = &),
so that the displacement of adjacent particles is
equal and opposite. In this limit, the problem
reduces to a periodic, two-particle (binary)
system (N =2}, with periodic boundary conditions
given by Eq. (2.Ã):

p(n, s) =y'sech'[y(n —us}+5], (4.11) q„„(s)=q„(s). (4.19)
where the amplitude is

A =y2

the soliton speed is'

p, =1+-Ly'=1+CASA,

(4.12)

(4.13)

Here, for generality and convenience, the case
of a compressed lattice has been incorporated
into the scaled time s of Eq. (2.30). The equations
of motion [Eq. (2.20)] are then

q, (s) =exp(q, —q, }—exp(q, —q, )
and the FWHM is

ln(3+DES} ln(3+&8)
N =

y A
(4.14)

=- 2 sinh(q, —q, ),

q, (s) =exp(q, —q, ) —exp(q, —q, }

(4.20)

(The wave number and frequency of an isolated
soliton are zero; the centering parameter 5 is
arbitrary. }

It is shown in Appendix B that a more general
continuum soliton than the KdV soliton is obtained
by seeking a steady-wave solution to the con-
tinuum equation of motion [Eq. (4.9}]. The con-
tinuum soliton obeys the equation of motion of a
pseudoparticle in the steady-wave time variable
O=s-n/u:

=2 sinh(q, —q, ) .
In Appendix C, it is shown that the binary fre-
quency, that is, the relative oscillation frequency
of the two-particle system, as a function of ampli-
tude is

+max d q
{A'+q —qqqqqqqq )

(4.21}

p(e) (P)
ap

(4.15)
where

A =A exp(-a(),

=1+~A+O(A'). (4.1'1)

For small A, where only cubic anharmonicity is
important, the full width at half maximum is

Here the pseudopotential, whose terms in powers
of p correspond to terms in powers of q in the
Toda chain Hamiltonian, is given by (including
up to quartic anharmonicity)

q'(P) = 2P'+2up' 8u'(u' l)P'-. -(4 18)

The speed of this continuum soliton as a function
of amplitude A is

u = [1 +~~(A/u}+ ~|2 (A/u)']'k

$ is the compressive strain, and

q =in [1 + ~8 A'+ —,'A(1 ++8 A')'k]

The speed of the binary wave train (k = a') is then

u =(u/k =(u/r,

and the FWHM is one particle

m =1.
For small A, where only cubic anharmonicity

is important, the frequency e (in units of vo)
reduces identically to the highest-allowed quasi-
harmonic frequency

ln(3+& 8)S = (4.18) a) =2 exp(o. t').

Notice that the KdV results [Eqs. (4.13) and
(4.14)] are recovered from a first-order analy-
sis of the continuum soliton, and the continuum
soliton is recovered by a long-wavelength ap-
proximation of the Toda soliton.

D. Binary-collision approximation

In other words, at least quartic anharmonicity
is required in a truncated approximation to the
Toda pair potential before there is any detectable
deviation from the quasiharmonic theory. (See
Appendix C for details. )

For large A, the binary-collision frequency
becomes

The fourth mathematical model applies to the
highest-frequency oscillations that are allowed

w A.

4 lnA —ag
(4.22)
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V. COMPARISON OF SIMPLE MODELS
WITH EXPERIMENT

A. Toda soliton

while the width given by Eq. (5.4}becomes

ln(3 +WS) ln(3 +WS)
WA (4a v}~ (s.s)

lim maxi„(t) =2u~;
n~~

(5,1)

consequently, the amplitude to be used in the
formulas (4.1)-(4.4) for the Toda soliton is (in
mathematical units)

A =4@v. (s.2)

If the shock front is an isolated Toda soliton, its
speed and width will be given as a function of nv

by Eqs. (4.3) and (4.4):

(A +—,
' A')'~

ln [1 + ~ A + (A +4 A ) +]

[4a v +4 (av)']'+
ln(1 +2a v+ [4a v+4(av)']'+) '

in[3+ —,'A+(8+3A +—'A')'+]
in[1 +-,'A+(A+-.'A')~]

ln(3+2av+ [8+12av+4(av)']' )
ln(1 +2av+ [4av+4(av)']'~]

(s.3}

(5.4}

Over the full range of amplitude, the above
asymptotic fitting of A =4m v for the Toda soliton
matches experimental observations of the leading
pulses to within the accuracy of the molecular-
dynamics experiments. Next, we ask over what
range of av are the continuum and binary ap-
proximations valid &

For small amplitude, the speed of the Toda
soliton as given by Eq. (5.3) reduces to the con-
tinuum expression4'

+ ~ ~ ~
e

=]. + Qv+'8 (5.5)

In numerical experiments reported in Ref. 2,
it was observed that a shock wave in the Toda
lattice appears to behave very much like a suc-
cession of solitons, regardless of shock strength.
If two shock waves are run toward each other
and the driving support suddenly removed, that is,
the pistons are stopped, the wave trains collide,
with their peaks passing through each other es-
sentially unchanged. Moreover, the peaks, which
move with speeds in proportion to their ampli-
tudes, spread out in time.

We now show that the leading edge of the shock
front, the initial pulse, is indeed an isolated Toda
soliton. As the pulse travels aw'ay from the pis-
ton, or shrinking-periodic boundary, its ampli-
tude, as measured in the numerical experiments,
approaches the hard-rod limit (see Ref. 4 for the
KdV result)

2&v
ln4o. v

while the width becomes

(s.v)

so =1.
These large-amplitude approximations of the

Toda soliton agree with the binary approximation;
however, the verification of the equivalence is
slightly more subtle than the verification of the
equivalence of the small-amplitude approximation
with the continuum theories. It begins with the
observation that the entire large-amplitude shock
wave, all the way from the shock front to the pis-
ton, is a wave train of hard-rodlike Toda solitons
in the binary mode. To obtain Eq. (5.'l) from the
binary approximation, first note that this train is
under compression, which may be estimated using
the speed of the shock front:

=& ink.av A
4p,

(s.S)

From Eq. (4.22), the binary collision frequency is

zA

2lnA ' (5.9}

which gives the binary wave-train speed

co A
2lnA ' (5.10)

This binary result agrees with the speed of the
large-amplitude Toda soliton Eq. (5.'1) and com-
parison with numerical experiment shows the
binary approximation is accurate for Q. v& 5.

B. Continuum approximation

For weak shock waves, where @v&0.5, the KdV
and continuum solitons are limiting forms of the
Toda soliton, which provides a quantitative de-
scription of the leading edge of shock waves of all
strengths in the Toda lattice. For the discrete
cubic and quartic chains, where the pair potential
has been truncated to include up to cubic and
quartic anharmonicity, respectively, the con-

Comparison of these continuum expressions with
numerical experiments shows that the continuum
soliton is sufficient to describe the shock front
for values of av in the range 0& @v&0.5.

For large amplitude, the speed of the Toda soli-
ton becomes

A
2 lnA



SHOCK WAVES IN THE TODA LATTICE: ANALYSIS 2607

tinuum soliton gives a quantitative prediction of
the shock speed for all shock strengths [see Eq.
(5.1V) for the Toda quartic case; the cubic result
is obtained by dropping the term in (A/p, )'].

Analysis' of KdV shock waves yields the pre-
diction that the first and second soliton peaks
separate logarithmically in time, as the second-
pulse amplitude asymptotically approaches that
of the first pulse A =4ev. We have confirmed this
prediction for a very weak shock wave in the Toda
chain, namely, Qv =0.02. The cube-root-of-time
spreading seen in the linear chain was clearly
not indicated in this weakly nonlinear case. How-

ever, at Qv =0.105, the spreading is even slower
than logarithmic; by Qv =0.525, constant asymp-
totic separation appears to be likely. Certainly,
in the hard-rod limit, the asymptotic separation
is virtually instantaneous, so a transition is to
be expected.

As is shown in Appendix B, the continuum equa-
tions of motion will support a steady, isolated
pulse (continuum soliton), but will not support
a steady solution in which the final particle ve-
locity is equal to the piston velocity. We empha-
size once again that such a steady shock profile
is appropriate only in a dissipative system and not
for a conservative one-dimensional chain. If that
fact is nevertheless ignored, resulting analysis
predicts an initial maximum particle velocity of
& u~, rather than the observed value 2~~, as well
as a shock speed of p =1+-, Q~, rather than the
observed p =1+~nv.

C. The Toda periodic wave train

To interpret the leading edge of the shock wave
as a Toda soliton, it was not necessary to intro-
duce a correction for pressure or compression
since the leading edge sees no pressure. The
interior of the shock wave, on the other hand,
is under an effective pressure and should be de-
scribed by a slowly varying Toda wave train. This
description has not proved to be a very quantita-
tive tool, largely because of uncertainty in the
values of the local compression. In Sec. II, we
estimate the local compression by its global
average n$ = av/p. The Toda dispersion relation
can be used to predict the temporal frequency of
the wave train in terms of amplitude, speed, and
compression. Near the wave front, we use the
amplitude A =4a v as found in numerical experi-
ments, the speed p (A) discussed in the last sec-
tion, and ihe average compression nt A/4p.
The prediction of temporal frequency which re-
sults is better than that obtained by using no com-
pression, but is still not very quantitative. The
average estimate of pressure is too crude. For
wave numbers near w, the Toda wave train is

A =0, 0& AU&1

and the hard-rod regime

A =4Qv-4, Qv~ 1.

(S.ll)

(5.12)

Using the binary-collision approximation of Sec.
IVD, we compute the frequency co in terms of the
amplitude A, the shock speed p, and the average
compression a) = nv/p. The agreement with ex-
periment is fairly good; for Qv near 0, it is al-
most exact, as it is for large Qv. As a function
of Qv, the error in the binary prediction peaks at
Qv-1. There co is underestimated by around
1(@. This inaccuracy is due, once again, to an
incorrect estimate of the local compression, which
is higher near the piston than the average com-
pression predicted from the speed of the leading
soliton. The enhancement of compression near
the piston arises from the nonsteady nature of
shock waves in nonlinear, nondissipative, one-
dimensional chains, where the shock thickness
grows linearly with time. In other words, the
region of thermal agitation behind the shock front
is a constant fraction of the shocked material.
Since the local compression is only slowly build-
ing up in this region, the final value near the
piston will be larger if the fractional shock thick-

I t I / I I )

lim mar [k„(t)/U&]
f ~g)

TODA CHAIN
I 1 I ~I

I

0.5—

0-
O. I

I I I I I III
05 I 5 IO

I

50
av

FIG. 6. Final square amplitude of the long-time oscil-
latory tail (molecular-dynamics results ~ ), lim& max
fx„(t)/I&] —1, which is zero for nv & 1 and (1—1/nv)
for av ~ 1 (solid line ), fractional shock thickness
(thermal relaxation time) r f/2(n)/n (dash-dot line —~ —).
The shock strength in the Toda chain is av (O. =cubic
anharmonicity, v = piston velocity).

equivalent to the periodic train in the binary ap-
proximation, .which is taken up next.

D. Binary-collision approximation

For the long-time oscillatory tail in the discrete
lattice, the binary-collision approximation is
appropriate for all shock strengths because the
wave number is always &. Numerical experi-
ments show that the long-time oscillatory tail
has two amplitude regimes: the quasiharmonic
regime
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ness is also. As shown in Fig. 6, the fractional
shock thickness as well as the increase in local
compression near the piston is most pronounced
near av-1. A slight enhancement in a$ near the
piston boosts the calculated ~, and brings the
binary approximation into agreement with experi-
ment.

Finally, it is clear from the numerical experi-
ments that the break in the dynamics of the Toda
lattice under shock compression, which occurs at
the critical value o.v =1, is a transition from the
infinitesimal-amplitude harmonic {or quasi-
harmonic, for 0& nv&1) behavior in the long-time
oscillatory tail to finite-amplitude hard-rod
(av&1) behavior. (It is interesting to note that
the discrete quartic chain also supports finite-
amplitude long-time exc itations of this binary
mode, while the discrete cubic chain sinks into
harmonic behavior. Of course, the o.v criticality
for the quartic chain occurs at a somewhat dif-
ferent value than av=1, the full Toda chain
criticality. }

VI. MEASUREMENTS USING THE SPECTRAL
TRANSFORM

A. General remarks about the spectral transform

In this section we use a mathematical tool called
the "inverse spectral transform" to measure the
nonlinear excitations which are present in the
shock profile. Two different versions of this
transform are used, one to describe global prop-
erties of the shock wave and the second to mea-
sure its local structure. The first version (Sec.
VI B) precisely identifies a threshold value for the
piston speed, below which numerical experiments
show that the lattice behind the shock wave
therma. lizes. The second version (Sec. VI C}of
the transform provides a description of the local
structure of the shock which is an alternative to
the description of the shock profile as a function
of the particle position n. The second version of
the transform measures the soliton content of the
shock front and the wave-train content of the ex-
citation in the interior of the shock wave. In par-
ticular, the second version confirms a connection
between the threshold for thermalization and
finite-amplitude nonlinear binary oscillations of
the lattice.

The spectral transform changes variables from
(q„,P„) to new collective coordinates, in terms
of which the Toda equations (under appropriate
boundary conditions} are exactly solvable analy-
tically. We call these new variables "nonlinear
normal modes for the Toda lattice. " Typically,
these nonlinear modes belong to two classes—
localized excitations (solitons) and dispersive

radiation (soliton wave trains).
The nonlinear modes can be coordinated by

action-angle variables, in terms of which the
Toda equations (under appropriate boundary con-
ditions) are trivial:

(q.,P.)- (~., 8.),
J„=O,

8„=&o„(J).
We will not describe the full transformation from
(q„,p„) to p„, 8„); rather, we emphasize one of its
most important properties. While the complete
transform is complicated, it is very easy at any
fixed time s to compute numerically and to dis-
play graphically, the qualitative information con-
tained in the action variables. In principle, these
action variables (1) count the degrees of freedom
which are excited in the shock profile, and clas-
sify them as solitons or radiation, (2) measure
the speeds of the excited solitons, and (3}mea-
sure the frequencies, the wave numbers, and the
amplitudes of the radiation wave trains which are
present in the shock wave.

The spectral transform has been developed for
phase configurations (q„,p„}under the following
three types of boundary conditions:

Infinite, vanishing (q„,P„}-(0,0) as u-a~,

(2avs, 2av) as u--~
Infinite, shock (q„,p„)- (-20.vs, —2evj as n-+'

periodic (q„,„,p„,„)=(q„+ L,p„).
Under each boundary condition, the transform
begins with the second-order linear difference
operator L,

(Lu)„=a„,u„, +a„u„„+b„u„.

Here the coefficients (a„b„)are given in terms
of the phase point (q„,P„)by

a„-=-.'exp '"-
(6.2)

and these coefficients inherit the boundary condi-
tions of the phase configuration.

As the coefficients flow in time according to the
Toda equation (under the appropriate boundary
conditions), certain spectral properties such as
the eigenvalues of the operator L remain un-
changed. The action variables are defined in
terms of these spectral quantities. These spec-
tral properties of L are, in turn, easy to compute
and to display graphically. [To obtain some in-



SHOCK WA VES IN THE TODA LATTICE: ANALYSIS 2609

tuition about the operator L and its spectral prop-
erties, set a„=& and b„=-1—V„: av)1 I/PIJ LLLL&

(Lu)„=-,' (u„„—2u„+u„,) —V„ 1 - av -1 + av 1+av

—V(x) .1 d'
2 dx' lD/J:LLLx

Spectral properties of the difference operator L
are quite analogous to those of the Schrodinger
operator in quantum mechanics. ]

The spectral transform under infinite, vanishing
boundary conditions and under periodic boundary
conditions has been known for several years. ' "
We will assume the reader is aware of this ma-
terial. In particular, we will not repeat the
tutorial material of Ref. 11, which is used ex-
tensively in Sec. VIC.

S IMPLESIMPLE DOUBLE

0 & av & 1
n

-I —av
-1+ av

DOUBLE

av 0

FIG. 7. Multiplicity of the spectrum of L (eigenvalue
X) as a function of shock strength O, v. Note the emer-
gence of double spectrum for nv below the critical value
of unity.

B. Spectral transform under shock boundary conditions

Under shock boundary conditions, the spectral
transform is currently being developed. " In this
section, we describe the transform under shock
boundary conditions only to the extent needed in
order to display a critical value in the shock
strength (that is, in the piston speed). This
critical value can be obtained directly from a
spectral transform of the initial conditions.

Consider a shock wave initialized by the step
initial conditions (at time s =0}

(0, 2nv), a&0
(q.,p.) =

!(0 —2av}, u) 0.

Equivalently, in the (a„b„)coordinates, Eq. (6.2)
at time s=0,

(-,', —nv), u&-1
(u., &.) =

(-,', av), s)-1.
The eigenvalue problem for the operator L,

(Lu)n —-sn |un 1+Qnun+g+5nun un'

takes the initial form

(6.2)

(X+nv)u„, u&I-
! (X —av)u„, u)-1.

1 1
a un-g +2 ug+g—

Since the spectrum of the operator L is in-
variant under Toda dynamics, it is sufficient to
calculate the spectrum at time zero (s =0). The
results of this calculation (see Appendix D) are
summarized in the following fact: The spectrum
of L(s) consists in the union of two intervals

A. H ([-1—av, 1 —av]U [-1+av, 1+av]).

For X in the intersection of these intervals, the
spectrum is double; otherwise, it is simple.
These spectral intervals are displayed in Fig. 7.

The key feature here is the multiplicity in the
spectrum. Recall that a point ~ is said to be in
the spectrum of L if, for the value of ~, there
exists an eigenfunction u„(&) which is bounded
for all n. If only one bounded eigenfunction ex-
ists, ~ is called simple; if two linearly inde-
pendent bounded eigenfunctions exist, ~ is called
double. Here, the spectrum of L lies in the union
of two intervals; in their intersection it is double,
elsewhere simple.

First, consider the case of a large amplitude
shock wave with av)1. As is clear from Fig. 7,
the intersection [-1—nv, 1 —av]A [-1+av, 1+nv]
is empty. The spectral intervals are disjoint;
the entire spectrum is simple.

As the shock strength decreases to and below 1,
the intervals overlap. The spectrum consists of
two intervals of simple spectrum, with an interval
of double spectrum in between.

We emphasize that ov =1 is a critical value.
For shock strengths Q. v above 1, the spectrum is
simple and lies in two disjoint intervals. For av
below 1, the spectrum lies in one interval; the
interior of this interval consists in double spec-
trum, while the two exterior ends consist in sim-
ple spectrum. At precisely this value of piston
speed, the criticality in the long-time behavior
of the region behind the shock was observed in the
numerical experiments. As yet, this physical
effect (as described in Secs. III and V) has not
been deduced directly from the scattering trans-
form, but most certainly the change in the multi-
plicity of the spectrum at av=1 is the key.
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C. Spectral measurements of the local structure
of the shock wave

N N

WI' = P„=-2trL =-2
n n=

b~ a~ 0 0

a, b2 a 0

0 a, be as

0 0 a b4 a4

L= 0

+N

0

aN 0

+N-g bN-g +N-j.

~N-i bN

As a„(s}, b„(s}change in time s according to
pen oChc Toda'dynamics, the eigenvalues (&„}
of the matrix L remain unchanged, and provide N
constants of motion for the Toda lattice. For
example, the total momentum and total energy
of the lattice are given in terms of these eigen-
values by the simple formulas

From the empirical fits of Sec. V, it seems
clear that the Toda shock wave is smoothed by
Toda wave trains. Using the spectral transform
under periodic boundary conditions, we can mea-
sure from the data the characteristics of such
wave trains. In this section we take a chunk of
lattice from the shock profile and measure its
spectral content using the periodic spectral
transform. From these measurements, we infer
the local structure of the shock wave, and we show
that these measurements agree with the empirical
fitting to basic Toda excitations as described in
Sec. V. In addition, we directly measure the local
compression, the quantity which was missing
in Sec. V.

Practical procedures for using the spectral
transform under periodic boundary conditions
to measure nonlinear modes have been described
in detail in Ref. 11. We will not repeat that ma-
terial here; rather, we emphasize an aspect of
the spectral content of the shock profile which
differs from the examples described in Ref. 11.

Consider a periodically repeated N-particle
Toda lattice whose displacement is 2 [Eq. (2.29)]:

'4+N=&n+ & 2

Pp+N =Pn ~

Under these boundary conditions, a„and bn are
strictly periodic of period N, and the second-
order difference operator L is equivalent to the
N&N matrix:

'

(e.s)

=A Q (A. —il „)+2 . (s.s)

Here the leading coefficient A is given in terms
ofZ by

N

A ' = a„=(2)"exp[- —,
' (q„- qa)]

(e.v)

It is very easy, given the phase point (q„,p„), to
compute numerically the polynomial A(&) since
the matrix L is (essentially) tridiagonal. As de-
scribed in Ref. 11, the types of nonlinear modes
which are initialized by the configuration (q„,p„),
together with their physical characteristics, can
be inferred directly from a graph of &(&) vs ~.

For clarity, we emphasize that the region be-
hind the shock wave is not a periodic Toda lattice;
rather, it seems to behave locally as a slowly
modulating Toda wave train. To quantify this
observation, we take at time s, a chunk of lattice
which consists of N masses behind the shock front
and construct a model by periodically repeating
this chunk of lattice. The discriminant 4(A. }will
directly measure the exact nonlinear mode con-
tent of this model; hence, it will indirectly mea-
sure the wave train which is smoothing the shock
wave.

If the periodic model is allowed to flow in time
under strictly periodic Toda dynamics, b.(&}will
not change. However, if a second model is con-
structed for the chunk of lattice at time s, &s,
b(X, s~)eh(&, s). In fact, the change in 6(&) will
measure the modulations in the Toda wave train
which is smoothing the shock wave. We repeat:
The shock wave is not smoothed by an exact,
periodic Toda wave train, but by a slowly modu-
lating wave train. Temporal changes in 6(&)
will measure these modulations.

First, consider the shock profile shown in Fig.
8. This profile was initiated by the piston moving
at speed av =52.5. The profile is pictured at time

N

=2trL' =2 P &'„.
n=i

Instead of computing the eigenvalues (g}
directly, we consider a polynomial A(& }which is
fixed by the eigenvalues and the lattice displace-
ment Z:

6(X )-=A det(&I —L) +2
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FIG. 8. Shock-wave profile of particle velocity i„/N&
vs particle number n at ~at=2 for PBC shock of
strength nv = 52.5. The discriminant in Fig. 9 was cal-
culated for the segment of lattice in the interior of the
profile marked by the box, N=20 particles wide.

20

15

TODA DISCRIMINANT, av =52.5
I I

(b)

s =2, at which time the shock front is located 39
particles from the piston. Figure 9 shows the dis-
criminant b, (&) for a chunk of this profile, which
is 20-particles wide, located near the rear of the
shock profile. This chunk of the shock wave is
shown by the box in Fig. 8.

Using the rules of Ref. 11, we interpret this
measured disc riminant. It shows two intervals
of spectrum, located at & P [-0.5, 1.5] at
&H [104.5, 106.5], separated by a large gap in the
spectrum. Since all extrema are tangent to
+ 2 [L(&,„,) =a 2] except for the central peak, only
one degree of freedom is excited in this region
of the shock profile. This single degree of
freedom is the highest wave-number (binary)
mode.

A disCriminant with this particular structure
was not analyzed in Ref. 11; we do so here. This
measured discriminant can be interpreted
analytically using the binary approximation (Sec.
IVD). First, we model the shock profile as a
periodic repetition of a chunk of lattice which is
two particles wide; that is, we model the shock
wave as a "period-2" Toda lattice whose total
displacement is Z =- 4e(:

10
CI

0— M-

Q(s}=Q(0}+Ps,

aP'+4 exp(- —,'&) cosh{q+-,'2) = h.
(s.s}

Here, the center of mass and relative coordinates
are given by Q =-,'(q, +q, ), q —= q, —q„and the two-
body trajectory is parametrized by the length 2,
the center-of-mass momentum P, and the rela-
tive energy h.

In Appendix E, we explicitly calculate the dis-
criminant n.(&), a quadratic in &, for the two-body
Toda lattice

105 106104 105

FIG. 9. Discriminant b,P,) for a Toda-chain shock
wave @v=52.5 at coot=2 (see Fig. 8): (a) A, near 0; (b)
X near 2nv. (When I nl &2, a logarithmic scale is used. )

q„=exp(q„, —q„) —exp(q„- q.„),
(6.s) a(X;P,2, h} =4 exp [{—z}(Xa'P+P —~s h]. (6.10)

q„+~ =q„+2 .

This effective two-body problem can be quickly
integrated (see Appendix E):

Notice that the binary discriminant is centered
at -&P, its two intervals of spectrum are cen-
tered by h, and the width of these spectral inter-
vals is fixed by &. To compare this two-body
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FIG. 10. (a) Binary (bvo-particle) discriminant AP.)
vs eigenvalue X for a strong shock wave O. v&1. (b)
Discriminant b, (X) for 16-particle segment made up of
eight two-particle periodically repeated units; same
shock strength uv &1 as in (a).

IO

5

CI
0

'n p

discriminant with discriminants measured from
the data, we must evaluate the parameters
(J',2, h} in terms of the shock strength av; for
example, I' =- 20.v, 2 is given by the shock com-
pression, and h is determined by the compression
and the momentum amplitude. This data fitting
is carried out in detail in Appendix E. In particu-
lar, for large O. v, we obtain

(6.11)

- IO

-I5

15

2
I ~ I ~ I

0 I 2

X

TODA DISCRIIVIINANT, cv =52.5
I

(c)

which is sketched in Fig. 10(a). Notice the loca-
tion of the spectrum is between & & [-1,1] and
AC [2o.v-1, 2a v+1], with the large gap between
~ =1 and 2nv- 1. If we were to consider a chunk
of lattice, say, 16 particles wide, which consists
of eight, two-particle oscillators periodically
repeated, the discriminant may be computed di-
rectly from the two-body discriminant. " The
result is shown in Fig. 10(b). The fact that all
extrema of I&(&}l are exactly tangent at +2
except for the central peak follows because the
excitation is assumed to be strictly a binary one.
Only one degree of freedom has been excited in
this model, the highest wave-number (binary)
excitation. Comparison of this binary discrimi-
nant for large ev with the measured discriminant

10

O

I

IO4 IO5 IO6

FIG. 11. (a) Discriminant Lh(X) for O. v= 52.5, coot=2,
20 particles near shock front; (b) X near 0; (c) X near
2QV ~



SHOCK WAVES IN THE TODA LATTICE: ANALYSIS 2613

40 I

TODA DISCRIMINANT, a v =52.5

a)

30

TODA DISCRIMINANT, a y = 2. I

I

I
~ ~ ~

I
a a ~

I
~ I I

20—
20

0
IO— IO—

0— 0—

-IO—

~ I ~ I
~ I ~ ~ a I . a ~ a I a ~ ~ I ~ a ~ I ~ a a I al ~ a

0 20 40 60 SO IOO -2 0 2

~ I

20

I5

IO—

5—
CI

0—

-5—

IO—

-2 -I
I . I

0 I 2

X

TODA DISCRIMINANT, av =52.5

(c)

TODA DISCRIMINANT, av =52.5
I

'
I

'
I

'
I

X

FIG. 13. Discriminant A(A, ) for o.v=2.1, ~ot= 50, 20
particles near shock front.

for av=52. 5 of Fig. 9 shows that the interior of
the shock profile away from the shock front is
indeed a binary mode.

As one examines chunks of lattice nearer the
shock front (for o, v=52.5), the excitation remains
predominantly binary. Figure 11 shows the dis-
criminant for a chunk 20 particles wide, mea-
sured from the shock front. Although the central
peak is by far the dominant mode in this dis-
criminant, all modes are now excited. According
to the rules for reading discriminants, "we would
interpret this chunk of lattice as containing a
packet of supersonic solitons. The soliton packet
contains 12 solitons, with ~ ranging from 104.5
to 106.5, whose speeds (as calculatedby the
formula in Ref. 11)are nearly identical and agree
with the experimentally measured shock speed of

TODA DISCRIMINANT, av =0.525
I

'
I

'
I

'
I

20

0 I5

IO

CI

5

-IO—
0—

-15—

106
I

I04 I 05

FIG. 12. (a) Discriminant E(X) for O. v= 52.5, coot=3,
20 particles near shock front; (b) A, near 0; (c) A. near
2&van

l ~ I, I . I ~ I

-2 0 I 2
X

FIG. 14. Discriminant A(X) for nv= 0.525, not= 200,
20 particles near shock front.
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FIG. 15. Particle-velocity x„/N& profiles vs parti-
cle number n for right-running shock wave O. v = 0.105:
~ot= (a) 300, (b) 600, and (c) 900.

FIG. 16. Discriminant 4(X) vs eigenvalue A, for
nv = 0.105, 35 particles at shock front: coot = (a) 300,
(b) 600, and (c) 900.
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p. = =19.7.2Qv
ln4Q v

These discriminant measurements of the shock
profile were taken at time s =2. Figure 12 shows
the identical measurement at time s =3. These
figures agree except for the location of the oscil-
lations, which have shifted slightly. This shift
is an example of problems which arise when
measuring a subsystem which is actually coupled
to the full system. In this case the shift arises
because the energy of the 20-particle subsystem
is not constant. Particle number 20 in the sub-
system periodically gives energy to and receives
energy from the remainder of the full system
through particle number 21, Examination of mea-
sured discriminants for times 1 s ~1.1 (in in-
tervals of 0.01) shows that the location of the
oscillations in the discriminant experiences small
oscillatory behavior with a period which agrees
with the vibrational period of the 21st particle.

These discriminant measurements show that,
for Qv =52.5, the shock front is essentially in the
binary mode, with the same structure as a packet
of solitons.

Figures 13 and 14 continue to examine the shock
front for smaller values of av (2.1 and 0.525).
In all cases, the front is a packet of solitons
whose speeds, as measured from the discrimi-
nant, agree with the measured shock speed.

For Qv =0.105, we illustrate another effect
in Figs. 15 and 16. At times s =300, 600, and
900, we display the shock profiles and the dis-
criminants for a 35-particle chunk of the shock
front. Notice a "tightening" of the soliton packet
in the discriminant as s increases from 300 to
900. This tightening means that the leading soli-
tons are approaching equal speeds (p =1.0"I) and
equal amplitudes as time increases. This mea-
surement agrees with the flattening of the shock-
front profile as s increases (Fig. 15}.

Next, we examine the structure of the shock
profile as one moves from the shock front, through
the transition region, to the rear ne:.r the piston.
In Fig. 17 we display a sequence of discriminant
measurements for Qv =0.525. According to the
rules of Ref. 11, the local wave number increases
from ~5 & to & through this sequence. Using Eq.
(6.'7), the local compression a( can be measured
directly from the data as the 20-particle window
is moved from the shock front (n =0) to near the
piston (n =200). The following values of ag were
found: (a) 0.52 (n =0), (b) 0.50 (n =4), (c) 0.48
(n =5), (d) 0.3'I (n =25), (e) 0.40 (n =50), (f) 0.41
(n =100), and (g) 0.42 (n =200). The average com-
pression from mass conservation [Eq. (2.31)] is
a) = a v/p =0.395, which is indeed lower than the
local value near the piston (see Sec. VC).

-4Qv
p(av) ' (6.12)

h =8(av- 1)'e(av —1}+4exp(--, Z},

so that

4~2 —2, Qv=0

a(&) = 4(h —1}'exp[-2/p(1)] —2, av=1

(&' —2av&-1)/av, av»1.

Actually, this fit is not quantitatively accurate
near Qv =1 because of the estimate of the local
pressure which is used to compute the length Z.
Nevertheless, it provides qualitative insight from
large Qv through small Qv.

Consider this discriminant as a function of Qv.
It is sketched for three values of Qv in Fig. 19.
This quadratic function always has its minimum
at Qv. For Qv&1, the minimum value of 4 is
less than two, one degree of freedom (the binary
mode) has been excited, and there is a gap in the
spectrum. At Qv=1, the minimum value of 4
reaches -2; no gap exists in the spectrum which
ranges from ~ =-2 to 2. As Qv decreases from 1,
the minimum value of 4 remains at -2; the range
of the spectrum decreases from &E [-2,2] to the
harmonic limit of &H [-1,1].

Interpreting the behavior of this binary dis-
criminant, we infer information about the transi-
tion through the critical value of Qv =1. First,
this value Qv=1 is precisely the value at which
the gap in the binary spectrum disappears. For
Q v & 1, the lattice at the rear of the shock wave
experiences finite-amplitude nonlinear binary
oscillations which are measured by the width of
the central gap in the discriminant. At av =1,

Finally, Figs. 17(g) and 18 compare the rear
of the shock near the piston for Qv =0.525 and 2.1.
Both measurements record binary oscillations.
The amplitude is very small in the Qv =0.525
case, while substantial in the Qv=2. 1 case.
Notice these two values are on different sides
of the critical value Qv =1; and, indeed, the ap-
pearance of the two discriminants is qualitatively
different.

We conclude by interpreting these measurements
of the structure of the rear of the shock profile
through the period-2 or binary discriminant. Re-
call that in Appendix E we computed the two-body
discriminant

a(A}=4exp(-,'z}[(+ '+P}' —~h],
and fit its parameters to the data

P = —2QV~
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the oscillation amplitude becomes infinitesimal
as measured by the vanishing of the central bump
in b and the disappearance of its gap. At this
stage, the small-amplitude oscillation is still
not harmonic, but it is quasiharmonic because
the rear of the shock wave is still under increased
effective pressure. This effect appears in the
discriminant as spectrum ranging from & =- 2 to
2, rather than spectrum running over the har-
monic range &K [-1,1]. As av continues to de-
crease, the local pressure relaxes and the dis-
criminant approaches that of the harmonic ex-
citation.

Thus, we have used the periodic spectral trans-
form to measure the local structure of the shock
profile near the rear of the shock wave. The
interpretation of these measurements confirms

the mechanism for the critical point nv =1 as a
transition from finite-amplitude nonlinear high-
frequency (binary) oscillations to small-amplitude
quasilinear high-frequency oscillations. The
latter thermalize. This local measurement, using
the periodic transform, provides information
about the transition which complements that ob-
tained above from the global measurement of the
entire shock profile, namely, by the spectral
transform under step boundary conditions.
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APPENDIX A: DERIVATION OF THE KORTEWEG-
de VRIES EQUATION FROM THE CONTINUUM

EQUATION OF MOTION

The equation of motion in the long-wavelength
[small-wave-number (k-0) or continuum approxi-
mation] is, to quadratic degree in q (cubic an-
harmonicity),

01

I . . l ~ ~ ~ I

q q& ~ q/ltl+ ql qll ~ 0

and the self-consistency requirement in con-
structing left- and right-running solutions is

(A1)
-2 0 2

JL

FIG. 18. Discriminant 4(X) for O.v= 2.1, 20 particles
near the piston at (a)pl=50. (q') —(q)'-=o. (A2)
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The linear problem has left- and right-running
solutions represented, respectively, by

chain, whose dispersion relation and phase ve-
locity are given by

or

u =s(q+q'),

P = l(i —q'),
(A3a) ~=2sin —=k- ~k + ~ ~ ~

k
R42

sin(k/2}
(k/2)

(A12)

q =u+p,

q =u-p. (A3b)

The equation of motion and self-consistency rela-
tion are given by

(u+ij)-(u'-P')- ~(u'"-P ) —= o,
{u-p}—(u'+p'} -=0.

(A4a)

(A4b}

u —u™~(u~-p~') = 0,
p+p' ~(" p'") =-

For a right-running wave

(A5R)

(A5b)

The sum and difference of the above pair of equa-
tions are then written

(A13)

If the above linear left- and right-running solu-
tions of Eq. (A3) are perturbed in the following
manner'.

u=-,'[j+q'(I --,'q'+ . ~ ~ )],
p =-'[4 e'(I ---'~'+ ' }1 (A14)

Thus, the continuum approximation, represented
by the linear KdV equation, agrees in-the long-
wavelength limit (k- 0}with the discrete harmonic
chain results.

The nonlinear equation of motion leads, . in the
same way, to the nonlinear KdV equation

0+P + g4P +RPP

u=0,
q/

and Eq. (A5b} becomes

(A6)

gp+6vv +v =0 (A15)

then a more accurate separation is obtained, with

the error being given by ~~p" =—0, just as in the
linear case. The nonlinear dispersion relation is
more complicated than in the linear case, The
canonical form of the nonlinear KdV equation

(A7}p+p'+ ~~4P
—= 0,

the linear Korteweg-de Vries (KdV} equation.
An estimate of the error involved in the separation
into left- and right-running waves is seen by

setting u -= 0 in Eq. (A5a}, whence ~~p =—0 indi-
cates when Eq. (A'l) is the appropriate first-order
(in time derivative) approximation to the second-
order linear equation of motion. Note further,
that a harmonic right-running solution to Eq. {A7}
can be constructed as

p(e, s) =v(2~(s- s), 'l2 'ks). (A16)

APPENDIX B: THE CONTINUUM SOLITON

A steady-wave solution of the continuum equa-
tion of motion

q q ~ N lgqlI + ~ ~ ~ (al)

can be obtained from Eq. (A13) by the transforma-
tion

p(s, s) =p exp [i {ks—sos)], (Att)
can be found for the transformed time variable

where k =2&/& is the wave number (& =wave-

length}, ru =2&/r is the frequency (v =period},
p = &u/k = &/v is the phase velocity, and p is the

ampli. tude of the momentum field. From Eq.
{A7)we have

8=s u/p, - (a2)

where p is the wave speed. With the momentum

P defined by

(A9}

(a) =k- +4k~, (A10)

as well as the dependence of phase velocity on
wave number,

i(- (u+k —~~k*)P =—0,
which gives the linear dispersion relationship
of frequency to wave number,

q(u, s) =p(8},

e'(s, s)=-t 'P(e),

the equation of motion becomes

p=t -V+{12t') p+t 'pp

+(2P ) PP+' '

(a3)

(a4}

p =1- ~4k'. (A11)

For comparison, consider the discrete harmonic
Integrating by parts, with the condition that the
initial momentum p(-~) =0,
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l e

«p" (t}p(t)=p""(8)-p""(-")
e

—n dtP" t t

climb up to amplitude p =4 at time 8 =0, where
q (A) =0, then roll back down to P =0 at 8 =+~,
This single pulse is a continuum soliton whose
speed as a function of amplitude A is

~ =[1+-'(A/I )+ (A/v)']'.+1'""'" (B6) =1~ & A+O(A&). (B8)

one obtains a new equation of motion

P =12''{p' —1}P—6yP' —2P'

&q (p)
8P

(B6)

—.'p'(e) q(p) =0,

which gives a temporal width

(Be}

The conservation of pseudoenergy allows one to
calculate the full width at half maximum w:

where

+(P) = 'P'+2'-' 6A*(P*-1)P'.- (B7)

Notice that Eq. (B6) is the equation of motion of a
pseudoparticle of unit mass in "space" P and
"time" 8 moving on a pseudopotential surface
4'(P), whose powers of P correspond to powers
of relative displacement in the Hamiltonian of the
discrete chain (in the above case, quartic an-
harmonicity has been included). If the pseudo-
particle is given the slightest rightward nudge at
time 8 =-~ when it is sitting at momentum posi-
tion P =0, it will roll down the potential hill and

whence

dp

[ 2y (P }]14 t

For small amplitude A, where only cubic an-
harmonicity is important,

A =3p, (p, ' —1)

and

q 0 ) =2pl*(f A), -
so that

(B10}

(B11)

(B12)

(B13)

=(A~)-' [-2tam-'(l-l)' +2tam-'(I--,')' ']=(Ai )-' ln
1+2 'S In(3+&8)

(B14)

and hence (since p =1+A/6+ ~ ~ ~ )

ln(3+W8) (B15)

These results show that the continuum soliton reduces to the KdV soliton for sufficiently small amplitudes
[see Eqs. (2.13) and (2.14)).

It is clear from inspection of the form of the pseudopotential 4'(P) that the existence of the steady-
pulse continuum soliton is due to a balance between the sharpening effect of anharmonicity and the broad-
ening effect of linear dispersion. (The linear chain will not support a finite-amplitude steady wave. )
It is also clear that there is no steady wave allowed with initial momentum P(-~}=0 and final steady
momentum P (+~) =A e 0. Only the single, isolated pulse is allowed.

q„„(s)= q„(s), (cl)
the equations of motion, with p„=q„, are [see Eq.

APPENDIX C: DERIVATION OF THE BINARY-
COLLISION FREQUENCY

For a two-particle (5=2) periodic 'system under
compression g, so pat time is rescaled according
to s =s exp(a$) [see Eq. (2.30}], the boundary con-
ditions are [see Eq. (2.27}]

(2.20)]

p, (s) ='q, (s) =exp(q, —q, ) —exp(q, —q, )

=-2sinh(q, —q, ),
P,(s) = q, (s ) =exp(q, —q, ) —exp(q, —q.)

=2sinh(q, —q, ) =-p, (s),
and the total energy (Hamiltonian) is [see Eq.
(2.18)]

(c2)
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h„, = z(q~+q ) +exp(q, —q, }+q,—q,

—1+exp(q, -'
q, )+q, —q, —1

=-,'(q', +q', }+2 [cosh(q, —q, ) —1]. (CS)

q, (o) = q.(0),

p, (0) =-p, (0) =-,'A,

so that

The center-of-mass coordinate Q and momentum
I' are

q(o) =0,

p(0}=A .
(C9)

0 = k(q, +q.),
(c4) If A = q(s =0}and A = q(s =0), then by E(l. (2.80),

P = ~(pi +p~) = Q,

and the relative coordinate q and momentum p are
A =A exp(-a(}.

The relative energy is then

(clo}

q =q~ —q~,

P =Pg -Pg =q.

(cs) h =-'A~

so that by E(l. (CS)
From the equation of motion, we note immediately
that the center-of-mass momentum is a constant p*(s) =q'(s) A*+8 —8coshq. (C11)

P =-,'(p, +p, ) =o,
so that

Q(s) =Q(0)+Ps. (c6)
or

p, (-,'s) =p, (-,'s) = 0

eae

At time s =+S, where S is the period of the wave
train

The equation of motion for the relative coordinate
is

P =q=P -P =-4sinh (C'1}
which is consistent with the following Hamiltonian
for the relative coordinate

p(-.'s) =o,

q($S) = q =cosh-'(1 + ~SA')

=in[1 + +~A'+ —,'A(l + ~~A'}'h]. (c12)

h = —,'p'+4(coshq-1);

that is,

eh
pap

~ eh
p =- —=- 4sinhq,

eq

and when p =q=O, h=O. Since

h =PP +4P sinhq =0,

(cs} Integrating Eq. (Cll) from s =0 [E(l. (C9)] to
s =-,'8 [E(l. (C12}]gives

t &m~

g' +8 —8 cosh q)'h

=~Sexp(at) = — exp(n(} (C15)1 2e
4

or

( 4f dq 1

-a P( t)l( (-. 8 8 h ),h)
h, the relative-coordinate energy, is a constant
of the motion.

Let us choose the initial conditions to be In the limit A -0, q - ~A, and

(C16)

q ~-X dxexp(a()(, „-, e,„e)l =-', exp(a() * (),)ee~ -4qr 0

=wexp(ot'}[sin '(1) —sin '(0)] ' =2 exp(at). (C17)

Notice that if the Toda potential had been truncated to include only cubic anharmonicity, Eq. (CIV) would
be exact, just as it would for a purely harmonic potential; however, the inclusion of quartic, or higher
order, anharmonicity results in a departure from the (luasiharmonic answer in E(l. (C1'l).

In the limitA-~, q -in4A~, and
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1nA /g
--',wexP(E4}(

0

dq x
.

-( i dx4,14 =* ~"P(E4)Ell&
&4 14)A2

4 )xP
=-2sexp(at'}A -2tanh '(1 —1)'h+2tanh ' 1 —=, iA2i

1 A, A=-, wexp(&2t') ~ ---, 2
lnA —a$ ' (C18}

APPENDIX D: CRITICALITY AND MULTIPLICITY
OF THE SPECTRUM OF L

In this appendix we derive the change in multi-
plicity at the critical value described in Sec. VI.
It is required to find the spectrum of L, that is,
all bounded solutions of the difference equation

y (I 2)
()1 g )=

Z(")()()]" s &- 1

g(1 2) (Z«) )E+E(1»(Z(2))2

with the convention & " residing in the interior
of the circle.

In terms of these functions, we can define two
bases of solutions for the difference equation
(Dl ) f y(1) y(2)) and (y(1) y(2)],,

For motivation, consider the analogous problem
for the Schrodinger equation

[Z(1.2)() )] 44

y
(1,2) (n g}—

C(1»(Z(1)}E +D«1 2)(Z(»}44

where V(x) =- 1 for x& 0 and V(x}=0 for x) 0.
For E)0, there exist two bounded eigenfunctions
)I)1(x,E) and &Ft, (x,E}which oscillate at x=+~. For
-1&E&0, there exists one bounded eigenfunction
which oscillates at x =-~ and decays exponen-
tially at 2:=+~ (the other eigenfunction blows up
exponentially as x goes to +~). These considera-
tions yield the spectrum of the Schrodinger op-
erator E H (-1,~). For E H (0,~) this spectrum
has multiplicity two; for EK (-1,0} it has multi-
plicity one. In this appendix we perform the
analogous calculation for the difference equation
(D1).

Fix )(&E [-1 + v, 1 +v] and define Z(,') as the root
of

—Z+ —=~+v,

which resides in the interior of the unit circle.
I et

Z(2) —liZ(1)

denote the other root (outside the unit circle). As
~ approaches any point on the interval
[-1+v, 1 + v], Z(,') approaches a point on the unit
circle and Z,' approaches its complex-conjugate
point. Similarly, fix )(G[-I —v, 1 —v], and de-
fine Z ' as the two roots of I

2(Z+1/Z) =)(- v,

Here the constants (A, B, C, and D) are deter-
mined from the difference equation (D1) near
n =Q.

The following decay properties can be estab-
lished by inspection:

p(')()1, &}. As )2 ~, it blows up unless
&G [-1+v,1+v], and executes bounded oscilla-
tions if )(H [-1+v, 1+v]. As )1-+~, it blows up
unless )(G [-1—v, 1 —v], in which case it executes
bounded osc illations.

Q "(n, )(}. As n- -~, it decays if )(&E [-1+v,
1+v] and executes bounded oscillations if
AC [-1+v,1+v]. As )1-+~, it blows up unless
)(H [-1—v, 1 —v], in which case it executes
bounded osc illations.

g("()2, A.}. As n +~, it -decays if &&E [-1—v,
1 —v] and it executes bounded oscillations if
)(E [-1—v, 1 —v]. As )2--~, it blows up unless
&6 [-1 +v, 1 + v], in which case it executes
bounded osc illations.

g(2)()1, )(}. As n +~, it b-lows up unless
)(F [-1—v, 1 —v], in which case it executes
bounded oscillations. As n --~, it blows up un-
less )(H[-1+v, 1+v], in which case it executes
bounded osc illations.

From these decay properties, we see the fol-
lowing.

(1} If )(H[-1+v, 1 +v]& [-1—v, 1 —v], both
P"'()2, )() and g "(n, )() execute bounded oscilla-
tions for all n; hence, ~ belongs to the spectrum
and has a multiplicity of 2.
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(2) If A.F[-1—v, 1 —v], but not [-1+v,1+v],
only Qi" (s, &} is bounded for all n .It decays as
n--, and executes bounded oscillations as
n -+~. ~ belongs to the spectrum and has a
multiplicity of i.

(3} If hE[- 1+v, 1 +v], but not [-1 —v, 1 —v],
only

gati'~(s,

&) is bounded for all N. It decays as
n-+~, and executes bounded oscillations as
n--. & belongs to the spectrum and has a
multiplicity of 1.

(4} If h K [-I +v, 1 +v] U [-1—v, 1 —v], all
eigenfunctions are unbounded and ~ does not belong
to the spectrum.

In this way, we establish the following fact: The
spectrum of L consists in the union of two inter-
vals

[-1—v, 1 —v]U [-1+v, 1 +v].

If ~ belongs to the intersection of these intervals,
~ has a multiplicity of 2. If ~ in the spectrum
does not belong to the intersection, ithas a multi-

plicity of 1.

APPENDIX E: THE BINARY DISCRIMINANT

In this appendix, we compute the binary (two-

body) discriminant. Consider a periodic two-

particle (N =2) Toda lattice whose total lattice
displacement due to compression t' [see Eq.
(2.29)] is

Z =-4ag.
The equations of motion are (p„=q„), s =1,2:

p„=q„=exp(q„, —q„}—exp(q„- q„„},
subject to periodic boundary conditions

qn+2=qn+ & p

~n+2 ~n ~

Introducing center-of-mass coordinate
Q =-,'(q, +q, ) and momentum P = Q = —,'(p, +p, ), as
well as relative coordinate q =q, —q, and momen-
tum p =q=p, -p» the above equations can be in-

tegrated to give the center-of-mass motion

Q(s) =Q(0)+Ps,

since P =0 means P is a constant of motion. The
relative-coordinate equation of motion

p =q = —4 exp(- —,'&) sinh(q+2z),

can be integrated to give the relative energy

h = —,'p'+ 4 exp(- —,'2) cosh(q+ 2z) .
Notice, in particular, the parameter P is the
center-of-mass momentum, is the lattice dis-
placement, and h is the relative energy.

To compute the discriminant for this two-body

Toda lattice, one begins from the difference
operator L which is equivalent to the 2x2 matrix
[see Eq. (4.4}]:

=I( '
((a, +a,)

(a, +a,))

)

=4 exp(22) [(X+,' P) —~s—h].

Finally, we determine the three parameters
(P,Z, h) by fitting them to the data. First, for a
left-running shock wave,

P = —2(xv
y

which is the piston velocity, or average particle
velocity behind the shock front. Second, the effec-
tive shock compression of Eq. (2.31) may be used

to fix the total lattice displacement of this binary

system

40.v2 =-4o( =-
p(av} '

Finally, the relative energy is obtained by choos-
ing the initial conditions

q(o) =- -'& =q, (0) —q, (0)

=-'[q.(o) —q.(o)],

P(o) =A =P, (0) -Pg(o),

where the relative coordinate is chosen to be the

equilibrium value so that the relative momentum
is a maximum. The final oscillatory-state mo-
mentum amplitude A can be fit for all shock
strengths av by Eqs. (5.11)and (5.12}

A(av) =4(av- 1}8(av-1},
where 8 is the usual heaviside step-function

I

0, x&0
e(x) =

-o.

The relative energy h at time s =0, and thus for

The definition of the variables (a„,h„) in terms of

(q„,P„}yields [see Eq. (6.2}]

g =-,' exp [-,'(q —q, )]=-,' exp [-—,'(q+ z}],
a, =-,' exp(-,'q},

1 1 1 1
2PO 2&2 2P +4P y

1 1 1
b, =- 2P, -- 2P ——,P.

The two-body "binary" discriminant is thus given

by Eqs. (6.6) and (6.V),

4(&}= det(U —L) +21

+02
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a11 times since h is a constant of the motion, is
given by

20.v
h =8(nv —1)'e(n v —1}+4exp ~—

g(n v)

The binary discriminant for the long-time oscil-
latory region near the piston is thus fit to data by
the following form:

s(&) =4exp~ — [(X- nv)'2ev
p(nv)

—(n v —1)'e(n v —1)]—2.

We only list the behavior for large and small
o.v because the estimate of 2, which arises from
a comparison of the shock speed with the piston
speed, assumes the local pressure agrees with

the average pressure across the entire shock pro-

file. This assumption, which is accurate for
nv«1 and nv» 1, introduces errors of 10%%uo near
nv=i.

For o.v=0, p =1 and the harmonic-limit dis-
criminant is

&(jl) =40 —2.

For nv»1, p =2nv/ln4nv and the hard-rod-
limit disc riminant is

z(~) =
~' —2o.v~- 1

Notice that in any case n. (&} is centered at & =nv.
Also, regardless of the errors introduced by the

global estimate of compression, the discriminant

for 0 ~ av ~ 1 is always equal to -2 at minimum

and for av+& 1 approaches the value

a(nv} =- nv 1/nv. -
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