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Hydrogenic Stark effect: Properties of the wave functions
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A modified WKB treatment of a hydrogenic atom in a static electric field F is found accurate over all energies e to

within 1% for F& 5000 kV/cm. This semianalytical technique describes the two properties of the wave function

most relevant to photoionization and scattering: (1) the ratio of amplitudes at large and small distances A„, (eg ),

and (2) the asymptotic phase shift b„,, (eg). The photoionization cross section from the ground state, given as a

semianalytical function of e and of the quantum numbers m and n „describes the polarization-dependent shape

resonances observed above the zero-field ionization threshold (e = 0) and agrees with the exact calculations of Luc-

Koenig and Bachelier. Complex-contour integration of WKB phase integrals reveals an equipartition of phase

between the two sides of the potential barrier formed by the Coulomb and Stark fields. The total phase shift

increases by 2m (not m) between successive quasistationary levels of constant n „m+.The WKB method originally

applied to the Stark effect by Lanczos and generalized by Miller and Good is reviewed in an appendix.

I. INTRODUCTION

Recent experiments on the Stark effect of atomic
spectra have demonstrated regular modulations
in the photoionization cross section near and above
the zero-field ionization threshold (s =0) of Ryd-
berg atoms. ' These results have stimulated re-
search on the Stark effect in a variety of contexts
with different theoretical techniques. ' " 'The pres-
ent study reports several novel features that have
emerged for the case of hydrogen itself. We shall
focus on the two quantities that are most rele-
vant to the calculation of the absorption spec-
trum and of scattering: (1}the ratio of amplitudes
of the wave function in the limits of large and
small distances A„, and (2) its conjugate quanti-

1
ty, the asymptotic phase shift 5„. Possibly
more important and timely is the opportunity to
assemble in a unified treatment the earlier and
newer developments on hydrogenic Stark effect
wave functions, as a preliminary step towards a
full treatment of nonhydrogenic systems by quan-
tum-defect procedures. "

The dc Stark effect of Rydberg levels involves
an electron in the presence of a static electric
field F and of a Coulomb potential. This situation
prevails outside the core of a singly excited atom
or ion in an external electric field; in this region
the potential due to the core electrons departs
negligibly from a Coulomb law. The properties
of the electron's wave function ii in this combined
hydrogenic plus Stark potential differ markedly
from the purely Coulombic case. Because the Stark
potential eventually dominates at large distances
from the core, g has a continuum character at
any energy c: the hydrogenic bound states are
shifted in energy and acquire a finite lifetime, or
are ionized altogether. Furthermore, g behaves
asymptotically like an Airy function, whose phase

and amplitude are modified from a pure-Stark
Airy function by the core's Coulomb attraction.

The quantum-defect theory (QDT) approach"
exploits the simple nature of the potential outside
a multielectron core. Its aim is to compactly de-
scribe the core's effect on the bound or continuum
states of an excited electron in terms of a small
set of parameters. These parameters are of
three distinct types: (a) those due to an asymptotic
potential v&(r), which has a simple structure and

leads to known analytical solutions; (b) those due
to the core's medium-range "optical" potential
v(r) which deviates from v~(r}, but only at shorter
ranges; (c) those due exclusively to the short-
range effects of the core (including interchannel
couplings}, which may be expressed as a reaction
matrix defined at the core boundary Z. The effects
of the optical potential can be represented by
shifts of the phase and amplitude of the asymp-
totic solution. The core effects are represented
instead by boundary conditions at the interface Z
imposed on the external wave function. In Ref. 13
(referred to as GFS} Greene, Fano, and Strinati
have outlined a general form of the QDT for any
optical potential. They explicitly work out the
cases where the optical potential reduces to
v&(r) ~ —I/r~ (P =0, 1, 2). In the context of QDT,
our Coulomb plus Stark potential is asymptotically
purely Stark, while the Coulomb potential v,(r),
together with the centrifugal effects, now plays
the role of the optical-potential modification

v(r) =v,(r)+Ez = v,(r) =Fz.

In this paper, we shall not consider the short-
range core parameters but rather focus our at-
tention on the asymptotic amplitude and phase of
the wave function for the optical potential v, ( r}
+Fz.
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We shall examine these asymptotic properties
in the WKB approximation. In 1930, Lanczos
first used WKB phase integrals to study the Stark-
shifted discrete spectrum of hydrogen. " These
integrals all reduce to complete elliptic integrals,
which are easy to calculate and whose analytic
properties are well known. Moreover, the WKB
approximation turns out to depart but little from
numerical solutions (Sec. IVD}, not just for small
fields which perturb the discrete spectrum weakly,
but for arbitrary F over practically the entire
energy domain. This fact will allow us to obtain
the asymptotic wave function in terms of elliptic
integrals with suitable corrections. The reliabil-
ity of the method will be investigated particularly
where the WKB approximation is expected to
break down, namely, when two classical turning
points draw close together (near potential ex-
trema).

In contrast to perturbative treatments of the
hydrogen spectrum in an electric field, ""'the
method to be used here involves no expansions in

powers of F and covers all energies in a uniform
way. We will not focus attention on a very pre-
cise numerical calculation of the energy levels
and lifetimes of the lower-lying quasibound states
of hydrogen (briefly discussed in Sec. IVE}, since
this particular problem has been adequately
treated by Damburg and Kolosov' using a numeri-
cal approach. Rice and Good' and Bailey et al. '
have applied a modified WKB treatment to find

the positions and half-widths of the upper-lying
nearly ionized levels of hydrogen; many elements
of these works will be borrowed here. Blossey'
numerically calculated the Stark effect on photo-
absorption by Wannier excitons; Ref. 4 serves as
a basis for many of the results contained in Ref.
11 and in this work. Mo're recently, Luc-Koenig
and Bachelier" have calculated the Stark effect
in hydrogen near and above the ionization limit in
greater detail by numerical methods. The present
work should serve to illustrate their results semi-
analytically and adapt them for QDT application,
particularly the photoionization cross section (Sec.
IB). Some well-known material has been included
to make this paper more nearly self-contained.

(Atomic units are used here and throughout; we

assume m ~ 0.} In Eq. (1), Z is the net charge of
the core, « is the electron energy with respect to
the ionization threshold when F = 0, and the field
F is directed along the +z axis. The resulting
one-dimensional equations for $ and g are"

P, +P2=Z. (4)

The boundary condition at $ = 0 is X, =0 and simi-
larly for p. For (-0 and p-0, regular solutions
of Eqs. (3}are

X (5 0) —$1/2+Bi/2[1 +O($)]

(q 0) ~1/2am/2[1+ O(~)]

(Sa)

(5b}

with energy -independent normalization.
The potentials in Eqs. (3a} and (3b} (see Fig. 1}

differ in the sign of the Stark potential, +—,
' F$ and

, Fq (dashe—d lines in Fig. 1) and this determines
the qualitative difference of the separate factors
X,($} and X,(r/). For any z the $ mode has a clas-
sically inaccessible region as $ ~, so X,(() must
damp exponentially. On the other hand, there is
a potential barrier in g, peaked at the critical
energy « =«, &0, with a classically "open" region
as p-~ (for negative or very small P, the poten-
tial hump disappears entirely). For given E and

p, &0 the energy z, =-2(p+)'/'& 0 is known as the

( )
v(q)

p C

(b)

+ —,'z —2, ——'+—$
~ X,($}=0, (3a)8$' 2$ 8

d'X2(r/) ', m' —1 P F
dq2 2 8g2 2g 8 2+ —,'z 2 ~ —z) X (n}=0, (3b}

with the "effective charges" P, constrained by

A. Analytical framework

The three-dimensional Schrodinger equation for
our problem

(-—,
' V'-Z/r+Fz)g(r) = gz(r),

(c)

ls
2&

is separable in parabolic coordinates ($ =v +z,
g=r —z) with the ansatz

g(5, q, 4) = ((q) '/'X, (5)X.(q)z' '(2z) '/'

(m = 0, +I, +2, . . . ) . (2}

FIG. 1. Qualitative plots of the potentials V($) and

V(q) in Eqs. (3a) and (3b) for m &1, I"R 0, and sample
values of p, =l —p2. (a) p&=-0.1, (b) p, =+0.4, and (c)
p& ~ 0.9. ———pure-Stark potentials +~E $ and -~Fg.
The top of the potential hump in g, ~e„and the potential
well coalesce in (c), where p2 = p~f 0.1.



HYDROGENIC STARK EFFECT: PROPERTIES OF THE WAVE. . . 2493

classical ionization limit and marks the barrier
peak. Thus, all continuum behavior of the total
wave function t/i must reside in )t,(g), which is to
say that ionization of the electron always occurs
towards the deepening Stark potential z- —. The
problem as defined by Eqs. (3) and the boundary
conditions (5) now divides into two problems linked
by the constraint (4) as follows: (a) quantization
of the bound }t,($) at fixed c, i.e., determination
of its eigenvalues P„and (b) characterization of
the asymptotic form of X,(p), all as a function of
the energy c and of the field F. Although Eq. (1)
is separable, Eqs. (3a) and (3b) cannot be solved
exactly in terms of elementary functions.

Problem (a) is addressed in Sec. II. From the
QDT point of view, a bound state in the $ mode
must have precisely an integral number n, + 1 of
half-wavelengths between $ =0 and $ =~, separated
by n, nodes (n, =0, 1,2, . . . ). In hydrogen n, re-
mains a good quantum number, but in other atoms
different sy channels are mixed by short-range
interactions in the core." We proceed, then, by
explicitly considering only single-electron atoms
with nuclear charge Z= I, where the Coulomb plus
Stark potential pertains to all space. The results
will be incorporated in a subsequent application
to nonhydrogenic atoms.

In a WKB approximation the total phase of }f,($)
is accumulated between classical turning points
$, and („with an additional contribution of —,~
from each of the two classically inaccessible re-
gions 5-0 and $-~. (The case where no such re-
gion occurs near $ -0 will be discussed in the con-
text of the Langer correction in Sec. II.) For fixed
F the quantization of p, (c,F;n„m) is then deter-
mined implicitly by

C2
k(] )d] =u, +-,'. (6)

The eigenvalues P,(z, F;n„m) will be accurate in-
sofar as the WKB approximation for the wave num-
ber k($) [see Eq. (23}]is accurate between g, and

(„which will be so to 0(10 ').
The asymptotic WKB solutions of Eq. (Sb) are

derived in Sec. III. Once the P,(t, F;n„m) are
found via Eq. (6), the p, (c,F;n„m) are given in
turn by Eq. (4) and serve as the input to problem
(b). Asymptotically, X,(ri) must be proportional
to a linear combination of the base set of indepen-
dent Airy functions Ai(w(q)) and Bi(w(q)),"which
are appropriate to the pure-Stark potential dom-
inating at very large p. The Airy functions are
solutions of the equation [cf. Eq. (3b)]

d 'Ai(w)
+w Ai(w }= 0,

w(n) = (k F)' '(ri+ 2e/F);

the Airy origin w = 0 lies at p„=—2z/F (dashed
lines in Fig. 1). We define the energy-normal-
ized" combination of this set which vanishes at

0o

Ci(g) =2' '(—,'F) ' '[cos5„Ai(w(q))+sin5„Bi(w(q)}]

( 2 1/2

sin[0(g) +—,
' v+ 5„],

n-

where

l'(g) = —,
'

~w
~

' '= -BF'/'~ q+ 2m/F
[
' ',

and

(8a)

(8b)

, Ai(w(7}})l(5„(t',F)=—tan ' .
( ( )

(9)

the branch of the tangent is specified in Appendix
B. [One may view 5„as shifting a "zero" of
Ai(w(rl)) from w(r/= —~) to w(r1= 0).) It will be con-
venient later, for the purpose of comparing the
asymptotic phase of y, (g) with that of Ci(g), to re-
cast the expression (Sb) of l'(q) as a WKB phase
integral

so(O)

g(ri) = u" 'dw~ = (,'Fq'+-'c)' 'd-q'.
0 (10)

The regular Airy function Ci(p} serves as the gen-
eral reference function f of GFS, which has the
asymptotic, energy-normalized form of Eq. (8).
As a second independent solution g with the same
normalization, we choose the Airy function that
lags Ci(II) by 90 at large ri by setting 5„-5„——,'w

in Eq. (8}.
For future reference we may also define a func-

tion in the ( mode, analogous to Ci(w(7})) in (8) for
the g mode

Di(w(- $)) = 2' '(—', E) ' 'Ai(w(- ())

u„—&)

Di(w) satisfies Eq. (I) with rl —g and -vanishes
at $-.

The wave function X,(ri), distinguished by its
energy-independent normalization near g = 0 as
indicated in Eq. (Sb), is a solution of Eq. (Sb) for
the entire optical potential; hence X,(ri} plays the
role of f'v in Sec. IIE of GFS. With this normal-
ization, }t,(q) can be represented at any p as a

k„(q) = = (-,' F)' 'w'/'= (,' Fri+ ,' c-)'/' -(8c)
dg

is the Airy wave number. The phase shift 5„, re-
quired to ensure regularity and positive slope at
7}=0 consistent with Eq. (5b}, must be a smooth
function of c and F. It is given in Eq. (8) by
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x sin([g(&7) +-,' v+ 5„]+5„(c,F)] .
1

(12)

Thus, the net effect of the Coulomb well —P, /»)

plus the centrifugal potential —,
' (m' —I)/&)2 on Ci(&I)

is twofold.
(a) The total phase accumulated by Ci(&)) over the

entire interval from q=0 to g=~ is increased by

a finite amount 5„(z,F). Although both X,(&7) and
1

Ci(&7} have an asymptotically divergent wave num-
ber k(&7) (which reflects the electron's acceleration
in the Stark field}, the total phase shift 5„ is still
well defined as a finite increase of phase expres-
sed as m times the number of additional nodes or
half-wavelengths.

(b) }t,(&7) acquires an energy- and field-dependent
amplitude A„(e,F), in addition to the factor in

Eq. (6), [2/vk„(&))]' ', which is characteristic of
WEB solutions. " Note that in the limit g the
WKB wave number k(&7) = (-,

' Fq+ ,' c)' ' is e—qual to
k„(&7) in Eqs. (Sc) and (10} The phase and ampli-
tude 5„and A„here take the place of the GFS
parameters 6„and y„ that characterize the asymp-
totic form of the solution f"'.

The phase and amplitude of )(,('g) as &I-~ also
contain the optical effects due to the potential
barrier: a partial reflection of X, above the bar-
rier when c &c, and a tunneling through the bar-
rier when c &t,.' [We note here that the potential
extremum c, depends on F, m, and P, (c,F;n„m)
and is therefore an implicit function not only of
n, but also of c.] The WKB approximation will
require special scrutiny at intermediate energies
near the potential lip c =c,. For a &&„ the total
phase shift 5„ includes separate contributions
from the phase 6,„,accumulated outside the bar-
rier and the phase 6„accumulated in the inner-
well region. Two remarkable features of the WEB
phase integrals 5,„, and 5„and the tunneling in-
tegral v will emerge in Sec. III from the analytic
structure of these integrals in the complex-g
plane: (1) r may be expressed in tu&o distinct but

equivalent ways as the imaginary part of a com-
plex integral between turning points; (2) for fixed

P2, 4, and F, 5«, exceeds 5i~ by exactly 2 m r.
Therefore, for a given n„ the phases 5,„, and 6„
accumulate at an equal rate as m increases. The
asymptotic phase shift 5„„(c,F}will thus increase
by 2w between successive quasistationary states

superposition of the base pair of solutions Q', g j
with g-dependent coefficients. In the limit g
this superposition takes the same form as the ex-
pression (Sa) of the wave function Ci(&7) but with
different phase and amplitude:

) &/2

)(,(»)) A„(e,F)

of the inner well, not just by n as one might have

expected. It will also be seen that the well and

barrier become relatively shallow and localized
in energy near c, when the effective charge P, is
very weak compared to a given Stark field F; un-
der such circumstances numerical integration of
Eq. (3b) seems unavoidable.

The scattering of an Airy wave function from a
Coulombic core may be described in terms of the
complex Jost functions J', which are the coeffi-
cients of [-2sk„(&I}]'~'e&'n«~&+«4'»»Dj(u&(-s)).
'The logarithm ofJ' has imaginary and real parts
equal, respectively, to (I) the total phase shift of

X,(&7),5„(z,F) [see Sec III B. ], and (2) InA„„(c,F)
plus a corresponding amplitude factor from the g

mode. 'These two quantities are generally related by
a Kramers-Kronig-type dispersion relation in the
complex-4 plane. " An aspect of this relation will
become relevant particularly near quasibound
levels in &) [see Eq. (47) and Sec. IV, Figs. 6 and

7].

B. Photoionization cross section

We consider the photoionization of a hydrogen
atom (Z =1) in a Stark field F from its ground
state ~0& to excited n, eigenstates ~s, F;n„m&.
The total cross section os(c} is a simple sum over
the partial cross sections for all n, channels

4m'
a„(s)= "

k(o Q ((e,F;n„m
~

r
[ 0& (',

n~~o

(13)

It is important to note that the zero-field solutions
nevertheless depend on the field indirectly through

where the absorbed photon energy is So =a —t~„~
= a+ s a.u. ; each term in (13) is identical to the
partial density of oscillator strengths of Ref. 11,
to within a factor of 6v'/137. The calculation of
os(s) is greatly simplified when we observe that

~0) is concentrated near the nucleus, where the
Stark potential is negligible. In this region, the
energy-normalized solution of Eq. (1),

~, F.„m& 0&Ir ) &/2(&&7)&&2~e&~~(2v)-&/2

(14)
has the same functional form as the purely hy-
drogenic (F = 0) solution"

p n m) ~()&to )'&2($&7)&~2»&ei»&+(2&)-»~ ~-0 (16)

but differs in its normalization factor N~~, to be
discussed below. Hence, for the purpose of cal-
culating the squared dipole matrix elements in

Eq. (13), we may replace ~c, F;n„m) by
~e, p;n„m&:
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the value of l),(e, F;n„m) for each n„which dif-
fers from P,(t, '0;n„m) through the effect of F at
large (. The standard energy-normalization fac-
tor for

~
s, 0;n„m) is '"

2 1, m=0
p PP2, m=1 (17)

where v=(-2e) ' ', n, =P,v-z m ——,
' (here e is ar-

bitrary, so v is pure imaginary for e &0 and is
generally irrational).

The azimuthal symmetry of (e, 0;n„m ~r ~0) im-
poses on the transition ~0) - ~c) the usual selec-
tion rules: (1) s polarization, r=z, m=0-m=0;
(2) a polarization, r=~z'(x+iy), m=0-~Q =1; (3)
m =0- ~m

~

~ 2 not allowed. The zero-field matrix
elements [(t', 0;n„m ~r(0) [z can be evaluated an-
alytically, directly in parabolic coordinates. "
For future applications, "however, it will prove
more useful to proceed as follows: (1) calculate
the radial (and angular) dipole matrix elements in
the energy-normalized spherical basis with the
selection rule 4l = a 1, and (2) transform to the
parabolic basis via the transformation matrix'~"

)(s, 0;n„m (c, 0; l =1,m) ['

Collecting the above factors of the dipole inte-
gration (16), the photoionization cross section (13)
becomes

os(s) = (+, ,v2)I(o)f(c)

[1-2P,(c}]', m=0 (v)
2, (m )

= 1 ((7}

The smooth, analytic function

f(s) =128(1+2@)'

X
[(v —I)/(v+1)]~,
e-(4/a&~a - a1

c= —g v ~+0

~ =-,'k'& 0

contains all the explicitly energy-dependent fac-

. i18i
3v (P, —P,)', m =0

v2 —1 2PxP2, m = 1

This is a purely geometrical factor, which shows
how P, =1-P, determines the distribution of
p($, '6, Q) near the nucleus with respect to the z =0
plane. The dependence on m results in the striking
polarization dependence of os(c} to be discussed
below. The radial and angular integrations" give

tore [in Eqs. (16)-(19)]of the dipole matrix in-
tegration. For t-0, f(e) represents the envelope
of the zero-field hydrogenic spectrum given in Ref.
21.

The factor (1 — 2P, ) =(P, —P,) arises from the
distribution near the nucleus of the Stark effect
wave functions with respect to the xy plane. The
m =0 dipole operator z is odd under reflection
through this plane for m =0 and P„P,&0; hence,
the transition to m =0, P, =P, =& is forbidden. The
resulting parabolic modulation of the intensity
(1 —2P, )' is a major feature of the absorption of
v-polarized light, emphasized in Ref. 11(c) and
emerging analytically here.

The factoring out of this slowly varying function
of the energy —typical of the QDT approach —fo-
cuses attention instead on channel-dependent
quantities as follows.

(1) P,(e, F;n„m) governs the size of the poten-
tial barriers or wells at small $ and g in eachn,
channel and hence determines the distribution
and size of the wave function near the nucleus;
note, however, that P, itself is determined by an
asymptotic boundary condition on X,($-~).

(2) N~„, , the density of states near the origin,
embodies the effects of barrier penetration and
potential wells in the energy-normalized wave
function (14). Furthermore, N~„ is also deter-6tl yfft

mined by an asymptotic boundary condition,
namely, unit outgoing flux in p (I„„,=l/2v), which
effects the normalization of the entire wave func-
tion (2) per unit energy range. " With X,($) and

X,(q) normalized as in (5), a simple calculation of
the flux [see, e. g. , p. 3982 of Ref. 4, Appendix 2
of Ref. 11(b}, or Sec. IID of GFS"] yields

N =[A (( E)]' dP "'
)0

(22}

where A„ is the asymptotic amplitude of X,(g)
appearing in Eq. (12).

In the absence of a Stark field, the density of
states would depend on c smoothly, but any ap-
preciable potential barrier in $ or g causes either
factor of (22} to decrease exponentially (see Sec.
IVC). Such barriers also cause the dependence of
N~~ on p, to peak at 0& pal&1 and to vanish rap-
idly when either P, or P2 becomes negative (as
will be seen in Figs. 3 and 7). In fact, since the
range 0&P, & 1 occurs at higher energies for
larger E, N,„will remain qualitatively similarSf' ytft

toN,'„but be shifted to higher energies. A dominantItfj tft

effect on N~„arises, of course, from the barrier8th gm

in q at c &e, (see Fig. 1): o (e) will be vanishingly
small here except near quasibound levels, where
A„goes through a sharp minimum (see Secs. III
B and IVE).

The total photoionization cross section (20) has
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II. QUANTIZATION OF Pj~e,F~a, m)

At each energy c and for fixed m and F we di-
rect our attention to the eigenvalue spectrum of
the effective charge t},(e, E;n„m) appearing in

Eq. (3a). This spectrum is determined as an im-
plicit function of c and n, by the Bohr-Sommer-
feld condition (6). In the WKB approximation the
wave number of X,($) to be entered in Eq. (6} is

I(g}=]-, +—'+-,'e--,'Fg
[ (23)

whose integrated phase in the classically acces-
sible region should be a half-integral multiple of
m for a bound state.

The validity of the WKB approximation needs to
be discussed in two specific areas: (a) for the few
smallest values of n„numerical tests are requir-
ed; the results will be reported at the end of this
section; (b) in the region g- 0, the assumptions
of the WKB approximation break down; however,
this difficulty can be bypassed through the Langer
correction, which we proceed to discuss.

What is pertinent for our purpose is the accu-
mulation of the phase of }t,(g) from $ = 0 to values
of $&&1 ~t small enough so that the term —,

' F$ in
Eq. (23) is negligible. The exact phase accumu-
lation in this range can be read off from the known

asymptotic expressions for the Coulomb wave
functions, to which }I,(() reduces as long as F$ is
negligible. This phase is represented by

been calculated for E= 1.5 x 10 ' a.u. (VV kV/cm)
in the WKB approximation as discussed in Secs.
II and III. The results were compared with an ex-
act (numerical) calculation of the total density of
oscillator strengths by Luc-Koenig and Bache-
lier, ""'and agreed to within the accuracy of their
figures for both n- and o-polarized light.

Extension of this procedure to initial excited
states of hydrogen will result in (1) different se-
lection rules for 4m and (2) a different form of
f(e) (from the dipole matrix integration and coor-
dinate transformation). Both N~„and P, (cF;n„m),
which are parameters of the final-state wave func-
tion, will remain unchanged, but the bracketed
functions of P, in Eq. (20) will generally depend
on m (and I) through the coordinate transformation
(18) and zero-field density of states (17}. The in-
itial state ~elm} must still be low enough in en-
ergy, however, to remain concentrated sufficient-
ly near the nucleus for the Stark potential to be
negligible; i.e., we must have ,' Fr «Z/r f—or all
r~Z/~e

~

=2n'/Z, or n&&Z'~'F '~'. Under this
condition, a zero-field hydrogenic solution re-
mains a good approximation in Eq. (16).

47)+ — 2+ +2 4
C1

(24)

where $, is the smallest nonnegative zero of the

integrand and equals zero for the special case of
m=0. Note that the centrifugal terms in (24) and

(23) differ by I/4$'. This difference, the Langer
correction, results from a procedure which avoids

the breakdown of the WKB approximation near
$-0 by a remapping of the variable $ onto t = ln),
whose range extends to t = —~.22 [This correction
is most familiar in polar coordinates, where it
becomes I(I+1)-(I+2) .] The term 4v in (24) is
the phase accrued at $& $,. Accordingly, this
term 4 g, combined with an identical term from
the exponential tail at large (, contributes to the

total phase accumulation but should not be included
in Eq. (6) separately [their contribution has al-
ready been allowed for in Eq. (6) by entering n, +—',

instead of the actual total number of half-wave-
lengths n, +I].

On this basis, we can proceed to determine P,
from Eq. (6}, which now takes the form

+—'+ —,
' e —,'F$'

~
d$'—=n,+&, (25)

4)p2 $g 2 4

where (, and f, are the nonnegative roots of the

integrand. The integral in Eq. (25} may be re-
duced to a complete elliptic integral, which ex-
pedites the calculation of p, (s, F; sm) consider-
ably. This elliptic expression and a computational
procedure are discussed in Appendix C. Appendix

C also introduces another correction to the WKB

phase integral for Coulomb wave functions, Ao

however, this term is small for c&0 and vanishes
for &&0.

The results of a calculation for F=1.5 x10 '
a.u. (7V kV/cm) and m = 0 are shown in Fig. 2 but

will be discussed in Sec. IVA. Comparison with

numerical integration shows that Py obtained by
this procedure is in error by no more that 0.004
for n, = m = 0 and for all fields less than 0.001
a.u. (5140 kV/cm). For n, &0 or m &0 the error
is smaller still.

Once P, (c,F;n„m) has been determined, the
integral N~ -=(J~" d5'[X, (4')]2/5') ' in the density of
states (22) may be evaluated by numerical inte-
gration of Eq. (3a)'" or by WKB procedures [see,
e.g. , Sec. III of Ref. 5(a)]. Figure 3 shows ~N~ for
m=0, n, =0-4, and the large field F= 0.001 a.u.
The dashed curve at a &0 in Fig. 3 is a plot of
~2e ~' ', which is the exact value of ~N~ for E=O
and m =0, independent of n, . For Fe 0, the poten-
tial well in g exists at all a, so the curve for each
n, extends into the a ~ 0 domain. In the normal
range P, & 0 (above the crosses in Fig. 3), N~ re-
mains fairly flat for each n, (see Sec. IVC). How-
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1.5

l.0

I

0.5

0.0

-0.5

FIG. 2. Eigenvalues P~(e, E; n&, m)=1 —P2(e, E; n&, m)
for m = 0, E= 1.5 x10 a.u. = 77 kV/cm, and n

&
= 0-20.

Limiting forms are P&= (n&+~)(-2~) for e«0 and P&

e/4E-+(n&+z)v e for e»0. Intercepts with P&
——0 at

e &~E and P&= 0 at e & 0 are given in Eqs. (58a) and (58b).

ever, when P, becomes negative at positive ener-
gies (below the crosses), N& decreases approxi-
mately as e ", where the tunneling parameter v
-v ~P, ~(2c) ' ' measures the effect of the Coulomb
barrier in $ [cf. Eq. (64c)]. [These features of N,
are complemented by A„' in Eq. (22)—see Fig. 7
in Sec. IV.] For m = I, N, remains similar to the
m =0 case but is multiplied by a factor ~P, ~

for all
P, ~~0; this is discussed in Secs. IIIB and IVC.
A more detailed WKB analysis for m=1 and

P y
~~ 0 actually leads to" X,= e

IQ
I

'
I

IQ

IQ

III. ASYMPTOTIC WAVE' FUNCTION X2(q)

The determination of )I2('g-~) in the Coulomb+
Stark optical potential of Eq. (3b) rests on the fol-
lowing physical considerations from the introduc-
tion.

(a) There is an inner region I where the electric
field is negligible and the potential is purely Cou-

lomb plus centrifugal, v, (t)}=4 m'/t)~ —p, /q. For
moderately large values of + this region is large
enough (e.g. , several tens of a.u. ) for a WKB-ap-
proximated Coulomb wave function to be accurate.

(b) In the asymptotic region (III) the Coulomb
field is negligible and the potential reduces to
v, (t)) = —,' Fr).—This consideration motivated the
construction in Sec. IA of a regular Airy refer-
ence function Ci(t)) [Eq. (8a)].

(c}The whole optical potential is relevant in an
intermediate zone (region II) that connects the
small- and large-g regions. This broad region
includes the potential barrier and extends in both
directions until either the Coulomb or Stark po-
tential suff iciently dominates.

The separation of the entire interval 0 + q & ~
into these three physical regions will facilitate our
characterization of the asymptotic phase and am-
plitude ofX,(t)) by isolating the influence of distinct
physical effects. We will obtain the asymptotic form
of X,(t)) for fixed n„m, t, F, and p, (e, F;n„m)
by matching )(,(tI) from one region to the next, be-
ginning with the wave function specified at g - 0 in

Eq. (5b). For all t) except &-0, X,(rj) is to be
handled primarily as a WXB solution.

The effects of the potential barrier in region II
become negligible at energies far above the bar-
rier peak c»c,= —24P+ where we may then apply
a straightforward WKB solution for the single
classically accessible region [see Eq. (48)). Also,
at energies below the bottom of the Coulomb well,
the wave function under the barrier is simply a
rising exponential, which again matches to a WKB
solution in the outer classical region. In these
cases, separate treatment of a "region II" is un-
necessary. Furthermore, if the separation pa-
rameterP, ~ P„«=~(m'F)'~', there is no potential
hump or well at all and a "region II" is again su-
perfluous. However, the WKB method is expected
to break down under the joint condition (P2=P,„«,
e =c,); in this case the three turning points are not
well separated, so the "we.ll" and "barrier" re-
gions themselves are no longer isolated enough to
be considered distinct and one must resort to nu-
merical solution of Eq. (3b). The case P, (0 willbe
considered separately at the end of this section.

We discuss some general analytical properties
of the WEB phase integrals in the following para-
graphs before returning to the region by region
matching in Sec. IIIB.

-3

0.060.020.0 0.08-0.02 0.04
& (o.u. )

FIG. 3. Factor v N& in density of states (22), on log
scale, vs e for m =0, E=0.001 a.u. (cf. Fig. 7). x:
pf(~, F; n„0)=0. —-: F= 0, ~Ng= l26l

A. Analytical properties of f"k(q')dq'

We view here the asymptotic phase shift 6„„(c,E)
1

as resulting from the development of the WKB
phase integral 1"k(rI')dt)' over the entire domain
of t) (0& t) &~). It is therefore important to iso-
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late those general properties of 5„which stem
ff graft

from the analytical structure of the WEB phase
integrals themselves. An examination of the in-
tegral f"k(P)dg''in the complex-g plane will be
seen to reveal two features that simplify calcula-
tions and unify the contributions to 5„

j.
As discussed in point (a) below Eq. (12), 6„ is

a phase shift which represents the finite. difference
of the divergent iniegrals J"k(g )dri'

and J"xk„(rf)dry' in the limit p ~ [see Eqs. (10)
and (12)]. Hence we wish to consider integrals of
the function

»(n) =k(n) —k„(n) (26}

over the complex domain of g. The WKB wave

number from Eq. (3b), including the Langer cor-
rection, is

m' P
k(q} = — +-'+ ,' c+ ,'F-q ~- (27)

s(sc

and k„(p) is given in Eqs. (Sc) and (10). We may
rewrite Eq. (26) in terms of its four branch points

a, b, c, and ri„= —2s/F =a+ b+c (see Fig. 4}:

6k(q) =-,' KF{[())}—a)(ri —b) ()I —c)]' '/')} -()I—ri„)' ')
(28)

The value of arg[»('g)] is set to 0 for ri-~. Note

that »(g) actually vanishes at
~

')I
~

-~ as )')I
)

' '
and has a single simple pole at g = 0 with residue

~
O'F[( a}(-b)(- c)-]' '= ——,

' im; however, the pole
turns into a branch point when its residue fx:m

vanishes.
Since 5„will depend on the phase accrued be-'I j haft

@veen pairs of branch points, we consider for pur-
poses of analysis the integral of »(g) over the en-
tire range from g= —~ to broken up into the fol-

lowing pieces'.

6k(q~)dry
«OO

=l J &(w)«' —f ) (&)« )+'f )(w)«'
b

+ k g'dg'
C

+I J )(n)« —f ")„(nl«). (29)

Luf=Re k p dg' — kg g' dg',
il

(b} the tunneling integral

a
r = va = Im k(')}')d'g',

b

(c) the phase accumulated in the inner well

b

6;„= Re k(ri )drl',
C

and (d) an alternative tunneling integral

(30)

(31)

(32)

~'=rm(-a f k(n)« +f k (w') ')«, ()1')
bo «Oo

Important relationships among these pieces e-
merge by considering the integral along the closed
contour shown in Fig. 4(a) for s &s, and in Fig.
4(b) for c &e,. This contour is closed in the upper
half-plane by a semicircle at

~
ri

~

=~, along which

the integral vanishes as
~
g

~

'~'. An infinitesimal
semicircular detour around the pole at &=0 con-
tributes —wi( &im-} = —z mv. The entire loop inte-

gral vanishes, as it encloses no singularities.
In Appendix D, Eq. (29) is resolved into its real

and imaginary parts for both c & e, (below the bar-
rier top) and s & c~ (above the barrier). We de-
scribe and label the appropriate segments of Eq.
(29) as follows: (a} the phase shift outside the

barrier

(b)

') I
~ '~

c b 0 + Rp

16,„f —6j~= g mn'

for the real part and

(33)

(34)

where 6' stands for "principal value. " In either
case 4 ~ c„ the vanishing of the entire contour in-
tegral gives then

f (X}
Rp

FIG. 4. Contours and branch cuts for loop integrals of
6k(p), Eq. (29): (a) ~ & ~„ three real turning points, and

(b) ~ & e„b=a*. The pole at q= 0 has residue —2 im.

for the imaginary part.
Equation (33) relates the phases accumulated

in the two separate, classically accessible phys-
ical regions. That 6,„, and 5;, differ by a constant
independent of both the energy and the field re-
flects the qualitative, logarithmic nature of the in-
tegral over a Coulomb potential"; that 5,„,—~jg
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amounts to exactly m quarter wavelengths is at-
tributable to the centrifugal barrier singularity.
This remarkable equiPaxtition property of the
phases will manifest itself in 5„(4,F) as an in-

tt gift

crease of 2m between successive quasistationary
states; each successive bound state must accumu-
late pot only an extra half-wavelength in the well
but an equal amount outside the barrier as well.

The initial form (31) of the tunneling integral re-
duces to an elliptic integral readily only for en-
ergies below the barrier top, a &c,. On the other
hand, its form (31'), which results from our an-
alysis, reduces to that form for all c. Below the
barrier r has its usual interpretation as a tunnel-
ing parameter; its extrapolation to the range above
the barrier, where it follows an imaginary path
and is negative, will serve to single out the dif-
fractive effect of the barrier. This extrapolation
has been indicated previously, '" but the intercon-
nection of the parameters by the loop integration
of Fig. 4 is new and extends the extrapolation to
the case of m0.

The forms of the elliptic integral expressions
for v' and 6;„=5,„,-~mr are shown in Table I.
They depend on the positions of a, b, and c in the
complex-I] plane. Below the barrier top (4 & 4,)
and above the bottom of the Coulomb well all three
roots are real and nonnegative (case 1}. The
phase shift will depend on 6;, and & alone. Above
the barrier (4 &4,) there is a single classically
accessible region with a single nonnegative turn-
ing point c; a and b are either complex conjugate
(case 2) or both real and negative (case 3). The

phase shift for this region is

k g' dg' — k~ g' dg'
C

= &I q+ &OUI (35)

or r=(F6', )
' [+(t(,p+4P, )Kg) -as (4(P,)E(g)

where the five constants 63, are algebraic combina-
tions of a, b, and c; K, E, and II are the three
canonical forms of complete elliptic integrals. '
For given m, F, t, and'P, (e, F;n„m), the roots
a, b, and c are determined by the cubic equation
(27). When m =0 these expressions simplify con-
siderably [as does E(I. (C3)—see Appendix C].

B. Asymptotic phase and amplitude; optical effects

In this section we give a three-step procedure
to obtain )(,(I]-~) in the form of EII. (12): (1) in

region I, obtain the energy-normalized solution
for I]-0; (2} in region II, determine the large-II
form of this solution via a WEB connection for-
mula across the potential barrier, thereby in-
corporating into X,(I]) the optical effects of the
barrier; (3) in region III, compare X,(II) to the
Airy reference function Ci(I]) of E(I. (8a) to obtain
the asymptotic phase and amplitude.

from which we readily obtain 5„«and bin by E(I. (33).
We list the expressions for r and 5;„(or 5„„)in

Table I as variants of a single functional form

TABLE I. Elliptic-integral expressions for (5. [Eq. (32)], 6~, [Eq. (35)], and ~ [Eq. (31) or (31')j.'

General form,
Eq. (36):

6 =(F(pz) ~~(~3(c(p&+ 4pm)K(d) , (~(p&)E(l)—+—m~[(pzii( kf )n-(P4K(g)]), p &A ~ &n & 1

&=(F(po) ( q(&(p( 4p2)K(l-'} ——(e6'2)E(l )+ m [(p) li(nfl'] —(P4 K(A')]), 6 & n&4'~=]. -l~ & I

Case 1 («~,)

O~c&b&a

6'p

a-c

a —c

a-c

a-c

1 1
a b

2

b —c
a-c

a(b-c)
b(a —c)

a-b

Case 2 (~&~,)
O~~ c

b=a~=bg+ iag

fbf'=f a]'=b'+a,'
A=- f(b c)'+a')~'

A+c

A-c

(A+c —b&)(A- c)
lal'(A+ c)

A —c
2c(A+ c)

bf
lal'

1
2c

A-c+bg
2A

)a(~
(A+ c)2

2c(A+ c—b&)

(A+ c)~

Case 3 (& &O)
a&b&0~c c-a c —a b-a

c-a
a

c-a
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(1) Renormalization of }(,(!I-0). The energy-in-
dependent wave function for p-0 is given in Eq.
(5b); from this solution we wish to obtain the cor-
responding WKB solution for region I. Ignoring
F in region I for P, &0 permits us to connect

X,(r) -0) with a regular, energy no-rmalized"
Coulomb wave function }t!"(!!)through a knofen co-

efficient:

X,('0) =[B., (z)] ' 'X".(0).

With the appropriate substitutions, "8„ is given
in Table I of GFS" (where it is called B for e &0
and A for a&0):

v 'k~m! 'e' 2/~!I'(—,'+ —,
' m —ip, /k)!' z = —,

' k'&0
1 1 (m-1) /2(z) = v I'(P,v+ +--m)

m! 'I'(P, v+z —z m)
c= —~ p 2(0

(3S)

the index j is integral (half-integral) for m odd
(even), and II/=1 for m =0, 1. [Both expressions
(38} reduce to 2P2m! ' at t =0 if P, &0 ]Th. e ex-
act energy-normalized wave function }(,"((7) should
be well approximated by the WKB solution for the
Coulomb potential in the range !z! '/'« 7)«1/F.
This energy-normalized WKB solution is

X2'(U) =
! sin! k(n')dn'+«+ 4v!, (39-)

where k(r)) is given in Eq. (27) and c is the small-
est nonnegative zero of k'((7); « is the small
phase correction given in (C7) for positive-energy
WKB solutions (with P, P,), and will be omitted
in subsequent formulas. With Eqs. (37)-(39),
X,((7) is expressed in terms of a WKB integral ex-
tending to the barrier's (real or complex) turning
point b:

x,(x) = Ix„,.(~ ))."*(x „}
( pb

xcos ! Re I k(r!')dr!'+ —,'v —6„
region I, 'g« Re(b) . (40)

(2) Connection to )t,(q»a). The WKB wave func-
tion (40) is now taken as the starting point on the
small-g side of the barrier for a solution in re-
gion II. The usual WKB procedure for tunneling
through the barrier breaks down near its top. A
connection procedure, developed by Miller and
Good'"' and reviewed in Appendix A, serves to
join the WKB wave function (40) to a correspond-

I

ing wave function }(2"'(r/) on the large-!! side. The
appropriate connection formula applies above as
well as below the top of the barrier throughout the
range t'-E, , where the usual WKB method breaks
down. It is derived by mapping a potential barrier
with a Pair of turning points onto a Parabolic bar-
rier V(x) = ——,x' via a transformation of the inde-
pendent variable [7-x=x((7). The connection for-
mula thus derived relates to parabolic cylinder
functions, as the usual WKB connection formula
across a single linear turning point relates to
Airy functions. The mapping onto a parabola dis-
regards the presence of the third turning point c,
which is normally «Re(b) The pr. ocedure will
thus fail near the bottom of the well. , a range
where b=c; however, the WKB solution is not
reliable here and is not of primary interest to us
anyway. The procedure will also fail at c =0,
where Re(b) =c, but the diffractive effect of the
barrier is then negligible (unless P, =P„«}. Des-
pite these exceptions, the procedure of Appendix
A, in fact, deals adequately with the case of three
turning points.

The barrier's diffractive effects on }(,(!I}—of
tunneling for c &c, and of partial reflection for
e &e,—appear in }!',"'('g) as a short-range phase
shift y„(z,F) and an amplitude-modulating factor
R„(c,F}. These quantities depend entirely on
t~o parameters, namely, the accumulated inner
phase b„and the tunneling integral r of Eqs. (30)-
(34). Thus, starting from Xi((7«Re(b)) as given
by Eq. (40) and using Eqs. (A12)-(A20), we find

x/2 ))

x (x)=[x„„(~ )I
' 'x,-'(x)=[ ( )1

'x')x„x(~ x) s' xe x(x)')xx)'+-,'x}+[y„(~ x)+-,'()(x)I
la ig

region II, !I»Re(a) (41)

where

(t)(r)—= rgal'( iv+) o[+(lo—In!a!), a =r/z (42)

I

y„,„(e,F) = tan '[tan2rx 8 tan(6„+ &Q)],

cos(5„+vx @)
tan-8 cosy„

(43)

(44)
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and

8 =tan '(e ') . (45)

Equation (43) is complemented by requiring y„
to lie on the same branch of the tangent as 5„+—,

'
(t).

The elliptic-integral expressions for 5„(e,E;n„m)
and r(e, F;n„m) are summarized in Table I.

Under the barrier, v &0 grows rapidly as e de-
creases below e„so the tunneling parameter & 8
= &e ' is a very small quantity. Thus, y„ is sig-
nificantly nonzero only under the resonance condi-
tion 5„+&P = &g. For fixed values of n„m, and

F, the energies e„(n„m,F) at which

5„+&(t)=w(n, +v), n, =0, 1,2, . . . , (46)

i.e. , the centers of these resonances, may be
identified as the Stark-shifted quasibound energy
levels of hydrogen. " ' [For r= O(1), however, see
Sec. IVE. ] The positions and widths of these lev-
els for e„=e, have been studied by Rice and Good'
and Bailey et al. ,

' and by Damburg and Kolosov'
for e &e, . The function wkly(r) defined in Eq. (42)
[see also Eq. (A13)] stems from contributions to
the phase integrals from the classical turning
points and from the asymptotic expansions of the
parabolic cylinder functions. In the quantization
rule (46}, —,

' (t)(v) represents a correction to the po-
sitions of the quasibound levels due to the finite
width of the barrier, a correction that vanishes
for F=0 Note th. at (j)(r) has precisely the same
form ss the Coulomb phase correction 4o [dis-
cussed in Appendix C, see Eqs. (C5)-(C7)] with
m=0 if we replace the tunneling parameter

dy„k~(~ )F) d5=R„' (4,E)
6 6N 2

(47)

y„„and R„are given in Eqs. (63)-(65) in terms
of the quasibound level's width I' (n„m, F).

The phase shift y„ increases steadily as a func-
yf j ftl

tion of the energy as one rises in energy through
the barrier peak E = c,. A possible and important
exception to this behavior is the occurrence of a
shape resonance at (or just above} e =t, if Eq.
(46) is fulfilled near there. Above the barrier r
becomes large and negative and we have &8- —,'w

and Q(r)-0, soy„~-5„andR„-l. In this
limit Eq. (41) takes the form

u = r/w & 0 by the Coulomb barrier parameter
ct = P,/k& 0.

The factor 1/R„, , which gauges the ratio of am-
plitudes ]t,(q -0)/X, (q» a), depends strongly on
barrier effects. Inside the barrier the wave func-
tion is a linear combination of increasing and de-
creasing exponentials; the former usually domi-
nates at q=a, soR„' =tan —,'8=-,'e '«1. Inthevi-
cinity of an energy level e„(n„m,E}, however, the
coefficient of the increasing exponential vanishes
and a node shoots through the barrier into the
inner-well region. ' This change is manifest in the
wave function y, (q»a) as y„rapidly increases by
n and R„' goes through a sharp maximum equal to

1
cot-,'8 =2e' Nea. r e„(n„m,F), the phase (43) and

amplitude (44} are related by the dispersion for-
mula

X/2

k, (e)= [B„(\)] ' ' ei Re k(e'k(k ~ Re k(k )(i) ~ —, ei k(i) k(e ~ —, ),wk g a C C

(48)

5„~=5~+y„~(eeE)+~ P(r) —5~(ceF).

Here the contribution 5~ is given by Eq. (30) as
the limit of the difference between the phase inte-
gral in the wave function (41) and that in the Airy

(49)

where we have used Eq. (35) with its integral ex-
tending only to finite ](). Equation (48}has the form
of a WKB solution appropriate to the single classi-
cal region c & g & when the effect of the barrier
becomes negligible.

(3) Asymptotic form of Xn(q) In regio. n III, fi-
nally, the wave number k(q) of our wave function
(41) approaches its Airy function limit kz(g). The
function (41) itself reduces to its anticipated form
(12) whose phase shift can now be specified as

A„=(B„)'i'R„„. (50)

As noted before, the total phase shift 5„rises
fg glS

by 2m in each interval between successive quasi-
bound levels c„. In Eq. (49) one-half of this rise"2
is contributed by ) „and occurs abruptly at c„

1
while the rest is contributed by 5~ and accumu-
lates smoothly. Far enough above the barrier,
e.g. , at e-O, Eq. (43) shows that y„approaches
the value 5„given by Eq. (32); the total phase

I

function; y„+&Q stems from Eq. (41) itself and
1

-5& is the adjustment to the Airy phase given in
Eq. (9) and Appendix B. The amplitude A„„of
Eq. (12) is obtained by direct comparison with Eq.
(41) as
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=2(1+e ~2~~) ' m=0

A„',(z, 0)=B„,(z)

(52a)

shift reduces then to

(51)
1

as anticipated in Eq. (35}. At the same time R„
approaches unity and A„reduces to (B„)'~'.

tfPl 1
Amplitude for p, & 0. A negative value of p, im-

plies an effective Coulomb repulsion throughout
the range 0& q&~ without any potential hump (i.e. ,
with R„=1). One must then consider the Coulomb
factor k„(z), Eq. (38), more carefully. For
z& 0, B„'„(z)measures the squared amplitude of
the zero-field Coulomb wave function at large g,
in particular,

A„~o(z, 0}=B„o(z)

X (q)=A(&2~P
~

'/ml)q'~~ I ([I+O(q)].

The normalization condition (5b) sets A =
~
P, ~

ml /&2.
For large g [such that ~kom(rl) ~» —,'Frl], substitution

of the asymptotic representation of the Bessel
function in Eq. (53) gives

Since the exponential form of }t,(q) now depends
only on the WKB tunneling integral fo" ~k, (g') ~dg',
we may restore the negligible term ,'Fq to—k,'(q)
and extend the integral to larger g. Finally, the
usual WKB connection formula across a single
turning point yields Eq. (12}with 5„„given by
Eq. (51}and

A ' (c,F)=A '=2~P,
~

"ml 'e"
= 2P,(1 —e ~z2 ~) ' m = 1. (52b)

The quantity -zp, /k-=r, & 0 equals the tunneling
integral under the repulsive Coulomb barrier in
the absence of centrifugal effects. When ~P, /k~
is large, we have A 'o(- e ~0, as expected for a
tunneling process, and ~0 diverges as a 0. How-
ever, the potential barrier ~p, ~

/q —,'Fq has a-
turning point at any energy, unlike the pure Cou-
lomb barrier, so X,(rl) will not diverge even at
t & 0 as q- ~. We proceed to show that (1) the
factor P, ~" in the functional forms (52) and in
Eq. (38 results only from the centrifugal repul-
sion, represented by m, and that (2) the exponent
&0 may be generalized to a tunneling integral
which depends on the combined Coulomb plus
Stark potential but is independent of centrifugal
effects.

We seek the large-q amplitude A (e, F) of a
WKB expression for X,(q} with the energy-independ-
ent normalization (5b). We begin again at small
g by neglecting the potential term ~Fg. Langer
has shown~ that the zero-field Coulomb wave func-
tion for P, & 0 at any e can be approximated inside
the barrier by a modified Bessel function of order
m, whose argument is a WKB tunneling integral:

x(ll)=A( '
(~(„I ) .(f 1 .(8')I I')

0 0
(53}

Here ko(q)=[zz —~p, ~/q]'~2 is the WKB wave num-
ber (27) (for F= 0) guzthout the centrifugal term
m'/4(72. Equation (53) is valid over a large range
of g, including g 0 but not extending through a
turning point of ko(q). The coefficient A is deter-
mined by the normalization condition (Sb) at )7-0,
where the integral is =2(~p,

~

(7)'~', the low-z form
of I (z-0)=( z) mz! '[1+O(z')] gives then

2e" m=O

2~p, ~z--, m=1.
(54)

This is smaller than the P, & 0 form of the Coulomb
amplitude B„, (e} in Eq. (38) by the factor e ", as
anticipated, and thus accounts for the sharp cut-
offs of the partial densities of state in Eq. (22)
when P, or P, &0. The tunneling integral

is identical to the integral on the left of Eq. (C1)
with m =0, P, —~P, ~, and e- -e. As compared
to numerical calculations for F=0.001 a.u. and
m =0 —1, this method gives A„', with an error on
the order of 1% or less if ~p, ~

&0.1; when p, =p„«
-0, however, the error may be 10-20%.

A. Eigenvalue curves P~(e,F;n&, m)

For a given Stark fieM F and a given m, the
family of eigenvalue curves P, (z, E;n, , m} vs e with

IV. QUANTITATIVE RESULTS
AND DISCUSSION

The eigenvalue curves P, (z, E;n„m) of Sec. II
and the phase 5„, (e, E) and amplitude A„, (z, E) of
Sec. III are discussed here with regard to their'.
qualitative features in different regions of z (Secs.
IVA-IVC), accuracy as functions of E and z as
compared with results of numerical integration of
Eq. (3b) (Sec. IVD), and prediction of energy lev-
els and ionization rates, though little is added here
to previous results (Sec. IVE). In most of the ex-
amples discussed in this section we have set m =0
for simplicity, but the calculations and qualitative
observations apply to m &0 as we11.
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different n, forms a smooth monotonically de-
creasing bundle. Figure 2 shows the lowest n,
curves for E=1.5 X10 ' a.u. (77 kV/cm) and m =0.
This figure affords a more compact discussion
than has been given previously.

In the F=0 case, all the curves reduce to para-
bolas

p, (e, 0; n„m)=(n, +p+pm)(-2e)'", (55)

1.0

0.5

0.0
-0.04

I 1 I

-0.03 -0.02 -0.01
6 (O.u. j

which condense to the ionization threshold e =0 and
do not exist for e & 0. When F10, however, the
motion along $ is bounded at nonnegative energies
as well. The curves P, (e) remain then approxi-
mately parabolic for e «0 but depart increasingly
from parabolas at e -0, extending into the e & 0 re-
gion, where they drop sharply towards P, «0. The
first-order correction to p, (e} for e « -[E(n, + ~)]'~'
raises each parabola by the factor 1+~eE(n, + ~
+ ~m)12e I ~, as seen from Eq. (25) or first-
order perturbation theory. The limiting behavior
of p, (e, E;n„m) for large e follows directly from
Eq. (25):

2

P, (e, E;n„m) =

where

+e'~'(n, + ~)[1+O(a,)], (ss)

n, =-E(n, + ~)e '~2«1.

The broad potential well U($}=-p, /$+ ~E] has a
minimum just below e at e „=2(-P,E)'~' =e(1 —2a,).

The graph of the eigenvalue curves P, (e) in Fig.
2 serves as a basis for conveniently representing
the quasibound, Stark-shifted levels of a Rydberg
atom. When F=0 and e & 0, we can construct not
only the family of eigenvalue curves (55) for the $
mode but in addition a corresponding family of
n, curves for the g mode,

P, (e, 0;nm, m) =1 —P,

= (n, + p + ~m)(-2e)'" . (ss )

The quantization of both )t, ($) and X,(g}, therefore,
requires the bound levels for a given m to lie at
the intersection points of (55) and (55'), as shown
in Fig. 5(a) for m =0. At each energy e =-~n '
there are n —m =n, +n, +1 degenerate levels,
which lie on the vertical lines converging to e =0
in the figure. The presence of a Stark field EW0
warps this picture, as shown in Fig. 5(b) for E
=1.5X10 ' a.u. and m=0. Whereas the n, curves
are "stretched out" towards e & 0, as described
above, the n, curves (dashed lines) no longer reach
their zero-field condensation point e =0. The en-
ergy levels (nn, n,m) now spread out in energy for
each n —linearly for the lower states in accordance

I.Q

CQ.
I

0.5

0.0 - 004 - 0.03 - 0,02 - 0.01 0
6 (O.U. )

FIG. 5. (a) Eigenvalue curves p&(e) and p2(e) for m=0,
F=O, and n»n2=0-10. Vertical lines at E=-~n, n

=n~+n2+1=4-11, connect n-fold degenerate Hydberg
levels (nnjn20), which lie at P&+P2=1 and condense to
&=0 threshold as n ~. (b) Eigenvalue curves P&(e)
(solid) for m=0, F=1.5&&10 5 a.u. (same as Fig. 2), and

n f 0-10. Dashed curves connect quasibound levels
(nn&n20) of constant n2. Stark splitting of n = 4-11 levels
is indicated by tilting and bending of vertical lines.
Dotted line represents the ionization threshold at the
top of the q barrier e~=-2(P2F)' . All states with n~
&12 are ionized [Eq. (57)j.

with a first-order Stark shift, but nonlinearly for
the higher states. The ionization threshold is in-
dicated in Fig. 5(b) by the dotted line which marks
the top of the barrier in q, the critical energy e„
where P, =e,'/4E. For higher fields the distortion
of the eigenvalue curves is magnified, the lines of
constant n become more skewed, and fewer states
retain an appreciable lifetime.

The eigenvalue curves in Figs. 2 and 5(b} are
also useful in determining which kinds of reson-
ances in the density of states (22) occur in differ-
ent energy regions. They are as follows.

(a) In the lowest few n, curves one finds a range
where 0 & p, &e,'/4E, i.e. , where there is an at-
tractive Coulomb potential in q while e is still be-
low the barrier top e, . In this region the quasi-
bound states described above give rise to sharp
resonances in the density of states. The higher
n, curves, however, do not attain positive P, until
e & 0, which means they cannot yield any quasi-
bound states at all. The lowest value of n, for
which no such quasibound state occurs follows
from Eq. (C2) with P, =0, e = 0, m = 0:
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n +~a v F '/'=(0. 787)[F(a.u. )] '/'@~+pe

= (37.5)[F(kV/cm)) '/4 .

(57)

This form was obtainedby Rau' with an incorrect
additional factor ~I.

(b) An additional shape resonance occurs in Eq.
(22) above the barrier top for each n, in the range
0 ~ P, ~1, but the density of states cuts off expo-
nentially whenever either P, or P, become negative,
as mentioned in Sec. I B and discussed in Sec.

(22 }3/2
P, =O: n, +p ——

3gF (58a)

If ny + 0.8F '~, the lower limit simply occurs at
the barrier top, e, &0. For larger values of n„
however, the lower limit is P, =O ate&0, and one
must invert Eq. (C3} with fixed n, and P, = 1 to
obtain e; for large e this equation becomes

IVC. The energies at which each n, curve inter-
sects these limits in p, also follow from Eq. (C3).
The upper limits —where P, =0—occur at the ener-
gy levels of a triangular potential well [dashed
line for V($) in Fig. 1(a)],

(2&)"' 3F t' 162 9F ~ 162 17 l (F2'i

p, =0: n, +v= 1+—2( ln +1 —,I&in
——)+O( —,~j, 2&M. (58b)

Note that the amplitude of the shape resonances decreases with increasing 2 due to the factor f (2} in Eqs.
(20) and (21).

5„~/2=2n2+1+ pm, (59}

6-

u 5—

E 4-
C

OO

0
-O.I5 -O.IO -0.05 080

4 (O.U. j

0.05 O.IO

FIG. 6. Phase shift 6„m(z,F)/7r vs e for m=0, F
=0.001 a.u. , and n~= 0-5 (solid curves). Quasibound
levels, labeled by (nnp, 2m), are centered at steps of 71

at 6„m= (2n2+ 1)7r. Arrows indicate ionization thresh-
olds ~~. Dashed curve shows phase shift for m=0, n,
=2, F 0, with unperturbed Rydberg levels converging
to a=0 threshold. Note Stark shift of n =3 states. 6„0

„=(2e) /' /3F-7I(n~+~) [Eq. (60)].

B. Phase shift 5&&~(e,F)

We turn next to the asymptotic phase shift 5„ffjm
(2, F), shown in Fig. 6 for n, =0—5, with m =0 and
F=0.001 a. u. =5.1X103V/cm. A large electric
field has been chosen here to eliminate the higher
(nn, n, m) levels, in order to emphasize the effects
of a nonzero F Quasibo. und states correspond to
the steps of z, as explained in Sec. III B, and are
labeled by integral values of n, ~ 0. Each step is
centered at

+WZ2 +O(G ) t+~ 0 ~ (60)

The divergence of 5„at large e shown by this
Wym

equation derives from the increasing depth of the
effective Coulomb well, -P2(2)/3) --22/4', which
accompanies the drop of P, at fixed n, . However,
this divergence may be preceded'by a maximum

in accordance with Eqs. (46) and (49}, disregard-
ing 5„, which is negligible for 2 &0. [However,
Eq. (59}becomes inaccurate as 2 approaches 2, ;
see Sec. IV E.] Note (1) the steady increase of
5„between levels n, and n, + 1, reflecting the be-

n&m

havior of 5,(2), and (2) the total increase of 2v

per unit of n, . The widths of all quasibound levels
for n, =0, 1, and 2 are too narrow to be resolved
on the scale of Fig. 6, but the (4300) level appears
as a shape resonance with width I'=0.0015 a.u.
centered at e = -0.0167 a.u. , just above the bar-
rier top c,= —0.0169 a.u. [The (4210) shape res-
onance is less pronounced. See also Fig. 7.]
There are no quasibound states for n, ~ 4 for this
value of F, as predicted by Eq. (57). Note that
all the phase shifts in Fig. 6 rise more steeply
just above the barrier top (indicated by arrows)
as }f2(q) begins to oscillate. The closer 2, lies
to the next quasibound level, the steeper will the
rise be; if the mell nearly supports another half-
wavelength it will accumulate the remaining phase
just above the barrier. This rise constitutes a
shape resonance.

At high energies, 5„(e,E) is given by Eqs. (51),
(35), and (Bl); with P2(2) =1 —P, (2) from Eq. (56),
we have

(22)3/2
5„„(c,F)= —v(n, + v'm+ v')
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and temporary decrease as shown in Fig. 6 for n,
=0 and 1. Such a decrease with increasing e is
familiar in all problems with an energy-indepen-
dent potential; it occurs here whenever e & e, and

dP, /de is small.
The dashed curve of Fig. 6 shows the phase shift

for n, =2, m =0, and F-0. The solid curve for
n, = 2 approaches the dashed curve increasingly as
F decreases. For very low values of F the energy
levels —marked by steps of the dashed curve—
occur near their Rydberg values e = -~n '. On the
other hand, the barrier top c, lowers as F increas-
es, leaving an increasing number of levels in the
classically ionized range, while the levels below

e, are slightly but increasingly displaced. For a
field as large as that used in Fig. 6 (F=0.001)
only two quasibound levels remain noticeable for
ng 2»

The divergence of the phase shift 6„of )t, (q)
in the limit e- ~ may at first seem surprising.
Recall, however, that at e & 0 even the zero-field
hydrogenic functions y, (() or y, (g) may have an ar-
bitrarily large number of nodes, n, or n, . These
quantum numbers gauge the amount of excitation in

each mode. The total number of nodes n=n, +n,
+m+1, represents the excitation of the entire
atom, which may be divided between p and q in

varying proportions. Now we notice that the di-
vergence of 5„„is matched by a divergence of op-

7gj tll

posite sign in the phase shift of X, ($) with respect
to the corresponding Airy function in ], Di(w(-$)},
defined in Eq. (11). This phase shift is given by
the difference of the quantized phase v(n, + 1) of X,
(() and the phase —6„of Di(w(-t')}, given in Eq.
(S2},

26/ F
k~($')d) '+-,'w = (»E(' ——,'&)"'d] '+ -,'v

0 0

A ',(e,E}=B",'(t }cot—,'8

= 2/2 e', (62)

Note that A ', is proportional. to d6, /de for e = a

via the dispersion relation (47), as illustrated by

Fig. 6 and 7.
Just above the barrier top for each n, curve

(e =c„arrows in Fig. 7) there is a modulation in
the amplitude —the shape resonance due to the
optical-type reflection discussed in Sec. III B. This
"ringing" is stronger for the higher n, states be-
cause their lower effective charge P, at a, sharpens
the edge of the potential barrier. Far above the
barrier, the factor R„of Eq. (50) approaches
unity. The amplitude, A„(e —~) reduces then to
B„"„'(e-~) and depends only on the quantity

p, /k - (2&)"'/16E

[see Eqs. (38) and (56)]. Since p, /k&0 diverges
also at &=0, where k itself vanishes, we obtain
the same form as B (e =0):

A' (c,E}=,
~
p, ~~~'[1+O(Fc '~')], e»0 (63)M2

~ (g/~+ftl

C. Amplitude A„&~(e, F); partial cross sections

The amplitude factor A (c,F) of Eq. (12) js
shown in Fig. 7 for the same values of n„m, and
E as those used in Fig. 6. We actually plot lnA '(e)
in order to represent as peaks the sharp minima
of A„at quasistationary levels, i.e. , as they ap-

tly foal

pear in the density of states (22), N~ ~A 2„. The
positions e (n„m, E) and widths I' (n„m, F) of
these levels will be discussed in Sec. IV E. The
heights of the peak maxima (indicated by dashed
lines) follow from Eqs. (50), (38), and (44)-(46}:

(2e)"'
/~el 3F 4

The phase shift in $ is then

t » g (2q)a&2
k((')d~' — k„(~')d~' ,'v = v(n, +--,')-—

0

e»0 (61)

Io)

73
I

(M2

Io'—

269 I950

I I I I

I

I

I

(4300)

which is large and negative due to the balancing
of the Stark field by the repulsive Coulomb field
of Eq. (56). The combined phase shift, defined
as the sum of Eqs. (60) and (61), remains finite
and equals ——,'(m —1}v+O(e "'), which converges
at a -~ to a constant phase shift due to the centri-
fugal barrier alone. Thus, the total phase shift
of g does not diverge; rather, the presence of the
Coulomb field modifies the Airy reference function
through a transfer of excitation from the g coor-
dinate to the g coordinate.

E
C

IO

l0
0.00-094-0.06 -0.02

4 (O.U. )

FIG. 7. Amplitude ratio A„(e,E) ~x: y2(g - 0)/X2(g -~),
on log scale, vs e for m=0, E=0.001 (same as Figs. 3
and 6), and n&= 0-5. Peaks correspond to quasibound
levels, below and above threshold e, (arrows). x:
p2(E' F' S ~

0)= 0 A p
=~2.
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which is independent of n, . Although A„' diverges
as a in the limit of large a if m 10, the density
of states (22} eventually approaches zero due to the
exponentially decreasing factor N~ =—{fd]'[g,(]')]'/
$'j ' (see Sec. II, Fig. 3).

The above remarks on the large-a behavior of
A ' (s, F) are similar to those on the large-e be-
havior of 5„(e,F) discussed above. On the one

fIyNI

hand, the zero-field threshold behavior of both
5„and A ' is shifted from e =0 to e =~ when
F+0 [Eqs. (60) and (63)]. On the other hand, when
we consider the entire wave function (2) and the
constraint (4), the divergences of 5 and A ' are
canceled by corresponding parameters of }(,($}.
Thus, in the limit e-~, the Coulomb field will
have no effect on g$, q, P)', there will only be cen-
trifugal repulsion.

The shape resonances at E &0 in the density of
states (22)—not due to quasibound levels —depend
jointly on its two factors A„' (e, E) and N~, shown

ffy Sl

in Figs. 7 and 3 for m =0. In the range 0& Pg & 1,
and at a well above the barrier in g, A ' is given
by (52a) or (52b), while N& is given roughly by the
same expressions with P, in place of P,. The order
of magnitude of the density of states is then

m=0
0&Pi&1.

PP, , m=1
(64a)

~(1+e '"«) ', m=0
N+

SNy Sl

(I e-2r/0)-1 m —I2r
P( =0 (64b}

but does not actually vanish as would be indicated
by (64a) for m = l. At energies beyond the shape
resonance [e& ,'(3vn, E)2/~, cf. —Eq.(58a)], where
P, &0 and A ' is given in Eq. (54), the density of
states decreases exponentially'.

e-2' Ql/P + -0
N, (64c)

Since p, =1 —p, =-e'/4E from Eq. (56), we see that
Nr cuts off with increasing e as exp(-vk'/8E).
For m =0 each partial density of states in Eq. (20)
is further modulated by the factor (P, —it,}'. Hence
the energy dependence of the m =0 partial cross
sections is parabolic with sharp cutoffs at P, =0—

Pq&0.

Note that N~, is flat, while N~„, peaks parabolical-6 nial

ly. In fact, N", , and N~, for F=0 and a & 0 are
given exactly by the expressions (64a) times a
factor

~

—,'e
~

"'. Thus, even in the Presence of a
Stark field, Nr closely resembles the density of
states of the hydrogenic function for F=0, shifted
in energy, as anticipated in Sec. IB.

At the upper (or lower) cutoff of any of these
shape resonances, where p, =0 (or j'i, =O}, this
density of states drops to

in contrast to the m =1 partial cross sections,
which essentially maintain their inverted parabolic
shape (64a), P,P,. [See Figs. 1-3 of Ref. 11(a) and
Fig. 11 of Ref. 4.]

D. Accuracy of 5II

gpss

and Aff gwg in the WKB

approximation

The WKB expressions for 5& (e, F} and A& (e, E)
given in Sec. IQB have been compared to the phase
and amplitude of X,(q- ~) from numerical integra-
tion of Eq. (3b). A large field strength was chosen,
F=0.001 a.u. (5.1 x 10' V/cm), for which the ac-
curacy should be poorer than for laboratory field
strengths. A Numerov procedure was used with
blocks of varying step sizes to accommodate the
qualitatively different behavior of X,(rI) in regions
I, II, and III.

With a convergence of at least four significant
figures for 5, the error b,5 „=5~ —5"" was
found to have the following features:

(1} n6 is negligible when e «e„even for
n, =O. For example, for n, =0-3 and m=O or 1,

&0.002m.

(2) There is a negative maximum in n6 at
This error is smallest for n, =0, where

P, »P «and ~5 -0.007m. However, a5 in-
creases with increasing n, because, as anticipated,
p, (c,) approaches p„«-0; for n, =3, n6 -0.018v.

(3} If P, = P «and e & 0, there is a positive maxi-
mum error with A5 & 0.03m.

(4) For e&0 with p, &p «, we have n5 s0.006w.

The relative error in the amplitude, 4A
=(A~s/AN" ) —1, that is, the error in lnA, is
qualitatively linked to rh, 5„, by the dispersion re-
lation nA „~d(n5 )/de; in general, nA (c-e)
is about an order of magnitude larger than L5
At e&e„ for each n„~A is always smaller
than 1% for F= 0.001, except when P, = P «.

E. Quasibound states: Energy levels and widths

A quasistationary resonance of hydrogen is usu-
ally considered to be centered at the energy
e*(n„m, E) which marks the local extremum of
R (e, E),s" i.e., the inflection point of y „(e,E).
In Sec. IIIB it was suggested that c* is well ap-
proximated by the energy c satisfying Eq. (46),
i.e., such that

6„+,'f =-,'v(modw-) =y„,

The lowest levels, which correspond to large tun-
neling parameters (e.g. , with r&5), have very
sharp resonances. Therefore, the factor tan28(r)
in Eqs. (43) and (44) remains nearly constant over
the width of one of these levels and c„,essentially
coincides with e* for given n„m, F. However, for
a resonance approaching the barrier top, a„,will
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lie increasingly higher than the actual level e~. If
the resonance occurs near or above c„ i xi is
small and a may only serve as a first guess to

tt2

The full width I' (n„m, F) (in a.u.) of a quasi-
stationary resonance is obtained by assuming a
Lorentzian profile for the intensity of each n, level

-2

(65)()1I & (z

gpss

(lp )2

and a concomitant arctangent form for the phase,

y —w(2n, + I+—,'m) =tan '[(t —c„)/—,'I'„,]. (66)

The width is then

The condition k(q}- const suggests representing
y, (q} as a trigonometric function of a phase x de-
fined by

X

dx' - k(q')dq' . (A2}

The first derivative dk/dq is taken into account
through the familiar amplitude factor [k(q)] '/'
which ensures normalization per unit energy. The
method breaks down at any node of k'(q).

'The presence of a single node b is taken into ac-
count by replacing locally the WKB trigonometric
function by an Airy function, a solution of (Al)
with k1(q) linear in q. The argument z(q) of the
Airy function is now given through the relation

(67}
ff2

if we again assume that tan —,'8(r) = —,'e is approxi-
mately constant over the energy range a + —,'I'
The lifetime of an (nn, n,m} state for fixed n„m,
and F is simply T „=I" ' a.u. =(g'/me4) I „' sec.
Generally, the value of e„ from Eq. (46) is more

N2

accurate than the corresponding I'„by about one
significant figure, but 1 „ is always at least of the
correct order of magnitude, even for the highest
n2 states. "

Note added in Proof Arecen. t paper by V. D.
Kondratovich and V. N. Ostrovskii, Zh. Eksp.
Teor. Fiz. 79, 395 (1980) [Sov. Phys. —JETP 52,
198 (1981}],has obtained substantially equivalent
results for the photoionization cross section in a
more compact mathematical presentation initiated
by G. F. Drukarev.
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(A3)

The first derivative of k(q) is taken into account
through renormalization of the Airy function by
the factor

(& —&)"[k(q)] '" (A4)

( ,+ (~x' —a) iy(x) = 0.
dx j

(A5)

The argument x(q) is given by the transformation
analogous to (A3),

(A6)

where b is the node of k(q) such that arg(a —b)
=0 (for a, b real) or,'v (for a=b~). The value
of a is set by matching q= a to x= 2',

a
k(q')dq'= (-,'x" -o(}'"dx'

b -2/if

which remains finite at the zero of k(q}." Higher
derivatives are dropped again and the asymptotic
form of the Airy function reduces to the WKB ex-
pression, plus the extra phase v/4 as usually
given in the connection formulas. This is essen-
tially the procedure followed by Lanczos. '4

The presence of a pair of nodes, a and b (real
or complex conjugate, as in Fig. 4), i's taken into
account by replacing the WKB trigonometric func-
tion, over a range including the nodes, by a para-
bolic cylinder function which obeys the equation

APPENDIX A: EXTENDED WKB TREATMENT =ATQ -=ZT, (A7)

d2
d, +1*(n)}x(n)=0. (A1)

Miller and Good's extension of the WKB method
to deal with zeroes of the kinetic energy"»' is
presented here through examples of increasing
complexity. 'The usual WKB method relies on
the near constancy of the wave number k(q) in
the equation

(1z2 (x)1/4[k(q)] 1/2 (A8)

and higher derivatives of k(q) are once more not
included. The asymptotic form of the renormal-
ized parabolic cylinder function at large iz i

re-

with the tunneling integral v' introduced in Eq. (31).
The renormalization factor of the parabolic cyl-
inder function is now
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duces again to the usual WKB expression but with
the desired phase corrections, which are de-
scribed below.

As parabolic cylinder basis functions we choose
the standing wave solutions which are even [y,(x)]
and odd [y,(x)] with respect tox=0. Their as-
ymptotic forms are given through Eqs. (19.17.1),
(19.17.8), and (19.21.2-3) on pp. 692-3 of Ref. 16:

y, (x) = i-,'xi-'"sin[f(x, u}+-,'w --,'8]
Ixl ~a

and

y, (x) = + iRxi 'i'sin[f(x, u)+-,'w+-,'8],

x)&0 (A9)
where

f (x, a) =-,'x'-u inixi+-,' argr(-,'+ zu)

and

(A10)

8=-tan '(e ~), 0&8&—
w (A11}

u being defined by (A5) and (A7). For our pur-
poses, the phase function (A10) will be compared
with the asymptotic form of the phase integral (A6),

r
-24+ X

(Rx"-u)' 'dx'= (Rx"-u)' 'dx'
2~

=-,'x(-,'x'-u)' '-uln[-,'x+(-,'x' u)' -']+-,'ulniui
— —.'x'-a inixi --,'u(1 -iniu i).

With these substitutions Eqs. (A9) become

y, (x) = i-,'xi 'i'sin (-,'x" —u}'i'dx'+-,'w+-,'(t) --,'8 i,
Ill ~a 2~

e,(x) = s ~-', x~ "*si Jl (-,'x" —s)'w'dx'w-, 'ww-', ew-', e), x&&o
I@I~a 2~

where

y(u)=argr(-', +ia)+u(1 -lnluI), u=r/w

(A12)

(A13)

indicates the correction term introduced as Eq. (42).
To derive the desired connection formula for X,()7), we start to the left of the barrier with a general

WKB solution of Eq. (Al),

X (wl) Rk "
(W=)wee( J*k( )d +S-,

'
W
- )w', ee «Re(k) (A14)

where the phase 5i and amplitude Ri are initially arbitrary. We will obtain a solution to the right of the
barrier of the form

x (ll)=R„k ' '(e)si k(ll')dll' ~ —,w ~ e„), ll»Re(s).
"a

(A15)

With the above notation, the solution (A14} may now be expressed through the basis functions (A12), using
Eqs. (A6} and (A7):

XI, (6) ~ [cos(6I, + 2 0 + 2 8)y, (x) —cos(6& + 2 0 2 8) iy.(x) i ] .
(1; q sin8

'To obtain X„(g), we evaluate Eq. (A16) at »& 0 by merely flipping the sign of the odd function:

(A16)

k/R ft
X„('rJ)= lt'( }

. [cos(6 + —,'g+-'8)y, (x)+cos(6 + —,'y --.'8)y, (x)]k(g) sin8

2k 12 cos'R 8 cos(6i+-, p) sin (4h -0') Ch +4S+2ysine 2~ ']

+ tan'(R 8)tan(6i + —,
' p)cos(. ..)

2~ (A17)
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where

tany =- tan'(2 8)tan(5z, + 2 0) .
Direct comparison of Eqs. (A15} and (A17} [again using Eq. (A6}] furnishes the phase

5s=24+y

and amplitude

R„=R~ cot(-', 8)cos($ +-,'(t()secy .
The connection formula implied by Eqs. (A19) and (A20) is expressed coinpactly by

(A18)

(A19)

(A20)

si 'acos Jl (S)Sa~c—,'4 ~ —,'4( —cos-'saic f (S(4S+i-,'( ~ '44)'
g ) a

and the companion formula

(A21a)

cos28 sin k(ri')dry'+ —,'v+2'(t( —sin 8cos k(g')dq +Ev+2$ (A21b)

-5&(e,F)= tan ' . ' +vN~, Ai(2((, )
Bl K(4

(2g )3/2

3F

(B1)

(B2}

APPENDIX B: THE AIRY PHASE SHIFT

We specify here the branch of the tangent in Eq.
(9}which defines the Airy correction -5„. When

w(3)) & 0, the Airy functions" Ai(a() and Bi(2o) van-
ish and diverge, respectively, as exp(+ 3 ~w 3~').
Hence, this correction is positive and very small
at negative energies, increasing as a approaches
zero, where it reaches the value v/6. At s) 0
Ai(w) and Bi(w) start oscillating in the region
20 &a(2= w(3) = 0) = (2 F/')'~ c3[cf. Eq. (7)] and -5„
represents the total accumulation of phase of Ai(s()
from w= - to w= w, . Stipulating here that —~w
& tan '( ~ ~ .)&—2'v, we have then

reduced to a complete elliptic integral when ex-
pressed in terms of all three roots of its integrand
[cf. Eq. (28)]:

~2 P
'I} 1/2

2F '~2 — +—l+-2'e —2E)'
~

d$'
4$/2

a —$' $' —b $' —c '-/', , C1

where

c&0 &b= (, & $' &a= g, .

This integral can be expressed in turn as a linear
combination of the three canonical forms denoted
in Refs. 26 and 32 as K(A), E(A), and lI(EEM),
where script letters denote the corresponding
symbols in these references and

where N~, is the number of nodes of Bi(2v ~ u(,).
a-b a-b &1.a-c a (c2)

APPENDIX C: ELLIPTIC INTEGRALS
AND PHASE CORRECTION

The WKB phase integral introduced in Eq. (25)
for obtaining the eigenvalues P,(e, E; 2m2) may be

Note that 42 vanishes when e drops to the bottom
of the potential well and rises instead towards
unity with increasing c. Now the quantization
equation (25) takes the form

m'
E '&'(4 —4) 'a(-, (sc ~ 4((}K(4(~ -,'4(a —c)E(E)-—3( (4)

l
4 ac = c(s, s —,'), (C2)

with the correction &e discussed below.
In the special case m = 0, the canonical integral

II(n(A) drops out of Eq. (CS). One of the three
roots of the polynomial then vanishes identically,
namely, b = 0 for Pg & 0 and c = 0 for Py& 0 while
the two nonzero roots are

[es (e'+4p, F)'~']/F.

The complete elliptic integrals K, E, and II can
be calculated by an extremely simple and quickly
convergent iterative method due to Gauss, the
"process of the arithmetic-geometric mean, " de-
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scribed on p. 598 of Ref. 32. One can, for ex-
ample, correctly obtain K and E to ten decimal
places with five or fewer iterations for 4& 0.99999.
Series expansions in the variables 4' or 1-4' are
convenient when 4' approaches its limiting values
of Oor l.

The calculations of P,(e, F; n„m) may now pro-
ceed as follows, for given m and E: (i) over a
given range of energies, choose a mesh size for
e; (ii) for a single e, determine the value of P, for
which b=a and 4=0, i.e. , such that the minimum
of the potential well U($}= 4m'—/$' —P,/$+ -,' E$
coincides with the energy ~e (this involves solving
a cubic equation}; (iii) increase P, and calculate
n, (P„e) from (C3}for two or more values of P„
(iv) from the last two n, (P„e) points extrapolate
and/or interpolate this function to a desired value
of n, =0, 1, 2, . . . to determine a next guess for
p, (e, E, n„m ); (v}iterate step (iv) until P,(e, F;n„m)
is interpolated to a specified accuracy; (vi} extrap-
olate to the next integer n, [as in step (iv)] and
repeat the above iteration; (vii) repeat steps
(ii)-(vi) for the entire mesh of e values; (viii) plot
all the values of P, thus obtained against c, inter-
polating in ~ as needed along each curve with con-
stant n, .

Here we note an appreciable though small cor-
rection to the WKB phase integral for positive-
energy Coulomb wave functions. It is well known
that, for @&0, the WEB integral in Eq. (24) for the
accumulated phase across the entire Coulomb well
gives precisely the relation

n[( 2~) 'i'P, —-—,'m]= w(n, +-,'),

The analytic expression for the regular Coulomb
function"'" has the same asymptotic form as (C4},
except the phase shift 0~ is replaced by

c~'"'= argl'(~+ ~m —iP, /k}. (G6)

which is required to truncate the confluent hyper-
geometric series for the exact Coulomb wave func-
tion. (In fact, Langer sought to elucidate this
circumstance. } For e) 0, evaluation of the WKB
phase integral yields the asymptotic form

g, (()0- sin[-'k(+ (P,/k} Ink( ——'mw+ —' w+ v"" ], (C4)

with the phase shift

o""8= a(1 —ln ( o. )) —~ a In[1+ (~m/a)'J

v ~m sin '[I+(~zm/a)'] '~ +0(( '),
a=P,/k~0. (C5)

40 is odd in e and vanishes in both limits a=0
and a- ~. At small energies it equals -k/24P,
and has the following peak values:

0, 1, 2;

0.178, 0.626, 1.079;

„/m= 0.0479, 0.0120, 0.0064.

(C8)

The correction will obviously apply also in the
presence of the Stark field when ~) 0. It will be
ignored in many formulas for notational simplicity,
but it should actually be taken into account; cf.
Eqs. (24), (25), (35), (40), (43), (44), (48), and
(51).

APPENDIX D: ANALYSIS OF f k(q')dq'

We wish to isolate the real and imaginary pieces
of the integrals in Eq. (29}. Since the loop integral
around either contour of Fig. 4 vanishes, we must
have

(Re and Im) 5k(q')dg'=0.

Similarly,

0, g) g~
arg[q —q„] ' ~' =

qr, g& g~.

With the definitions (30}-(31')of Sec. IIIA, the
fundamental relationships (33), 5,„,—5,„=—,'mr,
and (34), r= r', will be seen to hold for both cases
e& e, and e) &,.

Belou the barrier, e& e,. Consider first the
case e& e„where all three turning points of k(g)
are real, 0 &c& 5& a [see Fig. 4(a)]. The branch
cuts of k(g} extend over the ranges of the real
axis -~&g&c and b&g&a. As g decreases from
+~ to -~, just above the real axis, the phase of
[(p —a)(q —b)(g —c)] '~' in Eq. (28) increases by —,

'
w

upon passing ecch branch point. On the positive
imaginary side of the branch cuts, along the real
axis, the phase y(q) = arg([(g —a)(g —b}(q —c)]'~'/g}
is then

0, g)a
—,n, b&q«

y(g)= ( w, cq«b

0&g&c

a~& 9&0~ ~& ~c ~

Hence for positive energies we must add to the
WKB phase integral the small correction

0 «U} OwKB .
m m m (C7)

The first and third (second and fourth) terms on
the rhs of Eq. (29) are therefore purely real
(imaginary); explicitly indicating the phase factors
of k(q), l, i, i'= —1 and i'= i, Eq. (29-) becomes
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OO oo oo a

5k g' dg'= He k g' dg' — k„g' ' +i Im k g' dg'
~ OQ a )A b

b C

Re k(|i')de' —itm —i' iiq')id''+ i„(q )dn )'—,'
C oo Ig)

(D2)

Now Eq. (Dl} gives Eqs. (33) and (34) directly.
Above the barrier, ~& ~,. These results apply as well to the case c& e„where the turning points a and

k become complex conjugates, b = a~ = b, +ia, [see Fig. 4(b)]. The branch cut between a and k now parallels
the imagina. ry axis, crossing the real axis at g= b,. The contour is deformed so that it still follows a path
from one turning point to the next without enclosing any poles or crossing any branch cuts. To recover
Eqs. (33) and (34), we again note the phase of k(q) and the pieces of Eq. (29), which now contain both on-
and off-axis integrals:

5k q' dg'= k g' dg' + k g' ' dg' — k„ g' dg' + k g' 1 deaf'

1

+ kg' ' dg'+ kg' ' + kg'dg' — k„g'
1

(D3)

Along the real axis we find
r0, g&b, +p

7T y
C&'g ~~5~ —p

v (n)=(,
0&q&c

7f y (&0~ E+ fc

avoiding the branch cut at g= b, by the infinites-
imal p-O'. Defining 8, = y(g= k) = -ip(g=a)
= I tan '[a,/(b, —c)]+ ~w & —,'s, along the three off-
gxis segments of the contour the phase of k(g} is
now

-eb&cp ~0, a+p &g «b, +p,
-0,& y& e„a+p ~g &b+ p,

y&g-0» b, —p ~g ~b- p.
Now the real and imaginary parts of the integrals

along these segments are given in the limit p- 0
in terms of real numbers X, Y&0 by

b&+p

lk(q')le"il dg'l=x+i Y,
a+p

r
a+p b+p

lk(n')le"ildn'I=- ( ")=-2iY, (D4)
b+p a+p

f
b-p

lk(q')l"'il@'I= x- I Y;

note that the integral from b —p to b+ p, rounding
the branch point b, vanishes as p- 0. Thus, the
second and fourth bracketed terms on the rhs of
Eq. (D3) are again purely imaginary, as in Eq.
(D2) for a& c„but 7 is now negative; also, the
sum of the first and third terms is again purely
real. Through Eq. (Dl) and the definitions of Sec.
IIIA, we again have Eqs. (33) and (34).
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