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We propose a new variational principle for scattering theory which extends the Schwinger variational principle

beyond the static-exchange approximation and to inelastic scattering. Application of this formulation to the

scattering of electrons by hydrogen atoms at energies below k' = 0.64 demonstrates the rapid convergence of the

phase shift with respect to the number of basis functions for both the open- and closed-channel orbitals.

Furthermore, we show that the convergence of the phase shift with respect to the number of expansion functions

(exact states or pseudostatesj is also fast. In our theory, the resulting phase shifts can be more accurate than those of

the close-coupling method even if the same expansion basis is used. The phase shifts in our ls-2s-2p calculation are

comparable to those of 1s-2s-2p-3p-3d calculation of Matese and Oberoi [Phys. Rev. A 4 569 (1971j],which are

very close to the exact values. Several aspects of the convergence characteristics are also discussed.

I. INTRODUCTION

The Schwinger variational principle' has been
successfully applied to the elastic scattering of
electrons by molecules in the static-exchange ap-
proximation. ' In a simple two-channel model sys-
tem, we also found' that the convergence of the K
matrix in the Schwinger principle was superior to
that of the other standard variational principles4
such as the Kohn method. ' The mathematical. basis
for the different convergence characteristics of
these variational methods has recently been dis-
cussed. ' The results of these recent applications
of the Schwinger principle suggest that the Sch-
winger principle should be extended to take ac-
count of polarization and short-range correlation
effects and to include inelastic scattering.

In a general scattering system the application of
the Schwinger principle beyond the static-exchange
approximation is not unique. An obvious ap-
proach"' would be to apply the Schwinger princi-
ple to the close-coupling equations as an alterna-
tive to the numerical integration procedure. A

slightly more general method has been discussed
by Nesbet, ' in which the Schwinger principle is
applied to the so-called generalized close-coupling
equations. " In the latter case, the configura-
tions for the closed-channel components can be
selected more flexibly so that the configuration
interaction technique, for example, can be used
through the optical-potential formalism. " In

both methods, the Schwinger principle should

converge faster' to the exact close-coupling re-
sults than the Kohn-type methods if applied to the

same coupled equations. So far, neither of the
above Schwinger methods has been applied to an

actual system.
In this paper we develop another approach to the

extension of the Schwinger variational principle
beyond the static-exchange approximation. Our

II. THEORY

A. Preliminary

We begin our discussion with a very simple
formulation of the Schwinger principle on which
our new formulation will be based. 'The Schro-
dinger equation for the (N+ 1) particle system is

(E -H)4' = 0, I= 1,2, . . . ,N, , (2.1)

where N, is the number of open channels, and the
Hamiltonian H is

formulation is not based on any coupled equations,
indicating that the equation is defined for the total
wave function and not for the scattering orbitals
from the outset. Consequently, the configurations
for the closed-channel components can be selected
freely without the use of an optical potential. A

more important feature is that the K matrix given

by our method can be more accurate than that of
the close-coupling approximation, even if the

same expansion basis (hereafter referred to sim-
ply as pseudostates') or trial functions are used
for the closed channels. For the same reasons,
the convergence with a given set of pseudostates
is quite fast with respect to the size of the basis
set both for the open-channel orbitals and for the
closed-channel orbitals. Therefore we can expect
that our new variational principle can provide K
matrices close to the exact values with small sets
of trial functions.

In Sec. II, the general formulation will be pre-
sented. To demonstrate the important character-
istics of our method, we apply the theory to the

elastic scattering of electrons by H atom in Sec.
III. To our knowledge this is the first application
of the Schwinger-type variational principle beyond

the static-exchange approximation. Section IV

presents a discussion of the encouraging conver-
gence characteristics of our theory.
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8. Formulation

Let 4 (1,2, . . . ,N) (m=1, 2, . . . ,N, ) be the eigen-
functions of H„with the energy E which are open
in the collision. The projection operator P,

with H~ defined as the total Hamiltonian of the
target system. T~„is the kinetic-energy operator
of (N+ 1}th particle and the third and fourth terms
in Eq. (2.2) are the electron-electron and electron-
nucleus interactions, respectively. These inter-
actions are referred to collectively as V hereafter.

Identifying H~+ T„„asa zeroth-order (unper-
turbed) Hamiltonian H„one.easily converts the
SchrMinger equation to the Lippmann-Schwinger
equation of the form

4 =8„+G,y+, (2.3)

where G, is the standing-wave Green's function
associated with E -H~ and 8 is the regular solu-
tion of E -Ho. Based on this equation it is quite
easy to construct the Schwinger variational func-
tional for the K matrix, as

N

(2.V}

with s being the regular solution of E -E —T„+,.
We assume the normalization for 8„to be

&m 'I

8~(F) ~ k~~ sin k~F ——5
~

. (2.8}

defines the open-channel space. Note that this is
different from the P operator in Feshbach forma-
lism" and is defined uniquely on an +-body space.
To remove the continuum component from the
Green's function G„weapply P to Eq. (2.8),
which yields

(2.6)

(+.i ViS„)(S„/V[4„)
(@„IV —VG,V I 4„) (2.4) G~o is explicitly defined by

Formally this variational principle is complete
and has no major dram-back at least for the colli-
sions of nonidentical particles. However, as
pointed out by Geltman, it is essential to include
the cosNsugm states of the target atom (molecule)
in the total Green's function G„in order that the
wave function on the left-hand side of Eq. (2.8)
should be antisymmetric. This certainly suggests
that it would be very difficult to construct and
treat the Green's function exactly in the collisiog
of identical particles. For this reason Eq. (2.3)
is normally avoided and instead the Schwinger
principle is applied to the coupled equations which
are much more manageable. '"'

Apart from the above difficulty, it is worthwhile
to consider the theoretical merit of Eqs. (2.3}and
(2.4). As we have already described elsewhere,
the X matrix resulting from Eq. (2.4) shouM be
one rank closer to the exact one than that given by
the Schrodinger equation formalism. ' For exam-
ple, insertion of the total wave function of the
close-coupling approximation into the right-hand
side of Eq. (2.3) yields a wave function on the
left-hand side which is one iteration higher. This
indicates that we can obtain a better K matrix
through the Schwinger procedure than the close-
coupling approach even if the same pseudostates
are employed for both methods. In what follows,
we will develop a more feasible Schwinger varia-
tional principle which is based on the Lippmann-
Schwinger equation, Eq. (2.8).

(2.9)

(VP -VGOV)@~= VS~. (2.11)

Since the operator in the parentheses in Eq. (2.11)
is not Hermitian, Eq. (2.11) cannot be directly
transformed into a variational principle.

To recover the unprojected component of Go,
i.e. , G, -G, , we consider the following Schro-
dinger equations -'

PHP4' =PV(1 -P)4„ (2.12)

(I -aP)H(1 -aP)4'„=-s(1 -aPgP4' , (2.13)

where H=E -H. With some simple manipulation
the latter equation can be written as

[H -ag'0+HP)+ aPHPj4' =a(VP -PVP)4'„.
(2.14)

In Eqs. (2.12) and (2.14), we made use of PHD
=H,P with H, = E -H, and P'=P. The terms PHP
and PVP can be eliminated from Eqs. (2.12) and

and g„(r„„,r„'„)is the standing-wave Green's
function defined by

m ~E+1)gm~+N+1 t+ X+1} ~+E+1 &+ E+1}

(2.10)

Multiplication by V from the left in Eq. (2.6) leads
to
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(2.14),

[H -a(PH+PP)]4„=a(VP -PV)4„. (2.15)

tale are contained implicitly in [(}. Its functional
form need not be specified here. The antisym-
metrizer A is defined by

Here a is an arbitrary parameter which will be
determined later. Multiplying Eq. (2.15) by 1/a
and adding this to Eq. (2.11) gives

A= (N+ 1)A„„,
with

(2.19a)

[-'(PV+VP}-}'G,V+ —[}}-a[P}}+HP}[}k}S=

(2.16)

Now we have to determine the parameter a. In
variational principles with fractional functionals,
such as the Schwinger principle, the Hermiticity
of the operator is essential to ensure the station-
ary property. " Otherwise the resulting K matrix
will include first-order errors. Hence the para-
meter a should be determined so that the opera-
tor in the square bracket in Eq. (2.16) will be
Hermitian. The total wave function is written in a
somewhat general form,

1
v+1 (N+ I)}~ c@ ' (2.19b)

PiA4 p„&=i4„i[,„&, p, =s or c

The key condition for a is

&A4 s„i[H—a(PH+HP)]iA4 c &

=(A4 c i[H —a(PH+HP)]iA4 s„).
By selecting

(2.20)

(2.21)

where Q is the permutation operator and a, is its
parity. The coefficient N+1 in Eq. (2.19a) is
chosen so that

4„=A4s +QA4„c„K+ g, (2.17)
N+1

2 (2.22}

4„s„(1)dr,= 4„c(1)dr, = 0. (2.18)

The nonorthogonal part of the open-channel orbi-

where s and c asymptotically correspond to the
Bessel and Neumann functions, respectively.
Without loss of generality we assume that both
s and c are orthogonalized to all short-range
orbitals which constitute 4„,viz. ,

we see that both terms in Eq. (2.21) vanish, i.e.,

&A4 p iH- (PH+HP)iA4 v )=0,

4„,v„=s„,c„.(2.23)

Thus this choice of a ensures that the operator in
Eq. (2.16) is Hermitian.

We can now construct the variational functional
on the basis of Eq. (2.16)

([I}' IVES„&&s i VI+„&
fflft 1 - N+14 -'(PV+ VP) -VG V+ H - (PH+HP

(2.24)

which is stationary with respect to variations about the exact wave functions + and 4'„.5K „=0 yields
Eq. (2.16) and its conjugate. Expansion of 0'„and0'„in the basis functions r/i, and variation of Eq. (2.24)
gives

=,'K„„=Q&sivi[[t, &(~-')„(y,ives„&,
jg

with

(2.25)

+VP -V V+ H-
N+1 (2.26)

Although the newly introduced term H ,'(N+ 1}(PH+-H-P) may seem difficult to evaluate, we note that
the most tedious matrix elements, Eq. (2.21), vanish. Hence the term H ~(N+1) (PH+HP) is not diffi-
cult to evaluate. Further, we would like to point out that the operator in Eqs. (2.24) and (2.26) can be re-
written in simpler forms for evaluation,

g (PV+ VP) - VGOV+ 1
H - 2(PH+ffP) = 1H+ (VP PH}-VGovV- (2.27a)

H+ (PV -HP) -VGOV .N+1 (2.27b)
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III. ELASTIC SCATTERING OF ELECTRON
BY HYDROGEN ATOM

In the preceding section, we have transformed
the original Schwinger variational principle to the
much more tractable form. This has been ac-
complished by expressing (G, -G~o) V in terms of
elements involving the Hamiltonian. This was
performed by introducing the partial Schrodinger
equations, Eqs. (2.12) and (2.14). It is clearly
important to assess the theoretical merits of our
new formulation. For example, what are its con-
vergence characteristics'? To answer these ques-
tions we apply our formulation to the elastic scat-
tering of electrons by H atom including the effect
of polarization. These calculations were done for
energies up to k'= 0.64 a.u. and for L = 0. Our
primary concern in this paper is to present a theo-
ry of a new variational principle and to check its
convergence property. The choice of the most ef-
ficient pseudostates is a distinct matter. '4

A/~Pe~ 3 and Ag~, co~,s,

~la~la81 &

Ag„g,e, , (i = 1,2, . . . ,M}

(3.la)

(3.1b)

(3.1c)

Ag, gee, , (j=1,2, . . . ,N, ) (3.1d)

where Q„is the 1s state of the hydrogen atom,
and P, 's are the exact states or pseudostates used
to represent the closed channels. The functions
s and c represent the functions (1-e )j, and

(1 —e '}n, after orthogonalization to Q„.The j,
and n, are lth Bessel and Neumann functions, re-
spectively, and are normalized as in Eq. (2.8).
The functions g, and g& are the Slater functions
r"e 'Y, (n =2.5) again suitably orthogonalized to

Finally, 8, and 8, denote the s ingle t and tr ip-
let spin eigenfunctions, respectively. The impor-
tance of the configuration Afg ft)gy8g has been
stressed by Rescigno. "

Due to the selection of the a parameter in Eq.
(2.16), and the orthogonality constraints on s, c,
and g, 's, many matrix elements of H —a(PH+HP)
vanish. In fact, the matrix element of the kinetic-
energy operator arising from the Hamiltonian
terms is only nonzero within the block of functions
of Eq. (3.1b) and also within the block of the func-

A. Computational detail

To compare our results with those of close-
coupling calculations (and its expansion technique
variants), we choose our trial functions to.be of
the same form as in the close-coupling approach,
although our variational principle does not neces-
sarily require this. The basis functions are

tions of Eq. (3.1d).
All the integrations for the long-range functions,

including the Green's function, are treated numer-
ically by Gauss-Legendre quadrature. However,
in order to give more flexibility to the quadrature
process, the radial coordinate is divided into sec-
tions of variable length. In each section a 32-point
Gaussian quadrature is used. The numerical rep-
resentation of potential terms are generated in
each integration section and stored if advantage-
ous. The value at each quadrature point contribut-
ing to the integrals is accumulated to make up the
matrix elements.

B. Convergence; 1s-2p and 1s-2p calculation

TABLE I. The convergence of the singlet (6,) and
triplet (6&) phase shifts in lg-2p calculation~ at k = 0.55.

Nppb

0
1
2
3
4
5
6
7

0.701
0.704
0.716
0.733
0.739
0.739
0.740
0.742

1.691
1.691
1.697
1.706
1.709
1.709
1.710
1.713

~The close-coupling result of a 1g-2p calculation
(Ref. 16) is 6 =0.734. Schwartz's exact value (Ref. 17)
is 6 =0.908.

b The number of basis functions for the closed channel.
For the open-cham&el orbital M = 2 [See Eq. (3.1c)].

The static-exchange value by the close-coupling
method (Ref. 20) is 5 =0.700.

We have shown previously that the convergence
of the Schwinger method with respect to the num-
ber of basis functions required in the expansion
of the open-channel function is extremely good."
In fact, at the static-exchange level in these stud-
ies of the e-H system, one to two short-range
functions plus two long-range functions already
provide quite accurate phase shifts. This behavior
is due to the inclusion of the open-channel Green's
function G~o in our theory. However, for the
closed channels our present scheme does not in-
clude the Green's function. This difference can
affect the convergence of the procedure.

In Table I, we show the convergence of the
phase shift of a 1s-2p calculation for e-H atom
at k'= 0.55. For this energy, the 1s-2p close-
coupling calculation of Burke and Shey" and the
very accurate value by Schwartz" are available
for comparison. Two conclusions can be drawn
from Table I: (1) The convergence, even for the
closed channel is considerably fast. Only 3-5
basis functions are required to give reasonably
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TABLE II. The convergence of the singlet phase
shifts in lg-2p calculation.

N 2p 1g-2p(1.1) k = 0 55" 18-2p(1.5) k = 0.01

0.701
0.769
0.784
0.811
0.830
0.841
0.845
0.845

2.396'
2.534
2.544
2.547
2 ~ 548
2.548
2.548

a The basis set for the closed-channel orbital. p'or the
open channel M= 2. [See Eq. (3.1c)].

~The exact value of Schwartz (Ref. 17) is 5 =0.908.
The close coupling with 1s-2g-2p-3s-3p expansion ref.
16) gives 6~= 0.'798.

'The exact value is 5 =2.553 (Refs. 17 and 19) 6~
=2.556 (Ref. 18).

The static-exchange value Pef. 22) is also 5,= 2.396.

converged phase shifts in Table I. (2) Our phase
shift can be better than that of the corresponding
close-coupling method, even if the same pseudo-
state expansion is used. In fact, this is true for
all calculations we have carried out here except
at k'= 0.64. We will return to this second point in
the next subsection.

Although the calculated phase shift becomes
stable with expansions of 3-4 functions, the final
result still differs from Schwartz's accurate
value. " This is of course due to the fact that the
physical 2p state is a poor representation of the
actual "polarization" effect. As an example, we
have shown in the first column of Table II the
convergence of a 1s-2p calculation at the same
energy, where the pseudostate 2p is a simple 2p
orbital with exponent roughly optimized to 1.1.
With this 2P pseudostate, the phase shift con-
verged at N= 6 to the better value (5,=0.845) than
that (5,= 0.742} of the 1s-2p calculation. With
this improvement the calculated phase shift is al-
ready better than that of the 1s-2s-2p-3s-3p
close-coupling result (5,= 0.7975) of Burke and
Shey." The convergence of the singlet phase
shift at k'= 0.01 in Table II is another encouraging
example of very fast convergence. With one to
two functions in the closed channel the phase shift
is already very close to the converged value. In-
cidentally, our phase shift 5,= 2.548 is surprising-
ly close to the "exact" value. We note that the
extensive calculations by Matese and Qberoi' us-
ing 1s-2s-2p-3s-3p-3d states expansion gave a
value 6,=2.545. We note, however, that at k'
= 0.64 our 1s-2p calculation with an exponent of
1.5 gave a value of 6,= 0.784, while Schwartz's
value is 5,= 0.886 and Matese-Qberoi's value is

6,= 0.873. Qur phase shift was slightly better than
that of the Is-2s-2p value (5,= 0.773). This be-
havior shows that in low energy regions, angular
correlation effects should be dominant.

C. Accuracy; 1s-2p and 1s-2s-2p calculations

In this section we will test the capability of our
method with a small numb'er of trial functions for
the energy range k'= 0.01-0.64. The poor behav-
ior of the 1s-2p calculation at k'= 0.64 suggests
that in the relatively higher energy range s-type
excitation configurations (the radial correlation)
should be included in addition to p-type ones (the
angular correlation}. Hence we now apply our
theory at the 1s-2s-2p level. We also replace the
simple 2p pseudostate with a more elaborate one
which was propsed by Damburg and Karule" to
take full account of the atomic dipole polarizabili-
ty. The latter 2p pseudostate which is denoted
here as 2pn„(q}has a radial part of r'(I+ 0.5r)
e '". The original Damburg-Karule state is de-
fined with q=1.0.

In Tables III(a) and III(b) we show our phase
shifts for the 1s-2s-2P~„(q=1.0) calculation. The
close-coupling results with the same state expan-
sion and also with the 1s-2s-2p-2p expansion by
Burke et al."are also listed for comparison. The
number of the basis functions are M =N„=3 for
s orbitals and N~=4 for p orbitals [see Eq. (3.1}j.
Except for k'= 0.64, our singlet phase shifts are
closer to the exact value than those of the 1s-2s-
2pn„(1.0) calculation from the close-coupling
method. Furthermore, our phase shifts are again
better than those of the 1s-2s-2p-2p calculation
except for k'= 0.64. The somewhat poor result at
k'= 0.64 is probably due to an inadequate basis
set. In fact, an additional p-type basis function
(N~&= 5) gives 5,= 0.821 which is closer to the
close-coupling value. This also occurs for the
triplet phase shifts, since the triplet-scattering
wave function has a smaller set of basis functions
than the singlet scattering by the number of doubly
occupied configurations.

Our 1s-2s-2pn„(1.0) calculation clearly gives a
sufficiently accurate result with this small basis.
To further evaluate our method, however, we
changed the exponent q to 1.3 and replaced the
2s function by r'e ~ with u = 0.9. These exponents
were chosen through a rough optimization with a
small basis set at k'= 0.64. For the basis func-
tions in the Is-2s-2pn„(1.3) calculation we have
added another p-type function to the basis set in
the Is-2s-2poK (q = 1.0) calculation. The phase
shifts are shown in Table III. The singlet phase
shifts are now close to the exact value at any en-
ergy. As seen from Table III, the calculated re-
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TABLE III. Phase shifts for the ls-2s-2pDK(q = 1.0) calculation.

Methods
(a) Singlet phase shifts by various methods.

0.01 0.09 0.25 0.49 0.64

Static-exchange, CC
lg-2g-2p, CC
lg-2g-2p-2p, CC
lg-2g-2p (this work)
1s-2s-2p-3s-+-Ms
ls-2s-2p (this work)
exact

2.396
2.529
2.532
2.550
2.545
2.565
2.556

1.508
1.657
1.663
1.684
1.683
1.715
1.696

1.031
1.155
1.162
1.179
1.187
1.217
1.201

0.744
0.875
0.881
0.895
0.917
0.945
0.930

0.651
0.823
0.832
0 818c
0.873
0.878
0.887

(b) Triplet phase shift in various methods. ~

Static-exchange, C C
lg-2g-2p, CC
1g-2g-2p-2p, CC
lg-2g-2p (this work)
lg-2g-2p-3g-3p-3d
ls-2g-2p (this work)
exact

2.908
2.937
2.937
2.930
2.937
2.926
2.939

2.461
2.498
2.498
2.496
2.498
2.503
2.500

2.070
2.102
2.102
2.111
2.102
2.113
2.105

1.749
1.777
1.777
1.783
1.777
1.778
1.780

1.614
1.641
1.642
1.644
1.641
1.648
1.644

~ CC denotes the close-coupling calculation.
~Burke, Gallaher, aud Geltman, Ref. 22.
'6, = 0.821 if another p-type basis function is added.

Matese and Oberoi, Ref. 20.
'Shimamura, Ref. 18; Schwartz, Ref. 17; Abdel-Raouf, Ref. 19.

The structure of (b) is similar to that of Table III (a).

suits are comparable to those of 1s-2s-2p-3s-3p-
3d calculation by Matese and Oberoi. " The maxi-
mum deviation from the exact phase shift is 1.61%%us

in our method, while the maximum error in the
static-exchange calculation amounted to 26.(@.
Our triplet phase shift at k'= 0.01 could be im-
proved, since the pseudostates used here are op-
timized for the singlet scattering. However, its
error is only 0.44%%us. These numerical results
show that our method is very promising.

The results in Table III show that it is possible
for our calculated phase shifts to be larger than
the exact values. As is well known, the phase
shifts from the close-coupling methods cannot ex-
ceed the exact values at these energies for this
system. " Since our theory is not based on the
close-coupling equations this condition is no longer
valid. Most methods generally do not provide a
maximum or minimum principle for the phase
shift at arbitrary energies. In other words, most
of the established variational principles, including
the Kohn and Schwinger principles, are merely
stationary principles unless they are used under
certain conditions. The development of stationary
principles which are also maximum or minimum
principles is one of the crucial problems in this
field.

In these circumstances it is encouraging for a
method to provide reasonably accurate values of
the phase shifts even though these values may be

larger or smaller than the exact values. The re-
sults in Table III are very encouraging in this re-
gard since these values, which can be seen to be
converged from the results of Tables I and II, are
always very close to the exact values for all ener-
gies in this calculation. Furthermore, we will
discuss some theoretical reasons in the next sec-
tion why the Schwinger principle is expected to
give accurate results with adequate basis sets.
We also note that any variational principle with a
functional of fractional form can make use of the
pole-shifting techniques" which yields a quasi-
minimum (or quasi-maximum) principle quite
simply. We did not apply this technique in the
present work but it will be used in selecting the
most reasonable basis sets foi' future studies of
electron-molecule scattering.

IV. DISCUSSION

There are clearly two convergence characteris-
tics of importance in these applications. One is
the convergence for the closed-channel orbitals
as well as open-channel orbitals for a given
pseudostate expansion. Another is the convergence
with respect to the number of pseudostates. Both
of these convergence properties of our method
have been investigated. Although we have substi-
tuted 6, -6, with Hamiltonian components, Eq.
(2.6) still retains the important role of the integral
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P@' =S +GO~V(4" +0'). (4.2)

As mentioned in Sec. IIA, 4' on the left-hand side
of Eq. (4.2) is of one rank higher than 4' contained
on the right-hand side. Therefore 4' of the left-
hand side is inherently of higher accuracy than the

in the Hamiltonian (differential equation) for-
malism. Thus we expect that our new method can
give better results than the close-coupling formal-
ism with the same state expansion and that it
should converge rapidly.

As mentioned in the Introduction and Sec. IIA,
the application of the Schwinger principle to a
system in the nonstatic-exchange approximation
may be formulated in different ways. One is
based on the Lippmann-Schwinger equation for the
total wave function, Eq. (2.3}, and another is ap-
plied to the Lippmann-Schwinger equation derived
from the close-coupling equation. ' ' The appli-
cation of the Schwinger principle directly to the
close-coupling equations should show a faster
convergence to the exact close-coupling values
(not the exact value) than the Kohn-type principles'
when applied to the same coupled equations.
Naturally, both methods will only approach the
numerical close-coupling values in accuracy. '4

If, on the other hand, the Schwinger principle is
applied to the total wave function, Eq. (2.6), the
resulting value can approach the exact value faster
than the close-coupling method itself. Therefore
our new Schwinger principle can lead to a better
K matrix than the other Schwinger principles""
which are applied directly to the close-coupling
equations. Also, for the same reason stated
above, we predict that our Schwinger principle
will give accurate phase shifts with fewer basis
functions than the Kohn principle which was appIied
by Schwartz" and Shimamura" using 50 and more
Hylleraas-type trial functions.

Before closing this section, we comment on
some technical issues which are relevant to our
theory. For long-range potential scattering such
as the Coulomb scattering, we may want to make
use of the two potential formula. " In such a case,
writing the Hamiltonian of Eq. (2.2) as

equation. ' The left-hand side of Eq. (2.6), P4
in which the most important scattering information
is involved is contributed to by both open- and

closed-channel wave functions through the open-
channel Green's function G, . 4 is conceptually
divided into two parts

(4.1)

where 4' and 4' are open-channel and closed-
channel components of 4, respectively. By the
definition of P, Eq. (2.6) can be written as

H (Hg+ T
Nyg +vugg)+ (V p~yg)

=Ho+ V, (4.3)

V. CONCLUDING REMARKS

We have proposed a new variational principle to
extend 'the Schwinger method beyond the static-ex-
change approximation. In the theory the selection
of the basis functions is very flexible. The con-
figuration interaction technique can be applied to
define the projection operator P and the closed-
channel component of the wave function. Since
our equation is defined for the total wave function,
the use of the optical-potential formalism is
avoided. Furthermore, the K matrix given in our
formalism can be more accurate than the numeri-
cal close-coupling method even if the same state
expansions are used. Our theory does not require
the close-coupling expansion of the wave function.
Also, we have shown that our K matrix (or phase
shift) converges quite fast with respect to the size
of the basis for both the open- and closed-channel
orbitals. Due to these convergence properties our
K matrix approaches the exact value with a small
set of trial functions. In fact, we have obtained

very accurate phase shifts for the elastic collision
between e and H atom using 1s-2s-2p state ex-
pansion and small numbers of basis functions

(4 —5} for each scattering (both open and closed)
orbital. We found that these results are of com-
parable accuracy to those of the 1s-2s-2p-3s-3p-
3d close-coupling calculation. " Therefore our
new method is very encouraging for further appli-
cation to electron-molecule collisions.

Finally, we would like to point out that the frac-
tional form of the K matrix in Eq. (2.24) should

have a close bearing to the resonance formula for

we can reformulate our variational principle,
where v„„indicates the long-range potential and

V is the, residual short-range potential. S and

G, should be redefined for the new zeroth-order
Hamiltonian H, in this case.

One of the important characteristics of the
Schwinger principle is that an L approach is
possible. " In potential scattering —including
the static-exchange approximation —the scattering
orbital is always associated with the potential,
and this is the basis of the L' approach. Seeming-
ly, the wave function in our functional, Eq. (2.24}
is not necessarily associated with the potential,
since it includes the Hamiltonian. However, due

to the property of Eq. (2.23), the long-range func-
tions are free from the operation of the kinetic
operator and are always associated with the poten-
tial. Therefore an L' approach is always possible
in our variational principle.
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the K matrix proposed by Feshbach. " This aspect
will be discussed in our future paper.
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