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The propagation of two short different-wavelength optical pulses in three-level ab-
sorbers is studied. Combined numerical and analytic techniques are used to solve the
three-level Maxwell-Bloch equations that provide the semiclassical description of the
problem. The electric field in the model studied consists of two copropagating plane
waves, each of which is in near resonance with a transition in the absorber. A new con-
servation law, holding in the absence of relaxation mechanisms, and independent of par-
ticular values of fields and detunings, is given. It is an analog of the law expressing con-
servation of the Bloch vector length known for two-level atoms. The possibility of simul-

taneous lossless propagation of the two optical pulses is established. New analytic solu-

tions having the form of simultaneous different-wavelength optical solitons have been

found. These pairs of solitons are called simultons. In order for simulton propagation to
occur, both the pulses and the medium have to be prepared in a manner determined by
the medium s physical parameters. The conditions for such preparation are given.
Simultons are predicted to be distinct from the single-wavelength multiple-pulse solutions
resulting from large-area-pulse breakup known in two-level absorbers, as well as from
two-photon self-induced transparency. Results of numerical experiments on different-

wavelength simultaneous propagation are also presented and indicate that simultaneous

propagation may also be obtained under less stringent conditions than those predicted by
the analytic solutions. Evidence of pulse evolution and breakup is seen.

I. INTRODUCTION

In this work we describe results of theoretical
studies of the propagation of short optical pulses
through material media. We concentrate on the
situation in which the light-matter interaction is
near resonant. We extend previous work by treat-
ing a system consisting of a three-level atom in-

teracting with two different-wavelength optical
pulses, each of which is on or near resonance with
one of the dipole-allowed transitions in the medi-
um.

When the radiation is in the form of nearly
resonant pulses whose duration is shorter than all
of the relevant atomic relaxation times, the polari-
zation induced in the medium will show a definite
phase relationship with the applied radiation.
Such an interaction will be described as being
coherent. Coherent resonant interactions may be

divided into two groups, those dealing with atomic
excitation at a single space point, and those dealing
with propagation effects (in which the extent of the
atomic absorber makes it necessary to consider spa-
tial changes in the radiation field). We are con-
cerned with the latter in this paper.

The principal resonant atomic model studied to
date is the two-level atom. Within the semiclassi-
cal approach' the propagation problem in a two-
level atomic medium has self-consistent solutions
to both the coupled Maxwell and Schrodinger or
Heisenberg equations. Under the usual slowly
varying envelope approximation (SVEA) and
rotating-wave approximation (RWA) a simplified
set of equations is obtained, usually referred to as
the Maxwell-Bloch equations' (for a two-level
atom). Such a description has been adequate in
propagation studies in absorbing and amplify-
ing media. In particular, it has predicted the
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existence of lossless and shape-preserving solutions
for both absorbing and amplifying media, and
has allowed one to predict trends in pulse evolution
by using the so-called area theorem' or the area-
energy formulation of the propagation problem.
For an absorber, the single pulse asymptotic solu-
tions are given by the celebrated sech 2~ pulse of
self-induced transparency. 2 Evolution (with pro-
pagation) of nonsech pulses toward the asymptotic
sech form can involve considerable pulse reshaping
and breakup. ' Although many analytic solu-
tions 'of the Maxwell-Bloch equations are known,
numerical solutions, even for the simplified two-
level case, are the rule rather than the exception.

Tfie situation becomes more involved if one
wants to consider atom-radiation interactions for
cases involving a larger number of atomic energy
levels, different-wavelength fields, or both. In the
spirit of the simplest two-level propagation formu-
lation, in Sec. II we describe the equations capable
of handling the resonant different-wavelength pro-
pagation problem in a three-level absorber. We
will refer to these as the three-level Maxwell-Bloch
equations. In order to make the formulation more
suitable for numerical work, we have elected to
work with real and imaginary parts of Rabi fre-
quencies, rather than with the usual envelope-phase
representation. Although the concepts involved
are quite clear, the formalism has never been both
stated and solved for the three-level propagation
problem without further simplifications.

Many papers ' have been devoted to studies of
the dynamics alone of more complicated N-level
systems (N )3) interacting with the fields of
(N —1) lasers, where each field was characterized
by a constant envelope function. Work by Cook
and Shore deserves special attention, being the
first attempt to find exact RWA solutions for the
N-level atom's evolution under the influence of
several fields with time-dependent envelopes. That
work was further generalized by Konopnicki.

The two-photon (different-wavelengths) self-
induced-transparency work of Tan-no et al. ' '"
(and their work on the coherent Raman problem)
starts with a full description of the three-level
different-wavelength propagation problem, only to
simplify it immediately by the technique of adia-
batic elimination, obtaining at the end an effective
two-level-atom description, with a bilinear two-
photon Rabi frequency. For a three-level system
simplified in this way, asymptotic Lorentzian solu-
tions capable of steady-state propagation are
found. ' Regarding the full different-wavelength

resonant propagation problem, with the exception
of preliminary work of Cardimona and Stroud, '

the present paper seems to be the first attempt. '
In spite of the relative complexity of the

mathematical description we are dealing with, it is
-possible to make some analytic progress. In Sec. II
we will give a new conservation law, an analog of
the Bloch vector length conservation known for
two-level atoms, but in the present case unrelated
to probability conservation. We will also obtain
solutions to the full set of on-resonance three-level
Maxwell-Bloch equations. These have the charac-
ter of simultaneous different-wavelength optical
solitons. We will call them simultons for the sake
of brevity. For simulton propagation to occur, it is
necessary that certain conditions, imposed on the
initial preparation of both the pulses and the medi-
um, and determined by the medium's physical
parameters, are satisfied. The conditions are listed
and their implications discussed in the same sec-
tion. As a rule, the individual areas of the soliton
members of a simulton will be different from 2~.
Simultons are quite distinct from the soliton solu-
tions of both the usual' and the two-photon
self-induced-transparency problems. ' " These
points are raised in Sec. III.

In Sec. IV we report numerical results dealing
with simultaneous different-wavelength propaga-
tion. These results will show that, although the
analytic results of Sec. III have limitations to their
strict validity, there are some indications that
simultaneous propagation can be obtained under
more general and less stringent conditions. The
numerical solutions show evidence of pulse evolu-
tion and/or breakups, possibly indicative of some
global relationships governing the propagation
problem at hand. In the Appendix we will give,
for the sake of completeness, details of obtaining
the full set of three-level Maxwell-Bloch equations
used in this paper.

II. SEMICLASSICAL DESCRIPTION OF
DIFFERENT-WAVELENGTH COHERENT

PROPAGATION OF SHORT OPTICAL
PULSES IN A THREE-LEVEL

ATOMIC MEDIUM

Within this work we will deal with atoms that
consist of three discrete energy levels only, num-
bered 1, 2, and 3, with their respective energies E&,
E2, and E3. Depending on the energy eigenvalues

I E~ ] associated with given levels I j ), and on the
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allowed dipole transitions, we will deal with three
distinct configurations of levels, namely, "cascade",
"A", and "V". These configurations are shown in
Fig. 1, where arrows connecting any two levels
represent allowed dipole transitions. We choose to
label the levels in such a way that the level that is
dipole connected to both of the remaining levels is
always denoted as level 2, and the lower of the oth-
er two is denoted level 1. The electric-field vector
E is treated as a purely classical object. We as-
sume that it is the sum of two quasimonochromat-
ic plane waves copropagating along the z axis with
possibly different velocities:

E(z, t) =E,(z, t)+Eb(z, t), (la)

—i(co t —k s)E,(z, t) =e, 8', (z, t)e ' ' +c.c. , (1b)

and a corresponding expression for Eb(z, t)
Here e, and eb denote possibly complex unit

polarization vectors, co, and cob are their respective
carrier frequencies, and k, and kb denote their
wave vectors in the vacuum, i.e., co, /c and cob/c,
respectively. 8', (z, t) and 8'b(z, t) are the generally
complex amplitudes of the two waves, and are as-
sumed to be slowly varying functions of z and t in
the following sense:

BS',(z, t) « i
g', (z, t)

i ,
co Gt

(2)

The electric-field vector E, given by (1), obeys
the following Maxwell equation:

4~ g'P(z, t
E(z, t) =

z c c}t c cjt
(3)

where P(z, t) is the induced macroscopic polariza-
tion vector, and c is the velocity of light in vacu-
um.

The three-level atom is treated as a quantum ob-
ject. The Hamiltonian operator H of the three-
level atomic system in the Schrodinger picture is

H=Hz —d E(z,t), (4)

H„~J ) =E ~g), j=1,2, 3 (5)

where [E& ) denotes the energy spectrum of the free
atom.

Introducing the usual transition-projection
operators &,J as follows:

&ij' =
I
i ) &j I

ij =1» 3

we can describe the behavior of the atom under the
influence of the applied fields by giving the Heisen-
berg picture equations of motion for the &,z's

where H& denotes the Hamiltonian operator of the
atom in the absence of the applied field, d is the
electric-dipole-moment operator, and E(z, t) is to be
evaluated at the position of the dipole. A detailed
knowledge of the free Hamiltonian is not necessary.
Its eigenvalues are defined as

Bt
—[&J(t)]=in)J&)(t)

+—g [djb&g, (r)—dl &bj(t)) E(z, t),
k

where co,j. is the circular frequency associated with
transition (i~j):

and d;J is given by

FIG. 1. Possible configurations of energy levels in an
atom. Arrows indicate the allowed dipole transitions
(1~2) and (2~3), etc.

As it is outlined in the Appendix, Eqs. (7) can be
simplified leading to the following equations of
motion involving slowly varying real quantities
only:
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1 I
v12 ~au12+R12w21 ——,R23u13 ——,U23V13, (10a)

1 1

u]2 = —kgv]2 —U]pwg] + —,Rz3v]3 g UQ3u ]3 y(10b)

1 1

v&3 =hbuq3+Rq3w3q+ —,R]zu]3+ —,U]qv]3, (10c)
1

Q23 ~bv23 U23w32 —
~ R12V13+ p U12u13 s(10d)

I 1

]3 g+kb )u]3+ —,R]pup3 g RQ3u ]g

—~U12 23+~ 23 12~
1

g+ b 13
—

q 12 23+q 23 12

1

U12Q23+ ~ U23u12

1

P» 2 R12v12 ~ U12Q12 s

1 1 1

r22 ———,R12v12+, U12Q 12+ ~ R23v23

l—
p U23u23 s

1 1

f33 p
R 23 v23 + —,U23 u 23

(10e)

(10g)

(10h}

(10i}

where w21 and w32 are atomic inversions defined

by

W21 f22 F11

W32 =F33—F22 .

(11a)

(1 lb)

It should be pointed out that Eqs. (10) have been

written for the cascade configuration of atomic en-

ergy levels. In particular, we have assumed that
the applied field of the carrier frequency co, is on
or near resonance with the allowed dipole transi-
tion 1~2, i.e., a, =co21. Similarly, the field of the
carrier frequency cob is on or near resonance with

the transition 2~3. In a separate paper' we have

provided simple rules that allow one to obtain the
equations appropriate for other configurations of
energy levels directly from the equations used here.

Under the assumptions introduced so far, Eqs.
(10) constitute a full description of the interaction
between a three-level atom and two optical pulses
if all incoherent relaxation mechanisms are ig-
nored. We will refer to Eqs. (10) as the three-level
Bloch equations. In Eqs. (10) one can readily iden-
tify the terms that would describe just a two-level
atom interacting with a single pulse. The two-level
(nearly) resonant parts of our three-level atom
(transitions 1-2 and 2-3) are not independent. This
is first of all due to the obvious fact that each of
the "two-level atoms" shares level 2 with the other
one. Both transitions compete for the population
of level 2, even though they operate at different fre-
quencies. Moreover, the two-level atoms will be
additionally coupled through terms involving u13

and v 13, the real and imaginary (slowly varying)
parts of the two-photon density-matrix element in-
duced together by both (nearly) resonant fields of
carrier frequencies co, and cob.

Despite the intercouplings of the two two-level
atoms, it is possible to obtain from equations of
motion (10) the following conservation law:

2 2 2 2 2 2
V 12 +Q 12 +V 23 +Q 23 +V 13 +Q 23

+2(r»+r12+ 33)=2 2 2
(12)

P(z, t) =N( d]zo]z+ dg]]rp]+ dg3o'p3+ d32]T32)

(13)

where N denotes the density of atoms, and (
denotes averaging over the Maxwellian velocity
distribution of the atoms.

Once again, invoking the assumptions of the Ap-
pendix, we can obtain the reduced Maxwell equa-
tions for the problem,

a a 1—+ R]z(z, t) = —, G( zv)],
Bz B(ct)

(14a)

a a—+ U]q(z, t)= ——,G, (u]q), (14b)
t

Bz B(ct)

a a 1—+ Rz3(z, r)= —,PG, (v/3)
Bz B(ct)

(14c)

a a
UQ3(z, t) =—, pG, ( ug3 ) (14d)—1

Bz B(ct)

where the following definitions have been used:

4m', a)~
G, = (15a)

reminiscent of Bloch: vector conservation' in a
single two-level atom. Here C is a constant whose
value is determined by the initial conditions of the
problem. Related expressions involving only r,j's
or cr,j's can also be derived. It should also be not-
ed that similar relations dealing with two-photon
processes' "are subsets of the conservation law
(12}. The conservation law (12) holds for all times,
and is independent of the instantaneous Rabi fre-
quencies and detunings of the problem. The con-
servation law (12), together with the familiar law of
probability conservation g,. r;; =1, impose consid-
erable constraints on the possible values of the
three-level Bloch variables. '

The induced macroscopic polarization vector
P(z, t} can be written as
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db COb
2

2
d~ cog

(15b)

da, b=
I Ea,b. die. Z31 (16)

Note that G is the primitive "gain" coefficient
(gain times linewidth per unit length) of Icsevgi
and Lamb and p is the ratio of the oscillator
strengths of the two transitions.

The coupled three-level Maxwell-Bloch equations
(10) and (14) form a complete semiclassical descrip-
tion of the resonant different-wavelength propaga-
tion problem we are dealing with. Except for Refs.
9 and 13, to the best of our knowledge, the full set
of resonant Maxwell-Bloch equations have never

been treated before either analytically or numerical-

ly without major simplifications, such as the adia-
batic elimination of the off-diagonal terms involv-

ing level 2.

atomic line center detunings can be ignored. The
Maxwell equations for this case will simply become

1 1a ———n= ——,G.v (18a)

1 1
a3 ———Q= ——PG, u&3,

V c
(18b)

where the dot (.) denotes a derivative with respect
to the local pulse-time variable g. The time deriva-

tives in the three-level Bloch equations (10) can
also be trivially changed to derivatives with respect
to g. a, and a3 are the relative amplitudes of the
pulses.

Comparing the two Maxwell equations (18), we

see that restricting our attention to generalized
Cook-Shore pulses only imposes a condition on the
atomic variables and relative pulse amplitudes,
namely,

III. SIMULTONS: DEFINITION
AND ANALYTIC RESULTS

V 12 V23

3 (19)

R „(g)=a)Q(g),

R33(g) =a3Q(g) .

(17a)

(17b)

We will occasionally refer to pulses (17) as general-
ized Cook-Shore pulses. ' We will further assume
that Doppler-broadening and laser line center-

In this section we will explore the possibility of
the existence of solutions to the coupled Maxwell-

Bloch equations (10) and (14) that would depend
on both t and z variables through the argument
g=t —z/V only. Such solutions would represent

two different-wavelength pulses traveling together
(with the same velocity V) through a three-level ab-

sorber. We could describe such solutions as
"simultaneous different-wavelength solitons, " or
"simultons" for the sake of brevity. This new

name allows us to differentiate this case from the
situations when one deals with two-level pulse train
solutions or several optical solitons of the same
wavelength (such as exist from the breakup of a
large area single pulse), known in studies of self-

induced transparency. The latter we may describe
as multiple (not simultaneous) single-wavelength

solitons.
Although this is not required by the general de-

finition of a three-level simulton solution, within

this section we will restrict ourselves to Rabi fre-

quencies that are real and given by the shape-

preserving expressions

We should also note that, in fact, we are dealing
with a single differential equation for the variable

Q(g), while the other Maxwell equation is replaced

by the condition (19).
We will postulate now the following simulton

solution of the Maxwell-Bloch equations (10) and
(18) for generalized Cook-Shore pulses (17):

2
Q(g) =—sech

7 7
(2Oa)

u ~3(g) =a
~

sech ~ tanh
7

(20b)

u33(g) =a 3 sech ~ tanh
7 7

(20c)

w 3, (g) =a, +a4 sech
7

(20d)

w 3$(g) =as+a6 sech
7

(2o )

u ~3(g) =a7 sech~
,

7
(2of)

where 7 denotes the pulse length and a3 and a5 are
the initial inversions wz&(g= —00 ) and

w 33(g = —m ), respectively. Substituting relations

(20) into (10), and assuming that a~ and a2 are

known, we solve the resulting system of linear
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a ~
———2aia3, (21a)

homogeneous algebraic equations' in terms of a3
obtaining

a2 ——— ——sech ~ tanh
1 1 2
V c r r r

a2 ———2 — a3,
a2

(21b)

r

a&=—zG, pa3sech ~ tanh
'r (25b)

2a4 ———aia3, (21c) Comparing coefficients of both sides of (25a) we get

a&
a5 ———2a3,

a2
{21d)

1 1 Gaa3

2 1/V —1/c (26)

2a6= —a&a3

a7 ——a)a2 1—ai
a3,

a2

2 2a&+a2 ——1 .

with the condition

a~ +a2 ——4.2 2

Alternatively, we can find the solutions

a
&

———2a&a3,

a2 =2a2a3,

a4 ———(1+ai)a3,2

a5= —a3 ~

a6 ——(1+a2)a3,

a7 ——2a~a2a3,

under the condition

(21e)

{21f)

(22)

(23a)

(23b)

(23c)

{23d)

(23e)

(23f)

(24)

We should note that in order to have r & 0 and
V ~c, we have to require that a3 &0. Since a3 is
the initial inversion for levels 1 and 2, and we are
interested in absorbers, a3 is clearly negative in all
cases considered here.

In common with two-level self-induced trans-
parency, ' the problem at hand has one free
parameter. Thus we can treat (26} as a definition
of r with given velocity V, or conversely, as a de-
finition of V when the pulse width is given.

We obtain another relation among the parame-
ters,

2
——1,

ai
{27)

by dividing {25a}by (25b). Relation (27) represents
another restriction on the possible relative ampli-
tudes of the pulses, expressed in terms of the physi-
cal parameters of the problem (dipole moments,
carrier frequencies). We can obtain from (22) and
(27) the following expressions for amplitudes a&
and a2.'

1 1
ai

V c 7 T

=aiG, a3 sech ~ tanh
T r (25a)

At this point, -we are dealing with two classes of
equally possible solutions of the Bloch equations
(10) when the applied pulses are given by (17) and
Q(g) by (20a). The Bloch equations (10) by them-
selves will not provide us with any indication that
one of the solutions may be preferable over anoth-
er. This situation changes when we try to establish
the compatibility of solutions (21}and (23) with
the Maxwell equations.

We consider first the case ai+a2 ——4 and the2 2=
cascade-configuration Maxwell equations (18). Us-
ing (20) and (21), and substituting into (18) we ob-
tain

4
1+P ' (28a)

(28b)

Relations (28) express the fact that, in a cascade
medium characterized by parameter p, only such
generalized Cook-Shore pulses whose amplitudes
are given by (28) and profiles by (17) and (20), wi11
be potentially able to propagate as a three-level
simulton. Conditions (28) will not, however, be
sufficient to secure such propagation.

Another factor that still has to be considered is
the proper initial preparation of the medium, im-
plied by the explicit connection (21d) between the
initial inversions a3 and aq. One of the conse-
quences of the relation (21d) is the fact that for a3,
ai and a2 all nonvanishing, simulton propagation
is not possible in a cascade medium that was ini-
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tially in the ground state (a3 ———1), as that would

imply that the inversion between levels 3 and 1,

W3) =Wp) +W3p,

is initially less than —1, resulting in a contradic-
tion. Thus simulton propagation is, in a cascade
atom, possible only for an appropriate initial mixed
state, in which the initial inversions are connected
by relation (21d).

One should also note that changes in both inver-
sions, represented by the aiai sech (g/r) terms, are
identical, even though the initial inversions a3 and
a5 are not, generally speaking, equal. As a result,
inversions wqi and w3z are not, in general, propor-
tional to each other.

One can show by appropriate substitutions that
in the cascade case, solutions (23) characterized by
ai+aq ——1, result in a contradiction (P= —1).
Thus, three-level simulton propagation is impossi-
ble in a cascade system when the amplitudes satisfy
a~+aq ——1. The requirement of compatibility of
the solutions (23) and (21) of the three-level Bloch
equations with the Maxwell equations (18) has thus
established that only generalized Cook-Shore pulses
with a&+aq ——4 will propagate as simultons in a
cascade medium.

The contradiction of the negative P can be elim-
inated if a sign in one of the Maxwell equations is
changed. Such a change corresponds to a change
in atomic configurations. ' To be specific, let us as-
sume that we are dealing with the A configuration
of levels. This changes the sign in Eq. (18b). Sub-
stituting the solutions (23) characterized by
a~+a~ ——1 into the appropriate Maxwell equations
for the A configuration, we obtain again (26) as a
definition of r (or V), and get the condition

(29)

It is interesting to note that, in this case, there is
only one condition involving Rabi frequencies,
namely, (24). On the other hand, the Bloch-
Maxwell compatibility requirement resulted in
condition (29), which involves medium parameters
only (we are on resonance so carrier frequencies are
equal to atomic transition frequencies). This im-

plies that for certain dipole-allowed transitions in
the medium the simulton propagation of the form
assumed here (20) and (23) will not be possible, re-
gardless of particular values of the amplitudes ai
and aq. Appropriate dipole-allowed transitions po-
tentially able to support the propagation of simul-
tons given by (17) and (20) have to be identified
from spectroscopic data.

We should also note that the initial inversions
are identical in magnitude. The minus sign in
(23d) results from our notation in which, for the A
configuration, the condition w3z ~ 0 represents the
situation where the lower energy level is more
strongly populated. The terms representing
changes in inversions (those involving sech ) are, in
this case, different in magnitude. This situation is
the opposite of what we saw for the cascade case,
where the initial inversions were different and the
inversion changes the same. The net result, howev-

er, is similar: the two inversions are not, generally
speaking, proportional to each other.

The fact that a3 ———a5 in the A case precludes
the possibility of simulton propagation in an ab-

sorber that was initially in the ground state. The
minimum possible initial inversion is only

1

Cl3 2'
It is easy to show that the possibility of simul-

tons characterized by a&+a&——4 has to be ruled
out for the A configuration. This can be done, as
before, by requiring the consistency between Bloch
and Maxwell equations and arriving at the condi-
tion p&0.

It is also easy to show that solutions (23) charac-
terized by a i+ ate

——1 are also appropriate for the V
configurations. Most of the above discussion for
the A configuration still holds for the V configura-
tion. It is interesting to note that, for the V confi-
guration, simulton solutions (17) and (20) will be
supported by a medium initially in the ground
state (all population in level 2). Moreover, the
range of possible inversions is larger than in the
previous case.

Looking at the amplitude condition (24) we see
that for V and A configurations the areas of both
individual pulses of the simulton will be always
smaller than 2m. On the other hand, for the cas-
cade configuration, as implied by (22), at least one
of the areas of the individual pulses of a simulton
will be greater than 2m. Thus, the areas implicated

by (22) or (24) will be, in general, quite distinct
from the 2n. area of a two-level self-induced-

transparency soliton.
One can show that the cascade solutions (21) im-

ply that rzz ——const throughout the entire interac-
tion. That fact, clearly, has been derived and not
assumed. However, it may be interesting to note
that a restricted case of the coupled Maxwell-Bloch
equations may be treated if the condition

rzq ——const is imposed at the beginning. In the
remaining two configurations rzz does not remain

unchanged for the solutions (23).
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IV. SIMULTONS: NUMERICAL EXPERIMENTS

In Sec. III we have predicted that the two
different-wavelength sech pulses given by (17) and

(20a) will be able to propagate in a lossless and

shape-preserving manner through a three-level

atomic medium, provided that the medium and the

pulses are prepared in an appropriate wpy. These
simultaneous optical solitons, or simultons, and the
corresponding atomic dynamics have been shown

to be solutions of the on-resonance three-level

Bloch equations and the reduced Maxwell equa-
tions (without phase variation) ~ It should be
remarked that the on-resonance assumption is not
very restrictive. With pulses that are short enough,
one is in the so-called sharp-line regime, where the
entire atomic line is excited because the pulse
Fourier transform is very broad.

Now we consider the results of numerically

modeling the propagation of two specific incident
sech pulses in a lossless medium. At the entry face
of the medium (z =0) the pulses are simultaneous

and identical: they have the same pulse lengths
T =7 b =%=0.333 in arbitrary units, their peaks
coincide, and the peak Rabi frequencies are

D, =As ——v 2—.2
'r

The individual area of each pulse is v 2(2n. ). We
have taken, for the sake of simplicity, P= 1. The
Doppler widths are identical and equal: h&Q 23

=1.0. (Doppler width is defined as full width at
half maximum) ~ The full width of each pulse's

Fourier transform is -5.033, enough larger than

1.0 that we are close to having a pure sharp-line

case. The medium is prepared in a mixed initial

state with no off-diagonal coherence, and with

equal initial inversions. These initial conditions

are achieved by choosing the following initial po-
2 1

pulations: r» ——
3 f22 3 f33 —0.

The results of numerically modeling this pro-

pagation problem are shown in Fig. 2. The
manner in which the information is presented in

Fig. 2 will be adopted throughout this paper. Each
column shows the temporal behavior (of the pulses

and of the level populations) in a given cross-

sectional plane of the absorber. The propagation
distance (from the entry face at z =0) is measured

in units of the inverse low-signal inhomogeneous

absorption length defined by

a=6,ngD(0), (30)

where gD(h) is the distribution of atomic detunings

corresponding to the distribution of atomic veloci-

ties mentioned below (13). The bottom member of
the column shows the two pulses (of carrier fre-

quencies co, and mb, labeled 1 and 2, respectively)
as a function of the local time variable g=t —z/c.
The vertical scale shows the real parts of the Rabi
frequencies. In Fig. 2 the envelopes of pulses 1

and 2 satisfy simulton conditions, as well as P=1,

"22 ~- Is) $$$) s~sS ~ &

aasre ~ as@as s s s

=0. 0 =100.0 =200. 0 =3UO. O

I.50 5.M %.50 &.IS I.50 S.tg %.50

I ~ SSSSS~ $$

I.OO I.50 9.III %.%0

FIG. 2. Simple example of simulton propagation. Each column shows the temporal, behavior of the pulses and of
the level populations in a given cross-sectional plane of the absorber. The propagation distance (from the entry face at

z =0) is measured in units of the inverse low-signal inhomogeneous absorption length, defined by Eq. (30). The bottom

member of the column shows the two pulses (of carrier frequencies co, and co~, labeled 1, and 2, respectively) as a func-

tion of the local time variable g=t —z/V. The vertical scale shows the real parts of the Rabi frequencies. Above each

graph of the pulses we show the atomic populations for the resonant atomic levels, labeled 1, 2, and 3, respectively. In-

cident sech pulses have individual areas &22m. Initial populations are r» ———,r22 ———,and r33 —0.
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=-,'(aL)
T2

(31)

where Tz is the usual' inhomogeneous lifetime.
The same quantity can be estimated from Fig. 2.
Both the numerical and theoretical values give

and are not distinguishable in the graphs. Above
each graph of the pulses we show the atomic popu-
lations for the resonant atomic levels, labeled 1, 2,
and 3, repsectively. The propagation distances for
the columns are marked in the top right-hand
corners of the. plots of the pulses. Figure 2 con-
tains four of the columns described above.

Figure 2 clearly demonstrates that the different-
wavelength hyperbolic secant pulses found in Sec.
III do indeed propagate in a lossless and shape-
preserving manner in a three-level medium. The
medium may be inhomogeneously broadened, as
long as the sharp-line conditions are realized, and
the pulses and medium are prepared in the ap-
propriate manner. The on-resonance analytic
description utilized in Sec. III is thus shown to be
adequate within the limitations of the sharp-line re-

gime.
Note further that the two pulses propagate to-

gether and experience a delay (relative to the light
line z =et) that linearly increases with propagation
distance. That is, the peak of the simulton is later
in time at later z positions. One can be more
quantitative-at this point. We can define the delay
in propagating through a distance L to be

~~
—=(1/V —1/c)L. Then, in the present example,

from (26) and (30), we find

rd =
& G,HLwg( (g= —ao )

~~ —1.87. The agreement is certainly satisfactory.
It seems appropriate to point out that, due to the
presence of wq~(g= —oo ) in (31), simultons will

travel faster and experience smaller delays than the
pulses of ordinary two-level self-induced-

transparency theory. In Fig. 2 the delay is three
times smaller. The atomic dynamics at the entry
face, represented here by the three on-resonance po-
pulations, shows behavior characterized by a full
"rotation" of the initial state from r» ——

3 rgb —3,
1 =2and r33 —0 to r» ——0, rzz ———,, and r33 —

3
when

the pulses are at their (coincident) peaks, and by
the return of the atom to its initial state after the
pulses have passed. Owing to the fact that we are
in the sharp-line regime, the on-resonance popula-
tions and their respective Doppler averages are al-

most identical at all times. One should also note
that the population of level 2, for the case under
consideration, remains constant during the entire
pulse-atom interaction. The populations r

& ~
and

r 33 on the other hand, are at all times symmetric
with respect to rqq. All those features remain unal-

tered during the propagation.
Next, in Fig. 3, we show the propagation of

simultaneous identical incident pulses of temporal
profiles different from sech. The individual pulse
areas are close to W2(2n. ), the Doppler widths are
again 1.0, and the pulse lengths -0.3. For such
pulses we are even further into the sharp-line re-

gime that was the case for the sech pulses of the
previous example. Figure 3 displays results ob-
tained with (top) Gaussian and (bottom) super
Gaussian j with initial temporal behavior of the

type 0-exp[ ——,(t/r) "],where n & 1I pulses, for

propagation distances up to az =300. We note

Z=O. 0 Z=100. 0 Z=200. 0 Z=300. 0

(a)

Z=O. 0 Z=100. C =200. 0 =300.0

~ 0 SSIast

FIG. 3. Simultaneous propagation of (a) Gaussian and (b) super-Gaussian pulses. Parameters are the same as in Fig. 2.
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that deviations frown the incident sech shape of Fig.
2 result in visible asymmetries between the leading
and trailing parts of the propagating pulses. For
the super Gaussian the asymmetry is stronger and
takes the form of modulation of the leading edge of
the pulse. It is interesting to note that, for a given
propagation distance, in spite of the fact that the
temporal profiles of the pulses differ in their de-

tails, the position of the (main) peak is approxi-
mately the same for the Gaussian and for the super
Gaussian. The peaks experience a delay that is ap-
proximately linear, like that given by expression
(31). Thus, an interpretation of those results as
showing evolution toward a stable sech forms seems
plausible. The ringing can be regarded as a (hr
area pulse superimposed on the emerging sech
form. Throughout the entire interaction the pulses
still travel and evolve together, although they did
not start as sech pulses. One should also remark
that the population in level 2 still remains —, at all

times, and the symmetry between r&~ and r33 (with

respect to r22) is preserved. After the pulse's pas-
sage the initial conditions are restored, as was the
case in Fig. 2.

In Fig. 4 we display results obtained for super-
Gaussian pulses propagating through media
characterized by different Doppler broadenings.
Case (a) corresponds to h~p 23 —1.0, case (b) to

6Jp 23 —10.0, and case (c) to h&2 23 —40.0, respec-D D

tively. The medium's other parameters and its
preparation are the same as in the two preceding
examples. The pulses used here are the same as
those in Fig. 3 (for the super-Gaussian case).
Based on their Fourier widths, both cases (a) and

(b) fall within the sharp-line regime. As meaning-

ful comparisons can be made only for physically
corresponding propagation distances, we will com-

pare the results in case (b) with those of case (a) for
distances (in units of a ') ten times larger.
Indeed, the two cases are quite similar, as far as
the pulses are concerned. Some differences will oc-
cur between the Doppler averges of the populations
of cases (a) and (b), without, however, an appreci-
able effect on the pulses. For the broader case (c),
over distances up to aL=30.0, the leading edge
modulation seems to be smaller and to be disap-

pearing faster than in the other two cases. The
trailing edge ringing is more noticeable in case (c),
but it also seems to disappear with propagation.
For case (c), the pulses also seem to be more ad-
vanced in their evolution toward a sech asymptotic
form, as one would expect for a broader-line ab-
sorber. In all three cases pulses 1 and 2 still pro-
pagate together.

It is interesting to add that, even for case (c), the
population r22 and its Doppler average still remain

Z=O. 0 Z=100. 0 =200. 0 =300.0

Z=O. 0 Z=10.0 =20. 0 =30.0

al
Z=O. 0 Z=10.0 Z=20. 0 Z=30. 0

FIG. 4. Propagation of super-Gaussian pulses in media with different Doppler broadening. (a) 5~2——1.0; (b)
h, ~q

——10.0; (c) h~q ——40.0. Other parameters same as in Fig. 2.
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constant, and the symmetry between r~i and r33,
with respect to rzz, is preserved. It should be not-

ed, however, that the range of changes in the
Doppler averages of r» and r33 is smaller than
that of the on-resonance variables. An atom is still
left by the pulses in its initial state, in spite of pro-
pagation, both in the sense of on-resonance and
Doppler-averaged variables.

Figures 2—4 not only demonstrate the validity
of the asymptotic sech simulton solutions in the
sharp-line regime, but also offer some evidence that
such solutions may still be adequate in moderately
broad-line cases, and that incident simultaneous

pulses with temporal profiles different from sech

may still propagate together, while apparently
evolving toward the sech form asymptotically.
This is more than we can account for analytically
(see Sec. III), and it may be suggestive of the possi-
ble existence of some global evolution relations
analogous to the pulse area-pulse energy formula-
tion of two-level propagation problems. '

Realizing the limitations of the analytic descrip-
tion currently available, we will adopt a more ex-

perimental attitude and pick case (b) of Fig. 4 as a
"standard", with the intention of exploriag how
sensitive it will be to small changes of parameters
such as pulse amplitudes, pulse widths, simultane-

ous arrival of the incident pulses, and the initial

preparation of the medium.
Figure 5 shows how the standard case is influ-

enced by a small deviation from the correct
preparation of the medium. Here the initial condi-
tions are ri~ ——0.7, rq~ ——0.3, and r33 —0. Over the
propagation distance up to aL =120.0, the two
pulses show some slight differences of amplitude

modulation. It seems, however, that the centers of
gravity of the main pulses still travel together. It
would certainly be difficult to distinguish the two
pulses in practical experimental situations. We
may perhaps say that, practically speaking, for the
propagation distances of our standard case, the
pulses may still be considered as constituting a
simulton, in spite of slightly incorrect initial condi-
tions.

One should also note that in the current case the

population rzz (and its Doppler average) does not
remain constant throughout the interaction. It ex-

periences slight modulation, and, after the pulses's
1

passage ends up closer to the "correct" value of —,.
Similarly, the final population in level 1 is slightly

2
less than 0.7, closer to the correct value of —,. The

modulation of rzz is found to be a characteristic
feature in other perturbed cases also. As the other
two populations change smoothly, and in a manner

reminiscent of the standard case, it seems reason-

able to assume that there is a connection between

the modulation of rzz and the modulation of the

pulse amplitudes.
In Fig. 6 we show the propagation results for the

standard case with the following modifications:

(top) the initial pulse amplitudes are perturbed by
5% in the opposite directions from the optimum

value; (middle) the peaks of two identical pulses are

separated by a small fraction of the pulse width,

and (bottom) the widths of two pulses of equal am-

plitudes and coincident peaks differ approximately

by 5%. Apart from small details, the character of
all three cases is identical, and quite similar to the
behavior shown in Fig. 5. The conclusion, clearly,
will have to be the same: Although the pulses

~ I

L

Z=O. 0 =40. 0 Z=80. 0 Z=120. 0

FIG. 5. Propagation for a standard super-Gaussian case with perturbed initial populations (r~~ ——0.7, r~~ ——0.3,
r33 ——0).
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Z=O ~ 0 =40.0 Z=80. 0 Z=120. 0

(a)

Z=O ~ 0 =40.0 Z=80 ~ 0 Z=120. 0

Z=O. 0 =40.0 Z=80. 0 Z=120. 0

(c)

FIG. 6. Propagation in a standard case with small modifications of (a) amplitudes, (b) pulse separations, and (c)
pulse widths.

show slightly different modulations, for the pro-
pagation distances consid'ered here we can still say
that pulses are practically identical and continue to
travel together, effectively as a simulton.

We may also remark that although the results
shown in Figs. 2—6 have been obtained for P= 1

and, in particular, for a special choice r~ ——1 and

r~ 1(rI c——oglco„—r~=Plr~}, it is possible to
demonstrate again that other choices ry and r~,
combining to P= 1, lead to results that are not ap-
preciably different from the cases reported so far.

Such a situation is clearly more realistic and more
attractive from a practical point of view, as it
leaves us more freedom in choosing the appropriate
transitions capable of supporting simultaneous
different-wavelength pulse propagation. We will

not, however, display such results here.
Finally, in Fig. 7 we show how the standard case

is affected by the presence of atomic relaxation.
For simplicity, we allow for relaxation from level 3
to 2, and from 2 to 1 only. The rates of both
processes are taken equal for simplicity and denot-

Z=O. 0 =40.0 Z=80. 0 Z=120. 0

Z=O. 0 Z=40. 0 Z=80. 0 Z=120. 0

FIG. 7. Effect of internal population-conserving relaxation on the standard case. (a) A =0.1, and (b) A =1.0.
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ed by A. The top case, with A =0.1, is quite
similar to the last two examples reported: the
pulses show some modulation but still travel to-
gether. The bottom case, with A =1.0, shows that
simultaneous propagation is disrupted for distances
longer than az =40.0. It is interesting to note that
the usual self-induced-transparency behavior in a
compatible case (i.e., amplitude of inversion
changes restricted to —,) will be disrupted faster,
due to the same rates of coherence decay in both
cases, but a faster decay of inversion in the two-
level case.

Figure 8 illustrates the situation in which the
propagation occurs in a medium whose preparation
is substantially different from that required for
simultaneous propagation to exist. The medium is
assumed to be initially in its ground state. The
remaining medium and pulse parameters are the
same as in the standard case. For the sake of com-
parison, we also display in Fig. 8 the earlier results
for the standard case. The maximum propagation
distance for both prepared and unprepared cases
was uL =120.0. We see that already for distances
az-30.0 the pulses for the unprepared case are
quite different in their profiles and velocities. They
clearly cease to propagate together. We see that in
the unprepared case pulse 2 concentrates most of
its energy in a modulated part traveling with the
vacuum velocity of light. .On the other hand, pulse
1 is delayed. Clearly, due to the "incorrect"
preparation, the medium behaves as an absorber in-

itially only for pulse 1, and all features of the
simultaneous propagation are rapidly lost.

All of the results reported so far have dealt with
three-level "2~"pulses. It seems worthwhile to in-

vestigate the behavior of incident simultaneous
pulses of larger areas. Figure 9 shows the results
obtained for identical three-level 4m. pulses in the
standard case [the area of an individual pulse is

~2(4ir)]. The area has been increased by simply
doubling the amplitudes used in the previous
standard experiments. The maximum propagation
distance is aL =360.0.- We note that the two
pulses still propagate together, and that each of
them experiences a breakup into two pulses of dif-
ferent amplitudes, widths, and velocities. Some
ringing is also present. The pulses resulting from
the breakup could be interpreted as being close to
the asymptotic sech W2(2m. ) solutions, based on the
atomic dynamics (the initial conditions are practi-
cally restored after passage of each of the two
pulses), and on the fact that the relative delay of
two peaks increases approximately linearly with
the distance, as would be expected from asymptotic
sech solutions [narrower sech pulses have larger
amplitudes and travel faster, as can be seen from
expression (31)].

Until now our discussion concentrated on the
cascade configuration, and specifically on the case
characterized by the coupling parameter P= l. For
the sake of completeness, we will also show exam-
ples of results for other configurations of energy
levels, and for different values of P.

In Figure 10 we display results obtained for a
three-level 2ir-pulse combination when P=O. l.
Other parameters of the problem are

~, =~b ——0 333, Qg 38 139

Qb ——12.060, 5~2 ——523 —1.0 .

1,2

FIG. 8. Standard case propagation in a prepared (left)
and unprepared (right) medium. The uppermost profiles
show the pulse pairs at the entry face, and each succeed-
ing lower profile shows the results of deeper propagation
into the medium. Initial pulse areas are approximately
~22m. in all cases. Maximum propagation distance is
aL = 120.0.

The amplitudes are related by (22), and the initial
preparation of the medium is prescribed by (21d)
and gives r&&

——0.524, r22 ——0.424, and r33 —0.0.
The chosen value of P is realized in our case by

ry ——1.0 and r~ ——0.1. We are again dealing with a
sharp-line regime. One can see that the pulses pro-
pagate together. Compared with example (a) of
Fig. 4, we see that the pulses in the current case
behave in a familiar manner but evolve more slow-
ly. This can be attributed to the fact that the am-
plitude of inversion changes is much smaller for
transition 1~2 in the current case. We note that
the population r2q again remains constant, and that
the inversion in transition 2~3 is not changing its
sign during the entire interaction. We also note
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I'

{

Z=O. 0 Z=120. 0 Z=240. 0 Z=360. 0

FIG. 9. Simultaneous propagation of a three-level 4~-pulse combination in a standard case.

that r~~ and r33 are still symmetric with respect to
each other, but rzz does not play the role of a sym-

metry axis any more.
Case P=0. 1 can also be realized by other com-

binations of rf and rq The po. ssibility rf&1 is at-

tractive if one is particularly interested in the
different-wavelength aspect of the problem.
Results obtained do not differ significantly from

those of Fig. 10. One should remember, however,

that for larger rf's one of the transitions may ap-

proach the broad-line regime, while the other still

satisfies sharp-line conditions.
Finally, in Fig. 11 we show an example of

results obtained for two identical super Gaussians
of individual areas (1/v 2}(2n } propagating in a
medium with the A configuration of energy levels.

The medium is prepared according to (23d} with

the initial populations r&&
——0.5, rzz ——0, and

r33 0.5. Parameter P has to be 1 .0, as shown in

Sec. III. The pulse widths and Doppler widths are
the same as in previous standard cases. We are
thus in a moderately sharp-line regime. The pulses

propagate together and behave in a way similar to
that shown in Fig. 4, case (b). Populations r&& and
p 33 are identical. After the passage of the pulses
the initial conditions seem to be restored. One
notes that the population of level 2 never exceeds
—,. It is useful to remember that, in our notation,
for the A configuration, level 2 has the highest en-

ergy. We should also remark that similar results
will be obtained for the entire range of values of rf
and r~, compatible with P=1.0, and for unequal

pulse amplitudes, as long as condition (24) is
obeyed.

a
Z=O. 0 Z=400. 0 Z=800. 0 =1200.0

FIG. 10. Sharp-line simultaneous propagation for P=0. 1 Pulses and the medium are prepared in a manner

described in Sec. III.
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l, 3

.2

a'
2=0. 0 Z=(40. 0 Z=80. 0 .0

FIG. 11. Simultaneous propagation in a medium of A configurations.

V. DISCUSSION

In Sec. III we have obtained the simulton solu-

tions (21) or (23) to the coupled on-resonance
three-level Maxwell-Bloch equations. The solu-
tions are in the form of generalized Cook-Shore
pulses, subject to restrictions (22) and (27) or (24)
and (29).

We have focused our attention on generalized
Cook-Shore pulses only. ' One may argue that
such pulses are intuitively attractive as candidates
for three-level solitons. This choice allows a par-
ticularly simple description of the propagation
problem. Concepts can be freely used that have
been developed for two-level propagation
theory. ' More general multilevel solitons have
been found and will be described subsequently. '

One can now recognize that certain solution pulses
known in two-photon self-induced transparency
and coherent Raman propagation, ' "may also be
described as generalized Cook-Shore pulses since
they have a common time dependence with possi-

bly different amplitudes. However, those ampli-
tudes are not related by conditions (22) or (24), due
to the different nature of those problems.

The two important assumptions characterizing
our solutions (on resonance and Cook-Shore form)
are certainly limitations on our results. The simul-

ton solutions given by (21) or (23) may, however,
merit further attention by the mere fact of their ex-
istence. They are the first solutions to the full

three-level two-pulse problem obtained without

simplifying assumptions about the atomic system
such as, for example, the adiabatic elimination of
the middle level, commonly used to obtain a

description of two-photon coherent processes.
In order to be able to propagate the simultons

described here, i.e., to obtain lossless and shape-
preserving propagation of different-wavelength

pulses in a three-level medium, one has to perform
three tasks. First, one has to obtain spectroscopic
information determining the value of P. This is

particularly important for A and V configurations,
where P+1 precludes simulton propagation.
Second, one has to prepare the medium in an ap-
propriate initial state. Third, one has to make sure
that the input pulses are of the generalized Cook-
Shore type. Only an appropriate preparation of
both the pulses and the medium will result in
simulton propagation.

It should be noted that results (20) and (21) or
(23) can be expressed in terms of trigonometric
functions of the argument

8(g) =I Q(g)dg,

linear in 0, whereas arguments of similar tri-
gonometric expressions appearing in two-photon

propagation problems are bilinear in the fields or
one-photon Rabi frequencies. ' " This difference
reflects the fact that our problem is "double-
photon" rather than two-photon. Another distinc-
tion exists between simultons and two-photon self-

induced-transparency pulses, which are associated
with the two-photon term v&3, while u ~3

——0. On
the other hand, for simulton pulses, the opposite is
true: u~3 is the term that matters, although it may
vanish for P= 1, and v, q is identically zero. The
roles of the v~3 and u i3 variables can be seen as
distinct, in analogy to the one-photon terms: vi2
(or v23) and u ii (or u2i) being identified as the ab-

sorptive and dispersive components, respectively, of
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induced dipole moments. Also, the one-photon
terms U ]2 and 023 are adiabatically eliminated {as
are u12 and u23) from the description of the two-
photon self-induced transparency, while they play
an essential role in simulton theory. Clearly,
simultons are also distinct from the solitons of the
usual one-photon self-induced transparency.

Our numerical experiments show that the ability
of difterent-wavelength pulses to travel together is
not seriously impaired, from a practical point of
view, by small deviations from the ideal prepara-
tion of simulton conditions. It also appears that,
although we have developed simulton theory for
the sharp-line case (minimal inhomogeneous
broadening) a moderate amount of Doppler
broadening is not destructive. Examples of pulse
evolution toward stable asymptotic forms and of
the simultaneous breakup of large-area combina-
tions of pulses may be suggestive of global relations
governing multilevel pulse evolution.

o'21(z, t) = r21(z, t) exp[i (t0, t —k~z}],

o32(z, t) =r32'(z, t}exp[i(cobt k—bz}],

o»(z, t) =r32(z, t)

(Ala)

(A lb)

Xexp[i [(t0, +o)b)t —(k, —kb)z]], (Alc)

o;;(z,t)=r;;(z, t), i =1,2, 3

rj(z, t)=rj*, (z, t), . i =1,2, 3 .

(Ald)

(Ale)

Then, in the equations for the slowly varying r 's,
we neglect terms oscillating at optical frequencies.
We are led to the following simplified equations of
motion involving only slowly varying quantities, r,J
and n."b:

EJ

a br 12 = —i~or 12+—
l Q21(r11 —

r22 }+Q23r 13]
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(A2b)
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gr„=+—(0,, r, —n, r, ),
2

APPENDIX

l g g
r22 = ——(Q12r 12-Q21r21 }

2

We will present belom, for the sake of complete-
ness, some details of obtaining the coupled
Maxwell-Bloch equations {10)and (14) from equa-
tions (3) and (7).

We will not be interested in operators &,J. as
such, but rather in their expectation values (&,J ),
which we will denote simply o;- without a circum-
flex, for an arbitrary initial state (possibly mixed)
of the three-level atom. That initial state is
described in terms of a stationary density operator
in the Heisenberg picture. By dropping the cir-
cumflexes in (7) we obtain appropriate equations of
motion for the expectation values o.,j.

Equations of motion (7) can be further simplified
if one uses the usual' slowly varying envelope
representation (SVEA) of the atomic expectation
values, and the rotating-wave approximation
(RWA). First, we factor appropriate carrier waves
out of the o;J ..

+—(Q23r 23
—Q32r 32 }, (A2e)

Q12———(d12 e,*)S",(z, t), (A3a)

( d ~
~Q )gQ( t) (A3b)

Q21 ———(d21 e, )S', (z, t}=(Q12)~, (A3c)

b 2 .~ b
Q32 (d32 b e+)b~(zt)(Q23}

fi
(A3d)

b b
r33 (Q23"23 Q32"32 }

2

rj ——rj';, i j=1,2,3.
Here the t- and z- dependent Rabi frequencies are
defined as
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and 5, b are the detunings of carrier frequencies co,
and cob from the respective nearly resonant atomic
transition frequencies ~2i and ~32, namely,

fied if one expresses the complex quantities Q,J.
'

and r 1 (i') in terms of their rea1 and imaginary

parts

kg =c02i —cog~ 6)2i p 0
~12 ~12+&U12 ~

Ab =&32—Q)b, N32 Q 0 ~

Equations (A2) have been written for the cascade
configurations of atomic energy levels, with the ap-
plied field of the carrier frequency ~, (cob) on or
near resonance with the allowed dipole transition
1+ 2 (2~3). Equations (A») can be usefully modi-

b
923——823+ t Up3,

1

rkl ———,(uk(+tUkI), k)I, I —&~».

(A5b)

One then obtains the equations of motion (10) in-

volving real quantities only.
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