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The nonresonant-multiphoton-ionization problem for a diatomic molecule is formulated as the one-photon
ionization of a perturbed orbital. The continuum and perturbed orbitals are calculated in the “frozen-core” Hartree-
Fock potential of the molecular ion. These orbitals are expanded in spherical harmonics about the internuclear
center of mass, and the projected, coupled radial equations are solved iteratively. The radial perturbed orbitals are
obtained in every iteration using an exact Green’s function calculated in the diagonal, local elements of the potential
matrix. This step is of some interest since use of the Green’s function to achieve, implicitly, the summations over
complete sets of intermediate states has previously been confined to Coulomb or quantum defect method modified-

Coulomb problems.

1. INTRODUCTION

Owing to its small probability even at high pho-
ton fluxes, nonresonant multiphoton ionization
(MPI) has been of limited experimental interest
compared with resonant multiphoton ionization
(RMPI). Recent work,' however, has defined con-
ditions under which RMPI can be described by rate
theory. The rate constants of this description can
include those of nonresonant steps, an (N —1)-
photon Rabi rate® or, if the resonant state requires
n photons to be ionized, an n-photon ionization
rate which is nonresonant when » > 1, for example.
N+n -1 is the total order of the ground-state ion-
ization; thus, if N>2 or n> 1, the Rabi rate for
the bound-bound transition or the ionization rate
for the bound-free transition, respectively, must
be calculated using (N - 2)-order or (z —1)-order
perturbed states. Thus it is important to study
theoretical methods for obtaining MPI cross sec-
tions, although, owing to their smallness, they
may not be of direct experimental interest. For
example, in the two-photon nonresonant ionization
of H,, the one-photon perturbed state (conceptu-
alized as the virtual state to be ionized) is the
same, within an energy shift, as the one-photon
perturbed state (conceptualized as the virtual state
to be excited) leading to three-photon resonant
ionization of H, by excitation to an intermediate
1%, state.

There has been much work on the calculation of
atomic MPI cross sections. It is well known that
the summations over complete sets of intermediate
states present the main difficulty. Green’s func-
tions have been used to achieve these summations
implicitly. However, their use has been some-
what sparing, confined to Coulomb problems® or
to modified-Coulomb problems based on the use?*

24

of the quantum defect method (QDM). Recently,
McGuire® has derived an algorithm for construc-
ting the exact Green’s function for any radial
potential which can be accurately represented ac-
cording to a method published® by him some years
ago and used extensively since then in atomic one-
photon ionization problems. This method is of
some interest since the large-7 validity of the
QDM modified-Coulomb Green’s function? restricts
its use to the alkali atoms or to excited states,”®
for which the appropriate amplitudes receive their
greatest contributions from the large-» region of
the perturbed and unperturbed orbitals. Ground-
orbital ionization, however, requires the use of
theoretical methods valid over the entire range of
7. Perturbed orbitals [in dimensions of a3/2 ac-
cording to Eq. (1)] are plotted in Fig. 5 to illu-
strate the importance of small-» contributions to
the two-photon radial amplitudes [Eq. (4c)].

II. THEORY

Theoretical studies of molecular MPI have been
small in number. The study of Davidkin and Rap-
oport® on the two-photon ionization of excited H,
demonstrates persuasively that the nuclear motion
(requiring the explicit inclusion of vibrational-
rotational states) is of minor importance far from re-
sonances. Since the validity of the Born-Oppen-
heimer theorem depends on a much shorter orbi-
tal period for the electron than for the nuclei, we
expect that nuclear motion will be negligible in the
nonresonant two-photon ionization of the ground
state. Thus the process is described as a verti-
cal transition occurring at an internuclear dis-
tance of 1.4a,. The experimental vertical ioniza-
tion potential is that for absorption of a 754-

A photon.® In the present calculation each pho-
ton is assigned an energy somewhat greater
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than one-half of this ionization potential or 8.854
eV (ejection of 1.269-eV electrons). This photon
energy is chosen so that the one-photon perturbed
wave function used to calculate the ionization am-
plitude may also be used to calculate the dynamic
polarizability of H, for comparison against an
accurate calculation'® available at 8.854 eV. This
procedure provides a check on the accuracy of our
methods used to calculate the perturbed orbital.

The wave function for the molecule perturbed by
the radiation field is calculated from first-order
perturbation theory; thus the two-photon amplitude
[see Eq. (3a) below] is a result from standard
second-order perturbation theory. The zeroth-
order problem is assumed to be solved in the
Hartree-Fock (HF) approximation for the mole-
cule.!* The total first-order function is written
as a product of an HF orbital* y, (for one of the
o, electrons of H,) and a perturbed orbital y,.
This product is symmetrized such that the total
first-order function is a singlet state. The per-
turbed orbital is obtained from the equation (in
Rydberg units),

[V2 - U(F) + (60 +€p)]d)1 (f) = _zi) * ?wo(-f) ) (1)

where p is a unit vector in the direction of polari-
zation of the photon, ¢, (—~1.18652 Ry) is the orbi-
tal energy™! of 1,, and ¢, is the photon energy
in Ry (8.854/13.605). U is the nonlocal potential
(operator) derived by multiplying the two-electron
first-order equation [whose approximate solution
is Po(F' )b, (F) + o, (F' W, (F)] from the left by 3,(¥’) and
integrating the result over ¥'. The equation for
the continuum orbital ¥, is obtained from Eq. (1)
by replacing ¢, +¢, and %* and the right-hand side
(rhs) by zero. F is equal to 2¢,— P or 0.093 28
Ry (for the vertical ionization potential P=1.2083
Ry). Note that P is not very different from —¢,,
such that the two-photon vertical ionization is not
very different from the one-photon ionization of
the perturbed orbital },, whose orbital energy is
€, T€,. The potential U is usually referred to as
“frozen-core” HF. Previous work'?"'¢ on the one-
photon ionization of H, has used the H," orbital
(calculated at an internuclear distance of 1.4a,)
in place of ¥, and the frozen-core approximation'?;
the differences in the cross section appear to be
1

fairly small. The use of ¥, in Eq. (1) derives from
the use of a HF zeroth-order approximation. Its
use in the equation for §, is based on the conven-
ience of having only one potential U to describe the
perturbed- and ejected-electron motion.

The following expansions'?™'® about the internu-
clear midpoint in a molecule-fixed frame have
been used for y,, ¥,, and 3,

o

%o (F) = 2 ’1),00(7') Yloo(ofy ¢,) ’ (23.)
h(@= Z Vi, )Y (6,,0,)Y 1 (65, 05)
(2b)
d)c(_f, E): (4m) z: zI)ll m1+m2(r’k)Ylm1+m2
(6,0 ¥ a6y )
(2¢)

The continuum partial waves [Eq. (2¢)] are in gen-
eral labeled by the indices I’ (for scattered-wave
angular momentum states [ and incident-wave an-
gular momentum states I’) and m,=m, +m,. The
azimuthal index (in which the equations are un-
coupled for linear molecules) is in general, equal
to m; + m,, where m, belongs to the perturbed or-
bital [Eq. (2b)] and m, to the dipole interaction of
the perturbed orbital with the radiation field. For
a my,=0 (o-type) initial orbital [Eq. (2a)], m,=m,,
where m, belongs to the dipole interaction of the
initial orbital with the radiation field. Equation
(2¢) has been discussed by Temkin et al.l” for the
e,H," scattering problem. Terms to order I =4
are sufficient to represent y, (as measured by the
contributions to the cross section). The rhs of
Eq. (1) causes terms to order l, =5 to be genera-
ted; however, terms to order [, =3 are retained,
and the /, =1 terms are observed to be dominant.
This dominance limits [ and I’ to orders not grea-
ter than 2.

On averaging!” over all orientations of the mole-
cule-fixed frame (specified by the Euler angles

oﬁoYo) relative to a space-fixed frame in which p
and k (in the direction of ejection ) are defined,
the two-photon ionization cross section is

o [, [ smsas, [ v 2B (L) 4@ o2l el ) (3a)

dﬂ(m’) om
d%:—zn—[l +32P2(cos 6) +y,P,(cos6)] .

(3b)

(m’

The coefficients of P,(cos6) are by" =0i™/4n for L=0, bi™ =0i"'8,/4n for L=2, and b\™ =0'™",/4r for
2 2 2 2 2

L=4. Generally,
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where m’ =0 for linear polarization and m’=zx1 for
left or right circular polarization, « is the fine-
structure constant, g, the Bohr radius, I the ra-
diation intensity in W cm™, and I,=14.038x10° W
cm™., For m’=0 6 is the angle between p and k,
and for m’ =z1 it is the angle relative to the pho-
ton propagation direction (perpendicular to p).
Equations (3b) and (4) were derived by defining the
dipole amplitude in Eq. (3a) in a molecule-fixed
coordinate frame and then by expressing the pho-
ton polarization vectors and ejected-electron
spherical harmonics [see Eq. (2c¢)] in terms of
their rotational transforms in a laboratory-fixed
coordinate frame using the rotational harmonics
D,‘,,’ ,:n ; (0Bysyo). These rotational transformations
are standard in electron-molecule theory in which
scattering or photoionization cross sections are
averaged over molecular orientations.!” The sum-
mation in Eq. (4a) runs over all indices (except
m’) consistent with parity conservation. All sum-

TABLE I, Phase shifts 7;;.,,.

N o i men=e
=2m’ 0/\(m; +m;) —(u, +u,) ~(m, +my— p, — p,)/\0
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XN L
00
L
>(ax‘n,u1u2)*at’ulmlm2 ’ (4a)
A 1 1 l 1 1
—(I“Ll+“'z) m’ m’ —2m' m’ m’ —2m'
1 1 )
m, my, —(m,+m,)
(4c)

I
mation indices except 7,, »,, and L are defined

by Eqs. (2) (5,,1I'm,m,) and their conplex conju-
gates (\\,A\'KyK,). The indices 7, and ), derive
from the additions of angular momenta implicit in
Eq. (4b), and L [order of P, (cos6)] derives from
the additions of angular momenta implicit in Eq.
(4a).

The correctness of this result has been checked
by deriving the coefficients of the products of ra-
dial matrix elements [see Eq. (4c)] in the spheri-
cal-atom limit ({=7"=0or 2; [,=1, [,=0, and
all elements equal for different values of m, and
m,). For m’=0 the coefficients 5", 5., and b.”,
when each is multiplied by 47/9 to account for the
radial -matrix-element dependence on our defini-
tion [Eq. (2b)], agree with those which can be de-
duced from a formula given by Zernik.!'®* In Eq.
(4a) the factor 2 is the occupation number of the
o, orbital.

Numbers in parentheses are exponents,

Uncoupled results

Iteration Moo Ta20 221 222
1] -1.510(-3) 6.541(—2) 3.492(-2) -3.129(-2)
1 -0.4613 4.998(-2) 2.005(-2) —4.464(-2)
2 -0.4772 3.030(-2) 3.228(-2) -5.616(-2)
3 -0.4737 2.883(-2) 1.847(-2) -5.698(-2)

Coupled results

Iteration Mooo Mo20 200 220
0 6.866(—2) -3.750(—3) -3.750(—3) 5.949(-2)
1 -0.3755 1.003(-2) 0.1124 4.033(-2)
2 —-0.3915 1.129(-2) 2.328(-2) 2.336(~2)
3 -0.3885 1.109(=2) 1.113(-2) 2.226(~2)
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FIG. 1. Diagonal partial waves versus 7.

III. NUMERICAL METHODS AND RESULTS

Owing to the complexity of the radial equations
they are not presented here. The methods used to
obtain the continuum partial waves y;;. (r,k), nor-
malized for incoming boundary conditions, have
been described previously.!® In the present work,
however, the [=0,2 (rather than the [=1,3) cou-
pled, radial integral equations'® are solved itera-
tively (rather than noniteratively as in Ref. 16)
with respect to the nonlocal exchange terms
of U. Their convergence, as measured by
the change in the phase shifts with iteration

(Table I), is rapid. From Table I note that

the equality (i.e., K-matrix symmetry) of the
nondiagonal phase shifts is used as a measure
of the convergence. Figures 1-3 show the
diagonal and nondiagonal waves used in the calcu-
lation, with their appropriate large-» limiting ex-
pressions. Coupling in the continuum affects the
two-photon ionization results by less than a few
percent. Figures 2 and 3 show that the nondiagon-
al waves have appreciable amplitudes at small 7.
These lead to dipole-amplitudes [with ,,, (v), Fig.
5] whose magnitude is significant; however, their
effect of the cross section (Fig. 6) is small owing
to the largeness of the dipole amplitudes belonging
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FIG. 2. Nondiagonal partial wave versus 7.
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FIG. 3. Nondiagonal partial wave versus r.

to the diagonal waves. In previous work'® it was
found that partial cross sections for ionization with
rotational excitation of the molecular ion depend
strongly on the nondiagonal dipole amplitudes for
1,3 coupling. This happens because the large di-
pole amplitudes combine in a way that they nearly
cancel, thus reducing their contribution to a value
comparable to that of the much smaller nondiagon-
al dipole amplitudes.

The coupled, inhomogeneous radial equations
from Eq. (1) were also solved iteratively. These
iterations are made both with respect to the non-
local exchange terms and to the I, =1,3 coupling
terms. The zeroth-order, uncoupled equations
contain only the local radial potentials %, , (7)),
which are the diagonal matrix elements of the lo-
cal part of U(r) in Eq. (1) in the spherical-har-
monics basis. These equations have radial in-
homogeneities p; , (r) appropriate for a given I,m,
projected equation. The rhs of Eq. (1) does not
cause the radial perturbed orbitals to be coupled.
The I,> 0 components of }),, however, cause [, > 1
inhomogeneous terms to be generated. The [,>0
terms depend on m,, i.e., there are distinct ra-
diative perturbations on g, for m, =0 (molecular
axis parallel to the photon polarization in the mol-
ecule-fixed or rotating frame) and m,=+ 1 (molec-
ular axis perpendicular to the photon polarization
in the molecule-fixed frame). The expansion for
Yo [Eq. (2a)] converges rapidly as measured by
the relative strengths of the p,lml(r) terms over
their entire range of ». For example, the psp, (7)
terms are sufficiently small that the ¢, (r)
perturbed orbitals have small amplitudes relative
to those of ¥, m,(r) (Fig. 5). The use of the small

orbitals produces changes of less than a few per-
cent in the ionization cross section (Fig. 6) and
polarizabilities (Fig. 4). Perturbed orbitals for
1, > 3 are neglected (as are [, >4 components of ).
In going to larger molecules this convergence is
expected to be much slower. However, the num-
ber of components in an outer-shell i, which can
cause large-amplitude perturbed orbitals (such as
those in Fig. 5) may still be fairly small. The
convergence of ), and in the continuum has been
studied previously?® on the one-photon ionization
of CO.

The perturbed radial orbitals y, ,, (r) are ob-
tained by calculating the Green’s functions® de-
fined by the equations,

1ym 7577560 +€p)

+
(Vi = ll(l:,—zl) - ulltlml(r) + (e +€P)>G

_3r-7)  (5q)
T oy
d® 2d
2_ sa
VeTart Trar

(5b)

The details of this step are given in the Appendix.
These Green’s functions are used repeatedly in
iterations with respect to all (diagonal and nondi-
agonal) nonlocal exchange terms and with respect
to the nondiagaonal elements of the local part of
U. In the first and subsequent iterations these
contributions occur as extra inhomogeneities added
to p; ().

The convergence is studied in Fig. 4 for the iso-
tropic and anisotropic parts of the dynamic polar-
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FIG. 4. Convergence of the H, polarizability.

izability of H,, a(w)=4[a () +20,(w)] and y(w)
=a (w) - a,(w), respectively. The parallel (a )
and perpendicular (o,) components are calculated
using perturbed orbitals for m, =0 and m, =+1,
respectively. This calculation is performed at the
same photon energy (8.854 eV) used in the ioniza-
tion calculation. Further, the polarizability is
defined!® such that Eq. (1) [and Eq. (5a)] must also
be solved at the energy ¢, —¢,. In Fig. 4 our re-
sults are observed to converge after nine itera-
tions to within about 10% for a(w) and about 4%

for y(w) of the accurate values of Ford and
Browne.! The remaining discrepancy probably
derives from the one-electron model used in the
present work.

The oscillatory convergence is the result of the
dominance of the diagonal exchange terms in the
corrections to the zeroth-order solution. These
are repulsive (for singlet symmetry) at the energy
studied [at which the perturbed orbitals (Fig. 5)
are positive]. The radial parts of the dipole-in-
teraction terms p'1"'1(r) are positive; thus the rhs

T | T T

3/
2

PERTURBED RADIAL ORBITALS (a,

® ZEROTH ITERATION (NO EXCHANGE, NO COUPLING), f'= Lm=0
60} o NINTH INTERATON (EXCHANGE PLUS COUPLING), ll =1m=0 .
4 NINTH ITERATION (EXCHANGE PLUS COUPLING), /| = 1.m= £ 1

T T I T

100

r(ag)

FIG. 5. Zeroth-iteration perturbed orbital (4 =1, m; = 0) and ninth-iteration perturbed orbitals (=1, my=0 and

L=1, my==%1) versus 7.
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of Eq. (1) is negative and is responsible for the
large positive amplitude in the zeroth-order iter-
ation (Fig. 5) since the Green’s functions are neg-
ative at this energy. Thus the first-iteration esti-
mate of the repulsive exchange terms is too large
since the amplitudes of the zeroth-order perturbed
orbitals are too large. Since these overestimated
terms are added to the netative dipole-interaction
terms, the first-iteration rhs is raised to less
negative values than the zeroth-order rhs. This
rhs is too small in magnitude, however, so that
the first-iteration perturbed orbitals give the low
polarizabilities (Fig. 4) and underestimate the
exchange terms for the second iteration. This
process is cyclic; thus the even-order iterations
converge monotonically from above, while the odd-
order iterations converge monotonically from be-
low the accurate polarizabilities. Although the
nondiagonal, local potentials uls,,,l(r) are as attrac-
tive at » values close to one-half the internuclear
distance as the diagonal, local potentials "11»-1(")
and ug,,, (7), the coupling between the 7, =1 and

1; =3 perturbed orbitals is of minor importance.
(Note that there are also coupling terms in the
nonlocal, exchange part of the potential, and these
are also of minor importance.) The main reason
for the unimportance of coupling appears to be the
small dipole-interaction rhs’s for the I, =3 equa-
tions, causing small-amplitude perturbed orbitals
zps,,,l(r). The leading term of py, () depends on the

quadrupolar component of ,, which is small for
H,. A contributing factor to the weak coupling
(which plays the major role in the homogeneous
continuum equation) is thelarger strength of the
centrifugal barrier for higher-I, orbitals relative
to the strengths of low-Z coupling terms in the
potentials.

The two-photon angular distributions and their
parameters are shown in Fig. 6. They are pre-
sented for linearly (m’=0) and circularly (m’=4+1)
polarized photons. The ratio of the total cross
sections (0,) for linear to circular polarization is
1.34. According to theory the maximum ratio?!,22
is 1.5.

These results are for the ninth-iteration 1,3-
coupled perturbed orbitals discussed above. They
are presented for coupled and uncoupled 0,2 par-
tial waves (Figs. 1-3 and Table I). The continuum
wave function has been orthogonalized to y,; how-
ever, this correction changes the results by less
than a few percent.

The largest effect of the molecular field is
caused by the dependence of the perturbed orbitals
on m, and m,. Spherical initial-state two-photon
ionization results are simulated by setting all ma-
trix elements equal to the matrix elements for [,
=1, m; =m,;=0-~1=0,2 (uncoupled), m=m, +m,
=0 (largest cross section in Fig. 6), or to the
matrix elements for 1, =1, m;=m,=1-1=0,2
(uncoupled), m =m, + m,=1 (smallest cross sec-
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FIG. 6. Two-photon angular distributions and their parameters.
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FIG. 7. Approximation of -rVg; (7) (solid circles) by a sequence of straight-line segments.

tion of Fig. 6). The relative differences in the
simulated and accurate results are a measure of
the effect of molecular anisotropy on the cross
section. In Fig. 6 the region between the dashed
and dotted curves indicates the relative differ-
ences.

In conclusion, the total two-photon cross section
(m’=0), 0,=1.003x10"% cm* W™, is about 20
times larger than that for the He atom 2® It is
about one-half as large as that for the H atom?*
per electron (i.e., once the H, cross section is
scaled by one-half its value).

This work was supported by the U. S. Depart-
ment of Energy.

APPENDIX

The various effective potentials V;;x(7) in the
calculation were used to plot —»Vi,x(v). In Fig. 7
-7V g3, (7) is shownas solid circles. Then -7V, (r)
was approximated by a series of straight-line
segments (seven in Fig. 7). That is, we used

V,;s(r)==2Z;/r+4;, 1<sisN (A1)
with

2Zi/7i = 8;=2Zis1/7i = Bjuy
and A,=0.

For these potentials the Green’s function was
obtained as in Ref. 5. The potentials used here

are somewhat more complicated and we describe
the special functions used in different regions of ».
The radial Green’s function is written g,(»,7’)
=h,(r,7')/r and h,(r,7') satisfies

?:r—:h,(r,r’) —-l(lT-:-l—)‘h,(r,r')
+(2%‘-+(E— A))h,(r,r')zw;—ﬂ. (A2)

1. For Z,=0.

() With E-A >0, and a=(E - A)'/2 we used ¢*
=arj,(ar) and ¢ =(-1)"'arn,(ar).

(b) With E -A <0, and y=(~(E - A)]!/2 we used
¢} =€ 2yrj, (iyy) and ¢; = &' "V 2y, (iyr),
where plus and minus refer to the regular and ir-
regular solutions, which in this case are spherical
Bessel functions.

2. For Z;>0.

(@) With E —A; <0 and y; =Z;/(A; - E)*/? we used
¢ =M,’.,101/2(27'Zi/’}’l) and ¢ = Wn'_,.”z(Z'r'Zg/'yi),
where M and W are standard® regular and irreg-
ular Whittaker functions and were used in Ref. 5.

(b) With E~A >0 and a; =iZ;/(E - 4;)*/% we used
¢*'=G,(27rZ,-1/d*) and ¢" =H}(2rz,-1/a®) where
G and H} are Hartree?® functions defined by

G,(27Z,-1/a%) =(~id)"*'M,, ,., ,»(27Z/ia)/T (21 +2)

and
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[

isinh(ra)H;(2vZ,-1/a%= (- ia)*'W;, 1.1,2(27Z/ia)/T(1 +1 +ia) - €"°G,(2rZ,-1/a?) .

ia,

With these definitions the Hartree functions, and all those used so far in defining ¢* and ¢~, are real.

3. Z;<0. To obtain real regular and irregular functions we modify the definitions from those used in

case 2. That is,

(a) For E~A<0and yi=Z,/(A; - E)*/? we used ¢* =M, ,, ,(~27vZ/y),

but

O =W, 1u1,2(-27Z/y) - itM,, ,*1,2( -2vZ/y)/T(=1=y)T(21+2)) .
(b) With E—=A >0 and a; = Z;/(E - A;)*/% we used ¢ =G;(-27Z,-1/d®) and ¢ =H!(-2rZ,-1/d),

with

G,(-27Z,-1/a%) = (ia)"*'M,, ., ;»(~27Z/ia)/T (21 + 2)

and
isinh(ra)H! (-27Z, —l/a"’)—(-—za)“‘W

ia,

1¢1/2(_27’Z/ia)/r(l +1 +ia) - e-ﬂth(—er, —l/az)/z .

These modifications arise from the log term in the definition?®
Wi u(X) = (=110, , (X) In(X)/T(§-M -~ K)T(L+2M) + -+,

which leads to a complex function for X negative, and that we desire real functions in the Green’s function.
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