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The linear stability analysis of a superfluid mixture subject to a vertical temperature gradient is presented. The
main result obtained in this paper is the existence of an oscillatory instability in a superfluid mixture heated only
from below. The criteria for onset of oscillatory instability and the corresponding neutral frequencies in a superfluid
region of the *He-'He phase diagram are treated. Depending on the magnitude of dissipation of superfluid motion,
two different types of overstabilities exist. These have different physical origins. In the case of large dissipation of
superfluid motion the oscillatory criterion and the neutral frequency are similar to those in a regular binary mixture
with large abnormal thermal diffusion. In the case of small dissipation of superfluid motion a fundamentally new
type of oscillatory convective instability is predicted. This instability is actually the undamped standing second-
sound waves. We believe it should be possible to observe the predicted effect in the vicinity of the tricritical point.

1. INTRODUCTION

In the preceding paper, hereafter referred to as
(I),} we discussed the stationary hydrodynamic in-
stability of a horizontal layer of a superfluid *He-
“He mixture subject to a vertical temperature
gradient. As shown in (I), there are several fea-
tures common to a superfluid *He-*He mixture
and a regular binary mixture with an abnormally
large thermal diffusion (k,>0). First of all, the
concentration distribution is similar. Secondly,
stationary convection commences when heated
from above. Besides, as is well known,? 3 oscil-
latory instability in a regular binary mixture with
abnormal thermal diffusion occurs also when hea-
ted from below. In view of the common features,
one would also expect the onset of the oscillatory
instability in a superfluid mixture when heated
from below. But in the case of a superfluid mix-
ture two different physical mechanisms may be
responsible for this instability. The first resem-
bles the situation in a regular binary mixture. In
this case, the instability is the result of a com-
petition between a stabilizing effect (with a long
relaxation time) and a destabilizing effect (with a
short relaxation time).

Since the relaxation time of concentration per-
turbations (D%?)™! is usually long compared to the
relaxation time of temperature perturbations
(kk®)™, the stabilizing effect of concentration in a
binary mixture with abnormal thermal diffusion
heated from below can be eliminated while retain-
ing the destabilizing effect of the temperature per-
turbations. Indeed, let us consider a fluid ele-
ment with an upward velocity perturbation near the
lower boundary. If its temperature relaxes to the
bath faster than its concentration, it becomes ri-
cher on the heavier component compared with the
surroundings. Then the restoring force causes
the sinking of this fluid element. Obviously, while
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sinking it becomes poorer in the heavier compon-
ent compared to the surroundings, for the same
reason. Therefore, the direction of the restoring
force changes again. These oscillations (over-
stability) will set in when the rate of a varying
amount of kinetic energy and the rate of viscous
dissipation and production of kinetic energy by the
buoyancy force are synchronously balanced.
Therefore, in this case the overstability onset is
determined by the temperature gradient as well
as by the ratio of the relaxation rates of the tem-
perture and concentration fluctuations.

The second mechanism has a purely superfluid
origin and is associated with an additional branch
in the hydrodynamic perturbation spectrum. Any
perturbations in the noncompressible superfluid
*He-"He mixture lead to the appearance of second-
sound waves which decay rather rapidly.

When the second-sound wave velocity becomes
rather low and comparable to the velocity of inter-
nal gravity waves,* one expects the rate of energy
supply by the gravitational field to balance the
rate of wave dissipation. Then the initiation of
undamped second-sound waves, in fact, becomes
possible. On the other hand, these steady waves
are nothing but the neutral oscillations of the con-
vective overstability .°

Temperature gradients and the relation between
the characteristic time scales determine the onset
of oscillatory instability in this case too.?

In both cases considered above, the neutral os-
cillations represent the undamped standing tem-
perature (and concentration) waves. However,
there are distinct features in these two cases.
First of all, in the second case the neutral fre-
quency is proportional to the second-sound wave
velocity. In addition, the superfluid and normal
component in these oscillations move in opposite
directions as in the second-sound waves, so that
the mass flux is identically zero. On the other
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hand, in the first case, mass transfer takes place
inside each convective cell because both super-
fluid and normal components move together.

In Sec. II of this work, the criteria of the oscil-
latory instability in different limiting cases are
obtained from the convection equations discussed
in (I). We do not consider additional dissipation
caused by the div V, contribution in the Navier-
Stokes equation. This contribution was treated in
(I). As shown in (I), these terms correspond to
relatively small “dissipation” lengths (I,/1)*<1.

1

As in the stationary convection, two limiting cases
with respect to the value of dissipation of super-
fluid motion are considered. In Sec. III, the re-
sults of criteria calculations in the superfluid
range of temperatures and concentrations of the
3He-*He phase diagram are tabulated and analyzed.
The asymptotic behavior of the oscillatory insta-
bility criteria near the X line, near the tricritical
point, and for dilute solutions are also described
here. The results of this work are summarized in
Sec. IV.

II. OVERSTABILITY ONSET CRITERIA

For the sake of simplicity we consider [as in (I)] a horizontal layer of superfluid *He-*He mixture with
free boundaries a distance [ apart which are good heat conductors.

In order to obtain the oscillating instability criteria in a *He-*He superfluid mixture, we used the com-
plete set of the convection equations in the scaled variables’ [all symbols are the same as in (I)]
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In (I) we already noted that the set of equations (1)
is non-self-adjoint. It is caused by taking into ac-
count the condition divV_ #0 in the Navier-Stokes
equation. The resulting conclusions are investi-
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I
gated in (I). There we only discuss the case

divV, =0 in the Navier-Stokes equation, valid when
(L,/1*<1 (1), i.e., when the dissipation length

is small relative to the layer height I (small dis-
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sipation of a normal motion). This approxima-
tion is valid for 7>0.5 K as shown in (I). Thus in
this paper we do not consider additional stabiliz-
ing effects caused by transferring the energy of
superfluid motion to the normal one that dissipates
rapidly when (/,/1)3>1.1

Regarding the stability analysis for the system
(1), it remains rather complicated and, as in (I),
we will investigate it in two limiting cases with re-
spect to the parameter m.

1. m> 1. Large dissipation of superfluid mo-
tion. Since in this case the superfluid motion is
insignificant, the fluctuations of the chemical po-
tential u, relax mostly diffusively as in a regular
binary mixture. The difference between this case
and a regular binary mixture shows up only in the
relation between AT, and Ac, [see I (1)] (which is
a result of superfluidity). Therefore in the super-
fluid case u,#0 and divV,=0. Thus, there are
two thermodynamic variables o and p,, and we can
express them and the vertical component of the
normal velocity V,, in the form

[V,,,0, kl=[0k), 0(2), £@)]eM - o*F. @)

Then the set of the convection equations can be
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obtained as
l 3
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with free boundary conditions

d?v
V= :0:{:0
dzz S
at
zZ=1%.

As a result of the stability analysis (3) we obtain
the following secular equation:

N +S, 2 +S5,1+8,=0, (4)

where
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The resulting condition for stationary instability following (4) is S;=0, and the corresponding criterion

appears as

RS =2Tr"/4 at K2=1%/2,

Prm —al)—apc(d -1)
P.(n, - a,d) ’

R: :Rad)u ¢1:

This is identical to expression (23) in (I).

(5)

The criterion for oscillatory instability and the corresponding

frequency of overstable motion are determined by Orlando’s relations®

$,S,~8,=0, S,>0 and w?=S,.
From (6) it follows that
i 277t

0:

e 4

t =T, RO-R
a 0—2’ a ad)z’

nPc (1 + PT) + alPT - (ch

(6)

()

waznpc [(n _ ad)Pc +n1PT][(nPC +7l1)(1 +PT) —-d(al +(1Pc)] )

4 m=-a,d, mPr ad
291r<1+1 14, mbBr >,

w®= -— =t
4P, nP, nP, n '?

and the criterion and the characteristic frequency are similar to those for a regular binary mixture .3

2. m« 1.

Small dissipation of superfluid motion.

In this case, the superfluid motion is essential,
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and any perturbations of the chemical potential relax with the second-sound velocity «, if the second-

sound velocity is the largest one in the system.

Assuming that the variable fluctuations have the same form as in (2), from the condition divx*/":o in the
Navier-Stokes equation we obtain in this case the following set of convection equations:

3
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0
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where w2=-(1/nP,L)(p,/p,)(1/1,)* and we assume the same boundary conditions as in (3). The appropriate

secular equation has the form
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Comparing to the first case [see Eq. (4)], we see that the X* term in the secular equation (9) manifests

the additional mode in the perturbation spectrum.

Indeed, as in a regular binary mixture, in the first

case three modes in the perturbation spectrum are obtained. There are hydrodynamic, thermal, and
diffusive modes. As is well known, the additional mode in the superfluid mixture perturbation spectrum

is the second-sound mode.

Let us analyze Eq. (9). The condition for stationary stability following from (9) is S,=0. That corre-

sponds to the criterion of stationary instability

Rs=21r%/4 at Ri=m%/2.

(10)

This result was obtained in (I) at 5=0. Using Orlando’s formula,’ one can obtain the following condition

for oscillatory instability:

S5(5,S; -=S;) =S5, =0. (11)
Then the corresponding neutral frequency is determined by
w?=8,/8,. (12)
From the relation (11) the quadratic equation for the oscillatory instability criterion follows:
2, 2 2, 324
+k T+ kR
VoRE = [v4(7 + B) + vy Prh ] Ry + [va(n? + 0 + v Praf(n? + k) + vsPhut | L o, (13)

where v; are the cumbersome functions of param-
eters Py, Pg, a, ay, n, ny, andd from Eq. (1).
Thus, from Eq. (13) two oscillatory instability
branches occur which consist of the interaction
between usual hydrodynamic modes and the sec-
ond-sound mode. Clearly, in this case, the cri-
teria of oscillatory instability will be very compli-
cated functions of all coefficients v; and it is im-
possible to express them in analytical form.
Hence, let us consider two limiting cases. The

—
convenient parameter for this consideration is the
relation wiP;/(n% +k?) (all coefficients v; should
be of order unity). In the first limiting case when
wiPr/(m* +k¥) < 1, the preceding results are ob-
tained. It should be noted here that one of the so-
lutions is the oscillatory instability criterion (7),
but the second solution is the stationary instability
criterion (5) because the neutral frequency for this
solution is identically zero.

The physical reason for this mode of the oscil-



2588 V.

latory instability when m < 1 and wiPz/(r® +k*) < 1
is clear. As long as the characteristic time of the
second-sound wave propagation w(}‘ is large com-
pared to the characteristic times of relaxation
processes (DE®)™!, (kk®)™', and (nk?)"!, the latter
becomes the dominating factor in the fluctuation
dynamics. Then the fluctuations of chemical po-
tential relax diffusively, and the competition be-
tween the different relaxation modes determines
the mechanical stability of the system, as men-
tioned above.

In the second limiting case when wi P/(1? +k?)
>1, a new type of overstability is obtained from
Eq. (13). Two branches of oscillatory instability
appear here and as a result the following expres-
sions for the criteria and the neutral frequencies,
are, respectively (after minimizing 2 and substi-
tuting %, in the expression for the neutral fre-

R2i=4112
at
k=7 (i=1,2)
- Py —-aP
0 —_p pl,2(y --%fr c
Roy=~RoProy 1= b " aap.)
(,.)2‘:2112(;)%, " (14)
and
50 — _p pot (. @Pr—aPc
Roy=-RaPruwy (1+nPC(1 +pT))’
(15)
2 2 2 atpr"apc).l
= 1+-4tr=dlc
wy =21 ‘”0( nPo(1+ Pyp)

Let us show now that w, is the frequency of the
standing second-sound waves. Indeed, the velocity
of the second-sound wave in an incompressible
superfluid mixture (in the thermodynamic vari-
ables P, o, and y,) is

u2:_ﬂec<?ﬁi) . (16)
pn 6c P,0

Therefore, the characteristic frequency of the
standing second-sound wave is given in dimen-
sional form by

2
2yt = L Bs duy ) 1
w* wk l pn C( ac Pya. ( 7)

The expression (17) is the same as the dimension-
al form of w% from (8).

In addition, we would like to emphasize the fea-
tures of criteria (14) and (15). First of all, it is
easy to show that both expressions are propor-
tional to I* [unlike the usual dependence of the Ray-
leigh number on a layer height (~/*)]. Both cri-
teria are proportional to the square of ratio of the
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frequencies
Ry~ — (/0" (18)

Here, wf,=(g/p,,)(ap/ao),,,u(doo/dz) is the internal
gravity wave frequency* and w}= win’/p%l* is the
characteristic frequency of the standing second-
sound wave in dimensional form (w%~ wri). This
expression is very different from the usual one
for the Rayleigh number (that is, derived from the
relation between the buoyancy force and stabilizing
dissipation factor). But criteria (14) and (15) can
also be described as resulting from competition
between two mechanisms with different character-
istic times (p,*/nk), and ws'. Therefore, as in
the preceding case, the overstability onset here

is determined by the entropy gradient as well as
by the relation between the two time scales. In-
deed, both criteria (14) and (15) can be written as

2
mnK w
“pw?zl‘*:_(z‘ﬁ)’ (19)

which coincides with (18).

R ~-RPFuil=-R

III. NUMERICAL ESTIMATES; EXPERIMENTAL
DETECTABILITY

(1) Let us write the obtained results in conven-
ient thermodynamic variables and estimate the
value of the critical temperature gradient and its
sign in each limiting case. From (7), (14), and
(15), the expressions for the criteria and neutral
frequencies are functions of five parameters a,
a, n, n;, and d. But they can be written in a form
where these parameters are expressed as func-
tions of three parameters only (e.g., ¢, ¢, and
ad/n). The parameter ¢ is the separation'**
and defines the significance of thermal diffusion
for convection instability. The remaining param-
eters are purely thermodynamic. Thus from (7),
(14), and (15) we get
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op
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Q=TT g, nI\ly ) p,> “1TT 0



24 OSCILLATORY CONVECTIVE INSTABILITY IN A... 2589
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In Table I of (I) typical values of the parameters
affecting the onset of oscillatory convection for
several values of concentrations and temperatures
below the \ line and on the left of the coexistence
separation line on the *He-‘He phase diagram are
tabulated. The sign of the critical temperature
gradients causing the overstability and appropriate
neutral frequencies can be determined without
calculations.

First of all, when the overstability shows up as
the undamped second-sound wave, the character-
istic frequency w?> 0. Indeed, as seen from ex-

" pression (20b) the sign of wf, is determined by the
thermodynamic parameter ad/n and the derivative
(0p4/9c)p,r which should always be negative from
the condition of thermodynamic stability of binary
mixtures. On the other hand, it is possible to
show that the expression enclosed in brackets in
(20b) is always positive. For this purpose let us
write this expression as a function of the parame-
ters ¢, ¢, and ad/n as

142 1-aPr/aP,
n nPp/nPc —ad/n

z[(l_ ¢ ﬂ)P_r +__‘Po__ﬂ]
149y n)P; 1l+@y n

G-z -
(21)

The sign of the parameters ¢ and ¢, is deter-
mined by the sign of a; only, but both have the
same sign in the superfluid mixtures. Besides, a
superfluid mixture is similar to a regular one
with large abnormal thermal diffusion; it means
that both parameters |¢| and |¢,| should be at
least larger than unity. It is then easy to see that
expression (21) is positive. Therefore, the sign

of the criterion R is opposite to the sign of R,;
i.e., in this case the oscillatory instability occurs
in superfluid mixtures heated from below. From
(20c) the sign of the criterion 1-222 is also opposite
to the sign of R, when oscillatory convection takes
place, i.e., when w> 0. Thus, if this oscillatory
instability branch is realized, it occurs also in a
system heated from below.

In the second limiting case, when the usual hy-
drodynamic branch of oscillatory instability ap-
pears, the sign of the neutral frequency (20a) is
determined by the value and sign of the parameter
¥, only (all other terms are positive). In any
case, when i, < 0 the neutral frequency w?> 0,
and, therefore, the sign of the criterion R? is op-
posite to that of R, i.e., in this case too the over-
stability occurs when the mixture is heated from
below.” Thus, the oscillatory convection appears
in a superfluid mixture heated from below only,
unlike the stationary convection that appears when
heated from above only.l

Since the value of the parameter m in the differ-
ent regions of the He-‘He phase diagram was
previously discussed in detail and depicted in Fig.
1 (I), here we determine the value of the second
parameter wiP;/(n®+k%). As seen from Table I
the parameter is always more than one in every
part of the phase diagram where ([,/1)*< 1.

Therefore, there are actually two limiting cases
in accordance with the value of the parameter m.

(1) m > 1, where the oscillatory instability cri-
terion (20a) is similar to the one in a regular bi-
nary mixture with large abnormal thermal diffu-

ion 23
sion.

(2) m <1 and wiP;/(m* +k*)> 1, where the over-
stability appears as the undamped second-sound
wave.

The results of the oscillatory instability criteria
and the neutral frequencies calculations are shown
in Table I.

As is apparent from Table I in the region of the
*He-*He phase diagram, where m>1 [at 7>0.8 K
(Ref. 1)], there is a narrow temperature interval
near 1 K at low concentrations which widen up to
1.5 K (between 10% and 30% °He), where the neu-
tral frequency w?>0. Therefore, the correspond-
ing overstability branch occurs in this temperature
and concentration range. The concentration de-
pendence of both the appropriate critical tempera-
ture gradient and neutral frequency at tempera-
ture 1 and 1.5 K is presented in Fig. 1 (at layer
height [=1 cm).

As can be seen from Fig. 1, the mechanical
stability of a superfluid mixture heated from be-
low rises with reduced concentration. Therefore,
the critical temperature gradient increases by a
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FIG. 1. Concentration dependence of the critical
temperature gradient and the neutral frequency at m >1
for two different temperatures. The critical temperature
gradient (K/cm): 1—1 K, 3—1.5 K; theneutral frequency
(sec™)): 2—1K, 4—1.5K.

factor of ~10° and the neutral frequency by ~100
when the concentration of *He atoms changes from
30 to 0.01% at 1 K. The second limiting case
(m<1, wiP,/(r?+k?)>1, may show up at low
temperatures (less than 0.8 K). As seen from the
calculations, the actual values of the critical tem-
perature gradient are so large in this case that
they practically cannot be realized for all possible
values of layer height. It follows from further
analysis that this instability branch may be ob-
served in the vicinity of the tricritical point.

(2) We will now determine the asymptotic be-
havior of the oscillatory instability criteria and
neutral frequencies when the concentration of *He
atoms approaches zero.

Using the relations for infinite dilute solutions
[see (I) Appendix III], it is easy to derive the fol-
lowing expressions for the criterion and the neu-
tral frequency in the case of large dissipation of
superfluid motion (m > 1):

- 1\3k, ,4aT
Beroe R(() 71

[from (29) (D],

- M,RC
zpz—I‘la(M:;"’1"1‘,)893‘:,(1+q))c ’ (22a)

2:_.9_1:1Ma§§a(1 My
Y E=T4p RCec \" TM,)?

M.S

= = o ——340
P=Qos @ 3a,TR’ (22b)

where R is the gas constant (in J/molK), S,, is
the *He entropy per gram, and C,, is the ‘He spe-
cific heat per gram. As is well known in the tem-
perature and concentration ranges of the phase
diagram considered, «, changes sign in the *He
and He-*He mixture.® For dilute *He-*He solu-
tions @ ,>0 at T< 1.1 K.® Therefore, for tem-
peratures near 1 K (0.8<7T< 1.1 K), we have m>1
and from (22a) and (22b) ¢ <0, w?>0, and R°<0
(because |@|>1 and R,>0). Thus, in this case,

“the overstability occurs indilute 3He-*He super-fluid

solutions heated from below (Table II). Therewith
both the critical temperature gradient and the neutral
frequency increases when the concentration tends
to zero, i.e., the superfluid mixture becomes
mechanically stable. However, as the concentra-
tion approaches zero, the critical temperature
gradient must approach zero in pure HeIl. This
contradiction may be explained in the same man-
ner as in the case of the stationary instability (I).
As may be seen from Fig. 1 (I), there exists a
narrow temperature interval below 0.8 K for dilute
solutions where m < 1 and wiP/(n* +%%)> 1, and
the second limiting case may be observed. Indeed,
using the relations for dilute superfluid solutions
one obtains

0 —_£Cu_p 2dTy Mg+ (My+M)o
aq

TRS,T?p, dz (Mz+M)1+¢) ’
wg=p2 1* TS p, (23a)
7 Cy Py’
272 2. Tp
2 _ el 54T
Wi i Cu Py ’
and
RO = gSuM; P 2dTy
a

2~ T RTPA+Po)l+9) dz ’
! ( T( Ps (23b)

Wog=
u l M3 Pn

2
2 _2_17_2_(1+PT)RPT(1+¢)P_§C.

Since ar >0 at T'<1.1 K, the separation parameter
¢ is negative and | |>1. Therefore, from (23b)
we have w3;< 0, and only one branch of the oscil-
latory instability (23a) can take place.’ However,
numerical estimates for R} show that for all
realistic values of layer height, the corresponding
critical temperature gradient is so large that it is
experimentally impossible to realize this instabil-
ity branch.

Thus, for dilute superfluid solutions the oscilla-
tory instability may occur in a narrow tempera-
ture interval near 1 K (0.8< T< 1.1 K) when
heated from below, and this instability is similar
to the one that appears in a regular binary mixture
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with large abnormal thermal diffusion.
Since near the \ line m ~e;' , as shown in (I), o
there is the limiting case m > 1. It is easy to show n Tt
that the system is stable when heated from below -2 S ?" ‘.’° T“ .T“
because the appropriate asymptotic value of the § o, § ; gss
neutral frequency is negative. g 3 gl aXXZ
(3) As calculations indicate (see Table I) there o S| .-'« a4
is no region in the He-‘He phase diagram where g
the second branch of oscillatory instability (20b) § - ol
and (20c) can appear. The only possibility of ob- ° gl% v “’2 T’é’. "‘33 *:;3
serving the undamped standing second-sound = > L XXX
N . . D s s o cw g 0 W0
waves is the region in the vicinity of the tricriti- S wg O] B
cal point (T,,X,). g !
As mentioned in (I), since both temperature and 3 - -
concentration gradients relax with the same time 5 Blg Wl BB D
S N4 ]
constant [which indicates strong coupling via & (Ref. 2 S < x X :4 :
10)], in the tricritical region the chemical poten- " e ,._E, -
tial fluctuations are insignificant, and the limiting @
case with m <« 1 pertains. Also in this region the .5 8 88
condition wiPg/(m? +k*)> 1 is fulfilled. o - g8
According to Refs. 10 and 11, the following sin- _g in
gularities of thermodynamic and kinetic properties §
exist near the tricritical point 0
2 o 2 =&
[a(z/g)] T (au, e g Fodn
dc Jpr P2 \dc/pr ¢ g
- <
kr~e', D~gl?, g . ©Ean
and 2 - Need
(]
> -
ps/p ~€‘ ’ g |8 T
(3]
where B S “‘g Dy 2"-
o oo Xo
e=(T,-T)/T,. = KA IS
The effective thermal conductivity shows only a El ~ ©
weak variation with temperature for the tricritical - & el $3Ix
mixture.'? ; )
Using these singularities one can easily find the a9 Q - oD
. . . S & ~N S 1B
asymptotic temperature behavior of the oscillatory o B & P
instability criteria and the neutral frequencies = g
from (20b) and (20c): g £ Rarri ISR
- e ] i) S © &~
l[;’~€,, R,,~e,2, w(2)~€g, &:‘a’ @ g cio'm'g
5 - £ —
Rg,"'ftz , wi~e, E 2 — N
50 =2 2. @ B S = | X
Raz €&, w2~E€ . §*§ th o<¥gw
Then the critical temperature gradient tends to g z ~
zero as € for both criteria. ) : “ % =
Let us now clarify which criterion (RSI or R,‘,’z) 38 M| S 3
determines the mechanical stability of superfluid = ° [ B
mixture heated from below in the tricritical re- A =
gion. Since near the tricritical point ar >0 and 2 o - -
therefore ¢ <0, <0, and 0/9o>1, EE 5§ 1% 3%
50 ~e2[1-(1--2 - & B Xg XX
R“l €, ¢ = 5 L Yo A
Po -2 N~ 0~
and (24) § a
3 vl ) 2
1-22 "‘6;2[1+<1 _i)eltlii] . ﬁ_f. & ¥ - -
2 P o
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Thus we have R} >R}, in the asymptotic limit and
the critical temperature gradient that corresponds
to Rg, defines the stability.

Using the numerical estimates of the criterion
1-22 . and the neutral frequency w4 beyond the tri-
critical point, one can obtain the following ex-
pressions:

- w1,28T, -

R =-10 41272‘1 €. )
(25

wig=4X10%%, .

For layer height =10 cm and ¢, =0.3%x10™, we
obtain the realistic values for the critical tem-
perature gradient and the neutral frequency, re-
spectively:

(26)
we~10 sec™.

Thus, the estimates presented above indicate the
possibility of observing the predicted effect in the
vicinity of the tricritical point of the *He-‘He
superfluid mixture.

IV. SUMMARY

The main result obtained in this paper is the
existence of the oscillatory instability in a super-
fluid mixture heated from below only. In different
regions of the 3He-‘He phase diagram, the differ-
ent types of overstability exist and have dif-
ferent physical origins. Two parameters, m
and wiP/(n? +k?), define the areas of application
ofthe criteria(20a), (20b), and(20c). Since here we
consider only the case of small “dissipation”
length I, so that the condition (l,/1)? < 1 should be
fulfilled, the condition wiP /(% +k?)> 1 is also
fulfilled in all considered regions of the phase

%

diagram. Due to that, there are only two limiting
cases in accordance with the value of the parame-
ter m: (1) m>1, which means large dissipation
of superfluid motion, and (2) m <1, which means
small dissipation of superfluid motion. The con-
dition m > 1 is fulfilled for 7> 0.8 K in a major
part of the superfluid *He-‘He phase diagram [see
Fig. 1 (I)]. The oscillatory instability criteria and
the neutral frequency (20a) are similar, in this
case, to the corresponding conditions in a regular
binary mixture with large abnormal thermal diffu-
sion. The calculations show that this type of con-
vection instability may be observed in a fairly
narrow temperature range between curves m=~1
and a; =0 (in the region where ar > 0).

The fundamentally new type of the oscillatory
convective instability (that, in fact, is the un-
damped standing second-sound waves) takes place
when the condition m < 1 is fulfilled. This condi-
tion is fulfilled either for low temperatures
T < 0.8 K or in the vicinity of the tricritical point.
The calculations show that for low temperatures
the corresponding critical temperature gradient
is so large for all possible values of layer height
that it is impossible to observe this effect experi-
mentally. The only possibility of observing the
undamped standing second-sound waves is in the
region of the tricritical point.

In conclusion, it should be noted that the main
features of oscillatory instability in *He-*He
superfluid mixture remain the same for more
realistic boundary conditions too.
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