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We present a linear-algebraic approach to electron-molecule collisions based on an integral equations form with

either logarithmic or asymptotic boundary conditions. The introduction of exchange effects does not alter the basic

form or order of the linear-algebraic equations for a local potential. In addition to the standard procedure of directly

evaluating the exchange integrals by numerical quadrature, we also incorporate exchange effects through a

separable-potential approximation. Ef6cient schemes are developed for reducing the number of points and channels

that must be included. The method is applied at the static-exchange level to a number of molecular systems

including H» N» LiH, and CO, .

I. INTRODUCTION

Over the past ten years a number of methods' "
have been advanced for treating electron collisions
with molecular targets. The problem is com-
plicated by a strongly anisotropic electrostatic
potential arising mainly from the nuclear singu-
larities and by a nonlocal, energy-dependent ex-
change interaction. Both close-coupling' ' and
L' (Refs. 8-11) approaches have been developed to
address these compli. cations. Although these meth-

ods have proved successful in calculating static-
exchange cross sections for a number of small
molecular systems, difficulties with the proce-
dures still arise. In the close-coupling (CC) ap-
proach, the scattering wave function is expanded
in terms of a set of target and angular functions,
which are usually referred to a single center.
Within this expansion, the Schr5dinger equation
can be reduced to a set of coupled, radial integro-
differential equations. Each component (channel)

of the solution is labeled by a target state and the

angular momentum ) of the incident electron.
These coupled equations have been solved by in-
ward-outward propagation' "and boundary-value,
linear -algebraic" schemes. The principal di,f-
ficulty with this approach rests with the large
number of terms that must be included in the ex-
pansion in order to accurately represent the scat-
tering solution near the nuclei. Thus, very high

partial waves (large I ), which make a negligible
contribution to the scattering results, must be in-
cluded in the expansion. In addition, their in-
clusion greatly increases the size of the system
of equations that must be solved. The exchange
contribution can be represented by reasonably
small expansions as it depends on the diffuse elec-
tronic charge density and not on the nuclear po-
tential. However, its nonlocal character does
further complicate the solution of the coupled equa-
tions either by increasing the order of the set of
equations' that must be solved over the static

case or by forcing an iterative prescription~ on
the solution. In the L,

' approach, coordinate space
is usually divided into two regions according to
the strength of the interactions. The scattering
solutions are determined separately in each region
and then matched at the boundary to obtain the

scattering quantities. In the outer region where
the potential is local and weak, the scattering
solution is usually determined by a close-coupling
propagation scheme. Qn the other hand, the sys-
tern in the inner region, where the nuclear static
and exchange interactions are important, is treated
much as a bound, negative molecular ion. The
scattering solution is expanded in a discrete basis,
and standard bound-state methods employed. The
number of terms needed to represent the solution
near the nuclei can be greatly reduced by intro-
ducing nuclear-centered basis functions. How-

ever, an accurate representation of the low par-
tial waves, which display distinct continuum be-
havior, still requires a large number of basis
functions. Exchange also introduces complica-
tions, but usually not to the same extent as in the

CC methods since the direct (static) and exchange
contributions are treated on much more equal

footing in standard bound-state integral packages.
These difficulties have prompted a renewed

search for techniques to handle the electron-mole-
cule collision problem. One quite successful in-
vestigation has been mounted by McKoy and co-
workers using the Schwinger variational princi-
ple. This variational principle is based on the

integral equation form of the scattering equations
and seems to yield more accurate results for a
given discrete basis than, for example, the Kohn

method. Since the procedure is independent of
the norm of the scattering wave function, any, type
of basis function may be used. This flexibility
eliminates one of the principal drawbacks of a
purely L, approach —namely, having to represent
highly oscillatory functions in terms of a dis-
crete basis. The method as actually implemented
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is more an iteration-variation scheme. The
Schwinger variational principle is employed to
generate an initial K matrix from a discrete basis-
set expansion, which in turn is used in the Lipp-
mann-Schwinger equation to generate a new trial
wave function. The procedure is iterated until a
converged K matrix is produced.

In the method' described in this paper, we have
taken a different approach. We begin with the
coupled integrodifferential equations within the
single-center expansion and close-coupling ap-
proximation. We convert this set of equations to
a set of coupled integral equations This set of
equations is in turn transformed to a set of linear-
algebraic equations by approximating these inte-
grals by discrete numerical quadratures. The
procedure is similar to one developed by Seaton"
for electron-atom collisions and Crees and
Moores' for electron-molecule scattering except
that it is based on an integral rather than a dif-
ferential equations formulation. This system of
linear equations, whose solution is the scattering
wave function, can be solved by standard linear
equations packages. Exchange terms present no
formal difficulty in that a suitable rearrangement
of the quadratures produces a set of linear equa-
tions identical in form to the local potential case.
The exchange interaction does introduce some
additional integrals that must be performed. The
linear-algebraic (LA) method has excellent nu-
merical stability and has the further advantage of
being ideally suited to the new vector machines.
Thus, the linear-algebraic approach overcomes
two of the aforementioned difficulties. The chan-
nel wave functions are determined by a direct,
numerical integration of the scattering equations.
The quadrature meshes can be adjusted to con-
form to the physical form of the individual chan-
nel functions. Therefore, the method is not con-
strained to a single type of basis to represent all
scattering solutions. In addition, the nonlocal
exchange effects can be straightforwardly incor-
porated into the scheme without changing the basic
form of the, linear-algebraic equations.

By using the single-center expansion, we seem
to have retained the difficulty of having to repre-
sent the scattering solution near the nuclei by a
large number of terms. This complication is
largely circumvented by the ability to select mesh
sizes independently for each channel. In this case,
the order of the linear-algebraic equations, which
determines the practicality of the method, is equal
to the sum over channels of the number of points
per channel. To represent the low-partial-wave
solutions, which usually oscillate throughout the
short-range region, we typically ne ed from 50
to 60 points in the mesh. Clearly, for a 20 channel

problem, which required this number of points in
each channel, the order of the resulting linear-
algebraic equations would lead to an intractable
problem, even on a large vector machine. How-
ever, the solutions for high partial waves are con-
centrated around the nuclei, and far fewer points
(typically 15 to 20} are needed to represent these
channel wave functions than those for the lower
partial waves. Thus, adding large numbers of
high-/ channels does not drastically increase the
order of the linear-algebraic equations, and single-
center expansions prove tractable under this ap-
proach.

In this paper we describe in general the linear-
algebraic approach. In Sec. II we develop the basic
formulation. The general form taken by the linear-
algebraic equations subject to asymptotic and &-
matrix boundary conditions is described in Sec.
IIB. Section II C is devoted to a detailed treat-
ment of the exchange interaction. We develop
schemes to evaluate the exchange term by direct
and separable-potential techniques. In Sec. III we
turn our attention to various techniques for solv-
ing the coupled linear-algebraic equations. The
results of calculations for the method for a num-
ber of representative molecular systems are pre-
sented in Sec. IV. In addition, we present a study
of the separable-potential technique for p-LiH
collisions. We close the section with an investiga-
tion of electron-CQ, collisions in the static-ex-
change approximation. Finally, we summarize our
findings in Sec. V.

II. FORMULATION

In this section we develop the basic linear-al-
gebraic (LA} formalism for treating electron-
molecule collisions. Since we are interested in
the exact treatment of the short-range exchange
interaction, we perform all calculations in the
body frame (BF) within the fixed-nuclei (FN) ap-
proximation. " Efficient procedures for convert-
ing the resulting BFK-matrix elements to labo-
ratory-frame cross sections are discussed else-
where. ~ In addition, we restrict our derivation
to the static-exchange (SE) approximation for
closed-shell molecular targets. This simplifica-
tion is made for pedagogical reasons and is in no
way a restriction on the LA method. For example,
for electronic excitation, the matrix elements and
Qreen's function will change, but the basic tech-
niques, presented in this and the following section,
for solving a coupled set of LA equations still
apply. In subsection A, we present a brief deriva-
tion of the BF, FN coupled radial differential equa-
tions in the SE approximation in terms of a gen-
eral nonlocal potential. We then proceed in sub-
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section B to derive two integral equations solu-
tions to this set of coupled equations in terms of
asymptotic (K-matrix) or R-matrix boundary con-
ditions. These coupled integral equations are
solved by a linear-algebraic method. In subsec-
tion C, we specifically treat the nonlocal exchange
interactions. Again we proceed along two lines of
attack. In the first, more traditional approach,
we construct an exact numerical solution for the

exchange term. In a second approach, we approxi-
mate the exchange term by a separable potential.
This second approach considerably simplifies the

scattering equations with little loss in accuracy.
We reserve for Sec. III a discussion of the methods

for solving the LA equations.

A. The static-exchange equations

In the BF withiri the fixed-nuclei and static-ex-
change approximations, the Schrodinger equation

for electron-molecule collisions has the following
form".

[V —2V„(F) —2V (I')+k ]E(F)=0,

where F(F) is the continuum wave function at posi-
tion F from the origin (usually the center of mass
of the molecule) and k' is the energy of the inci-
dent electron in rydbergs. The kinetic energy of

the electron is given by V', the static potential

by V„, and the nonlocal exchange interaction by

V,„E. For a closed-shell molecular target, the

second and third terms have the following simple
form:

(2a)

(3)

where V, (r) is a spherical harmonic and m(m, )

gives the symmetry of the continuum (bound) or-
bital. In addition, we expand the Ir —r'

I
term

and the static potential V„(I') in Legendre series
as

and (4)

V„(r}= Q v~ (r)P„(cos8„),

where 6) is the angle between r and f', 6}, is the

angle between F and the internuclear axis, and

r& = fr, r'j. Substituting Eqs. (3) and (4) into

Eqs. (1) and (2} and integrating over the angular

variables, we obtain the coupled radial static-
exchange equations of the form

L,f„, ( )=P jV„(rlr )f (r )dr „,, ,'''(5)
where

and

(I l(l+ 1)
L, —,— 2 +k

dr
(6a)

2) I + y
1/s

V„(r)=
2 I g v' (r}C(l'XLIm0)C(l'XII00)

+ Leo

V», (r Ir') —= 2V,",.(r)6(r-r') —2K» (r Ir'), (6b)

with

V (d)d(r) fd(d'd )F(d )d=, ''
with

(2b)
N

K„(rIr') =g g g), (ll'I" l" Imm, )Q, , (r)-

K(P, F') =-g )(I'())IP -P I-'(I)'(P'). (2c}

In Eqs. (2), the nuclear charge (position) is given

by Z (5„), the spatial component of the ith molec-
ular orbital by p'(f}, and the number of occupied
molecular orbitals by N.

We now convert Eq. (2} to a set of coupled radial
differential equations. To accomplish this, we

make a single-center expansion of the bound and

continuum orbitals about the origin as

)& yi (rg) x/rx+1 ('lb)

The term g~ is a product of four vector-coupling
coefficients, "the channel label / gives the orbital
angular momentum of the scattering electron, and

4 designates a particular linearly independent

solution. We, of course, invoke the close-coupling
approximation by which the expansions in Eq. (3)
are limited to a finite number of terms and the

order of the coupled differential equations in (5)
is equal to the number of channels (terms} re-
tained in the expansion of the continuum orbital.
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B. Linear-algebraic solutions

We choose to base the linear-algebraic approach
on the integral rather than on the differential equa-
tion formulation. For various propagation
schemes, we have found the integral equation to be
the most stable. Preliminary results' seem to in-
dicate the same advantage in the LA approach
since we have been able to use much higher-order
quadrature schemes in the integral LA solutions
than have been employed in the differential ap-
proach. ' In order to make the conversion, we
must choose a set of boundary conditions. We have
developed two equivalent approaches in this re-
gard. The first uses the standard asymptotic
boundary conditions and solves for the wave func-
tion. The second approach imposes logarithmic
boundary conditions at a point (usually just out-
side the exchange region} and solves for the ft
matrix.

variable and rearrange the resulting equations to
obtain

g (6y85([ M(y, g 8)f, ) (l 8) =Gt(l „)5» (10a)
~'8 o l' p

where

gyt 8=- Gg ry r~ Vg) (lob)

M) „)8=
, 2G((~„1~8}l'&i (~8}~8

—IP() (~„1~8}~8

where

(10c)

W». (r&)x8) = QG, (r&[r )K».(r„~r8)(() . (10d)

We can write this in a more specific form by sub-
stituting Eq. (6b) into Eq. (10b) to obtain

1. Asymptotic or K-matnx boundary conditions

We convert Eq. (5) to an integral equation by
using the free-particle Green's function. The con-
tinuum wave function is represented over all radial
coordinates. The resulting integral equations have
the form

f„,(r) =G', ( )()„+Pf1,( Ir') fv„,(r' Ir")
~

I

xf, .„(r")dr'a~,
(8a)

where G', (r [r') is given by

In order to make the form of these equations
more transparent, we represent them in matrix
form. We assume that the expansion of the con-
tinuum wave function is truncated at N, channels
and that there are N~ points in the quadratures.
We define three "supermatrices": M, f, and g.
The M matrix consists of N,

' blocks of N~xN~ ele-
ments each and is of order N,~ =N, xN~. The form
taken by the M matrix is

Mq~ ~ ~ M~

G', ( )G', ( '),
G, (r r

G, (r'}G', (r), r &r'
(8b)

where

j MNN

and where Gt(y) = j, (k~) and G, (l') = (1/k)n, (kr),
with j,(n, ) the Ricatti-Bessel (Neumann) function
of order ).

We now proceed to solve Eq. (8) by converting
it to a set of linear-algebraic equations. We begin
the procedure by introducing a quadrature for the
integrals as

f„,(~) = Gt(r)5„

+ G, r r V». r~ rs 1 lprs +a8~
t ' f}t8

(8)

where r, ~ is a set of points and weights for
the given quadrature. We observe that a separate
quadrature can be introduced for each scattering
channel. This flexibility is extremely important
and will be discussed in more detail in Sec. III A.
We now impose a mesh on the remaining radial

(~M, ~ )y8 =
$5( . y58—M( y, ~ 8

The f matrix is defined by

f„(~,) "f„,(r, )

f»(~~)

f.l(+I}

fN l~+N ) fN N ~+N )

and the g matrix by
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G,'(r, ) ~ ~ ~ (16)

where for convenience we choose 5=0. The most
straightforward procedure for introducing this
restriction is to subtract the Bloch operator"

(13)

from both sides of Eq. (5) to obtain

B
L,f„=2 V„(rlr'}dr'-5(r —a) f(&,(r—),

The size of the M, f, andy matrices are, re-
spectively, N xN„, N,~xN„and N,~ xN, .
tion (10) can then be written in compact matrix
form as

(14)

where

B
L =L —5(r —a) —.

Bg

(17)

This equation can be solved by standard linear-
algebraic techniques. Since the correct asymp-
totic boundary conditions were included in the
Green's function, the K matrix can be directly
calculated from the expression

The Bloch operator guarantees that the solution
of Eq. (17) will have the boundary conditions of
Eq. (16). We now convert Eq. (17) to an integral
equation form

f„(r)(i)=j, (krN, )+&,r n, (kr„,).

2. R-matrix boundary conditions

(15)

—a(r —a ) —d„(r '))dr ' dr ",

In the previous section, we derived a set of
linear-algebraic equations whose solution was the

continuum wave function f over all space. The

practicality of the LA approach depends on the

order of M not becoming too large (typically 1000
for modern vector machines). For strongly polar
molecules, we need the wave function out to sever-
al hundred bohr in order to extract an accurate
K matrix. Since at least five mesh points are
usually required for a de Broglie wavelength, the

range required by the polar problem would clearly
lead to LA equations of a prohibitive order. A

better strategy is to employ the LA approach to

determine a solution in the region oc~g.upied by

most of the charge cloud of the mole~rule, where

the static and exchange interactions are strong,
and then to extend this solution into the asymp-
totic region by an efficient propagation scheme

for local potentials such as the g-matrix propa-
gator. " As we shall demonstrate in subsection C,
the LA approach is especially suited for handling

strong and nonlocal potentials. It does not have

any clear advantage in speed over the R-matrix
propagator in the region of a weak local potential
and has the disadvantage of requiring far more
storage.

We now seek a solution to Eq. (5) subject to
logarithmic boundary conditions at & =g.

(18)

where G, (r lr') is given by Eq. (8b) with G', (r) re-
placed by (1/k)[n, (kr)+C,j,(kr)] with C( = —n, (ka)'/

n, (ka). This replacement forces the correct bound-

ary condition at z =z on the Green's function. We

solve Eq. (18) by constructing an alternative solu-
tion g, ., (r l a) de—fined by

(19a}

such that it solves

xg, , —, (r la)dr'dr")ar

—G, (r la)5, —, . (19b)

By directly substituting Eq. (19a.) into Eq. (18) and

by using Eq. (19b), we can demonstrate that if

g, —, is a solution of Eq. (19b) then f„constructed
from (19a) is a solution of Eq. (18}. We note one

other important feature that at r = a, g, —, (a la) is
just the p matrix.

We now convert Eq. (19b) into a system of linear-
algebraic equations. We proceed as we did in
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the previous section and obtain the following re-
sult:

M,„,.s=- QG, (r„ir )V„.(r„irs)(o,(os. (20b)

Z(5qs5ir -M
y i s)gi i (rs)=Gi(rqls)5il (20

r'8

with

ings between solution and evaluation can arise
since the linear-algebraic step yields better to a
vector treatment than the evaluation of W$ f ~

fact, we find representative times of I second
for solving a system of linear equations of order
600 on the CRAY-1. In this case, the direct ex-
change evaluation can be four to six times slower.
'The separable-potential form restores somewhat
the balance.

These equations can also be converted to matrix
fbrm, and the solution g can be obtained over the
range (O, g). At r =g, this function is just the R
matrix. Knowing the p matrix at a poirit and the
form of the local static potential over all space,
we can use the g-matrix propagation method'
to extend the R matrix into the asymptotic region.

1. Direct emluution

We construct an explicit form of the exchange
contribution W», in Eq. (10c) by substituting Eq.
(7b) into Eq. (10d). We split the g„ term and ex-
plicitly display the sum over projections of the
symmetry of the bound orbitals m, . The term
which results has the form

C. Exchange

The nonlocal character of the exchange inter-
action greatly complicates the solution of the cou-
pled radial equations. Fortunately, the interaction
is of short range and can be handled with the meth-
ods of Sec. IIB2. In this section, we develop
two approaches to calculating the exchange terms
that appear in the linear-algebraic equations. Our
first approach is a direct numerical evaluation of
the exchange integrals that appear in Eqs. (5)-(7b).
This procedure is similar to that used in other
noniterative' ' and iterative' close-coupling
schemes. In the second approach, we construct
a separable-potential representation for the kernel
[Eq. (2c}]by expanding it in an orthonormal basis.
This construction greatly facilitates the calcula-
tion of the exchange integrals that appear in the
scattering equations.

We spend a great amount of time in this section
describing methods for the more efficient evalua-
tion of the exchange term. The reason for this
preoccupation becomes clearer by examining the
amount of time spent in each part of the code. On
conventional computers, we spend about half the
time on evaluating W«, , and the other half solving
the LA equations. The construction of the static
potential takes a negligible amount of time com-
pared with exchange. This even division alone
would make a study of means to more efficiently
evaluate W», proGtable. On vector machines such
as the CRAY-I, even~reater differences in tim-

I

xC "'u(l X Imp —m)

with

xy', „(r„irs} (21a)

I,"„(r„irs)=-Q C,'""(n
)
—mm+ g) y'„"'(r„mrs)

g
Ig

(21b)

yi '(r„)rs)=g~ p', - (r~) ~„G,(r„)r~) . (21c)

Since the evaluation of the y„ integrals forms the
most costly step in the construction of the Wg j,
terms, we employ the above formulation, sug-
gested. by Raseev, ' which minimizes the num-
ber of evaluations of these integrals. In addition
to reducing the number of evaluations, we have
also developed efficient schemes for evaluating
the y„ integrals. We divide the y„ integrals into
four regions of coordinate space according to the
greater- or lesser-than constraints on the Green's
function and y~ terms. This quadrapartite divi-
sion is made clearer by representing the integrals
in the following form:

yz '(rz mrs) =rs" 'I'„(rz mrs)+ rsl"~(rz mrs), (22a)

with
I

—G, (r&)yq(r&) —G, (rz)[yz(rz) —yz(rs)], y & PI')( &y I &8
-Gl(r„}y',(rs), y =P

(22b)

( i )
—Gi (r), )y,'(rs), y & P

g Xy
-G', (rz)[yz(rz) -y~(rs)) —G, (rz)yz(rz), y) p

(22c)
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by its diagonal form. We introduce a unitary
transformation U and a new basis (X'j such that

U KU=A

(22d) and (25)

x'(P) = g U»x'(P),

The y„ terms have the same form as Eqs. (22d)
with z" replaced by z ~ . The y~ terms are eval-
uated by upwards recursion while the yz terms
are determined by downwards recursion. We have

found this dual recursion scheme to give the most
accurate values for the y terms. The 'p and 9„,
terms can then be constructed from a table of
the y~ values.

z($, F) = gx'(P)fc„X'(r')*, (23a)

such that

K)~= X & *K &yF' X f' drdP'. (23b}

We remove the angular dependence in Eq. (23a}
by expanding the basis functions in spherical har-
monics as

2. Separuble exchange potential

The exchange interaction is complicated not so
much from being nonlocal, but from being non-

separable. 'O' This complication is introduced

by the ~P —F'
~

' term in Eq. (2c) which links the

F and $' variables of the bound functions. In a
previous report, ' we introduced the separable
potential in a vector-space formulation. In this
section, we derive its form in coordinate space
to remain consistent with the previous sections.

We can construct a separable form of the ex-
change kernel by expanding in terms of an ortho-
normal basis (g'(F)j. Making this expansion on

both radial variables in Eq. (2c), we obtain

where (A)„~=A~5~, . Substituting Eq. (25} in Eq.
(24), we obtain

K„.(r ~r') =+X,' (r)A„X",, (r'). (26)

W„.(r„)rz) = g X, (rz)Y„,(r„), (27a)

The expansion of the exchange kernel in Eq. (26} is
independent of energy and need only be determined
once for a given molecular system. By comparing
Eqs. (26) and (Vb), we see that the number of sums
that must be performed at each energy has been
reduced from four to one. This reduction is not
as dramatic as it might seem. The summations
in Eq. (Vb) extend only over the occupied molec-
ular orbitals. The expansions of the bound molec-
ular orbitals can usually be truncated at a few

terms since the exchange interaction depends on

the diffuse electronic change density and not on

the strongly singular nuclear potential. Qn the

other hand, no such restriction applies to the ex-
pansion in Eq. (26), which forms an approximate
representation of K that improves as more basis
functions are added. Thus, the separable form
of the kernel will be more efficient to evaluate
provided that the number of basis functions needed
to give an accurate representation is smaller than

the total number of terms that appear in the sums
in Eq. (Vb).

We now investigate the form taken by the ex-
change term in the LA equations when the sepa-
rable form of the kernel is used. To this end,
we substitute Eq. (26} into Eq. (10d) to obtain

X'($) =g X;.(r)Y,.(r) . (23c) where

Substituting Eq. (23c) into (23a) and integrating
over the angular variables, we obtain Y„,(r&) —= QG, (r ~r )X, A„(d (27b)

K„.(r ~r') =+ X,' (r)K,p'f. (r')*. (24)

Before proceeding with the construction of the ex-
change term, we introduce an additional simplifj. -
cation. We note that one of the sums in Eq. (24)
can be eliminated if we replace the matrix K» =K»

Comparing Eqs. (21) and (25), we find that the

exchange term in the separable form is consider-
ably simpler. Explicitly, the integral in Eq. (27b)
has only one radial label while that in the direct
evaluation [Eq. (21b}]has two. This means that
the evaluation of the 7» integral has been re-
duced in order of the radial variables from N~
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to N~. Thus, not only does the separable pre-
scription place part of the calculation into an en-
ergy-independent step but also reduces the amount
of computation at each energy by considerably
simplifying the radial integrals.

III. METHODS OF SOLUTION

In the previous section we developed the formal-
ism for representing the scattering equations in
linear-algebraic form. In this section, we con-
centrate on the various methods used to solve
the LA equations. The first subsection is devoted
to a di'scussion of the various quadrature schemes
employed. In particular, we display the merits
of choosing different meshes and ranges for the
various collisional channels. The main advantage
of this choice is the reduction in order of
the M matrix and therefore the reduction of
time spent in the linear-systems solution. In sub-
section B, we consider techniques for handling
very large matrices that cannot be stored in small-
core memory. The partitioning of the super-
matrices is so far the most efficient means of
accommodating such matrices. In the final sec-
tion, we describe an optical potential, based on
the partitioning scheme, for inct, uding the effects
of channels with high angular momentum.

A. Quadrature schemes

The critical constraint on the efficacy of the LA
approach is the size of the M matrix [Eq. (10) or
(20)]. As indicated before, the order of this ma-
trix is the product of the number of channels N,
and the number of quadrature points per channel
,V~. Since we invoke the single-center expansion,
we have very little control on the number of chan-
nels. Thui, we concentrate on means of minimiz-
ing the number of quadrature points. We achieve
this result by two procedures: (1) use of high-
order quadrature schemes and (2) use of variable
number and range of points in each channel.

1. Choice of quadrature

The type and order of the quadrature selected is
highly dependent on the functional form of the
solution. This form, in turn, is determined by
the effective "potential" p», . Since in all practical
calculations we use the g-matrix formulation of
Eq. (20), we are only concerned in the LA method
with the solution from y =0 to y =g, where g is a
point beyond which the exchange contribution is
negligible and the static potential has reached
multipolar form. For a homonuclear molecule,
we can divide this region into four subdivisions
according to the strength of the potential. The

subregions have the following bounds: (1) 0 &r&
&r» —e (where r» is the position of the nucleus
and e-0.2-0.5ao), (2) r» —e &r, &r»+e, (3) r»
+ e & r, & 2r», (4) 2r» & r, &a. For a heteronuclear
molecule, we must add a region between the two
nuclei. In region 1, the potential is nearly con-
stant and consists of a strong mixture of exchange
and p, -static components, while in region 2, the
static potential becomes very strong (deep) due
to the nuclear singularity. The static and exchange
potentials contribute about equally in region 3 with
the static potential being considerably weaker
than in region 2. Finally, in region 4, the ex-
change potential is dying rapidly, and the static
potential is tending to a weaker, multipolar form.
We select a quadrature scheme and apply it to
each of these regions. We vary the number of
points in each region according to the strength of
the potential. Thus, we place the largest number
of points in region 2 and the second largest in
region 3. A smaller number of points suffices to
represent the two other regions.

We have found that high-order quadrature
schemes, such as the Gauss-Legendre quadra-
ture, "work best since they give the highest de-
gree of accuracy for the smallest investment of
points. In region 2, for example, we have applied
Gauss-Legendre quadratures of 20 to 30 points.
This points to one of the major advantages of an
integral-equations linear -algebraic approach —that
high-order quadrature schemes, which are no-
toriously unstable in propagation methods, are
quite effective in such boundary-value problems.
We have experimented with other quadrature
schemes such as the trapezoidal' and Simpson's. '
In region 2, these schemes allow a small reduction
in the number of points over the Gaussian scheme
due to their slightly greater density in the region
of the singularity. However, over the entire re-
gion from y=0 to y =g, the Gaussian scheme re-
quires from two to four times fewer points than
either of these schemes. Thus, the Gauss-Legen-
dre quadrature is generally applied to all four
subregions.

In order to illustrate some of these points, we
consider e-N, collisions in the p symmetry at
0.1 Ry. The calculations are performed at the
static-exchange (SE) level. The expansion of the
continuum wave function is truncated at eight terms
(f =14) in the scattering equations (20) and at two
terms (f = 2) within the exchange term. All six
bound molecular orbitals are represented by a
two-term expansion (pg~ 6= 2) in the exchange term
and are constructed from the Cade, Sales, and
Wahl" (CSW) SCF Hartree-Pock wave function.
Since we are interested in the choice of meshes
within the inner region (r& a), we match at 10a,.
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In Table I(a) we present the various m'eshes em-
ployed in this and the following section, while in
Table I(b) we study the sensitivity of the eigen-
phase sum to the choice of mesh. We employ the
same mesh in all eight channels. We take as our
standard for comparison the results for mesh 5.
More elaborate calculations employing different
divisions of the inner region, different point dis-
tributions, and different choices of quadratures
in the various channels yielded, in each case,
eigenphase sums within better than 1% of the re-
sult for mesh 5. We can draw several important
conclusions from a perusal of this table. We first
note that our basic prescription for assigning point
densities to the subregions, discussed above, is
indeed valid. We note a significant improvement
in going from mesh 1 to 2 due to the increase in
the number of points around the nucleus (region 2).
A slight improvement is obtained with mesh 3
which places an additional number of points in
region 3. Finally, by further increasing the den-
sity of points around the nucleus, we obtain still
more accurate results. Second, we observe that
an accuracy on the order of 5@ can be obtained
with a fairly small' number of mesh points (e.g. ,
mesh 2). To push the accuracy further requires a
much larger concentration of points, especially
near the nucleus. Since the order of the M matrix
(0 ) sets a practical computational limit on the
LA approach, we are always searching for tech-
niques that reduce 0 . If we are content with an
accuracy of 5%, we can reduce the order of M
by almost a factor of 2. This, in turn, reduces
the storage by a factor of 4. Since the linear-sys-
tems routines on most computers (matrix opera-
tions on vector machines do not follow such sim-
ple scaling rules) involve operations that go as
0' or higher, considerable savings are also re-
alized in the execution step.

Z (5y, rr„5rr ™r„,rs, , )gr r(.~rr, , ) =Gr(r „,lrr)5rr .

(28)

The order of the Q matrix is given by

p = g (NrxN,'), (29)

where N,' is the number of channels with mesh j,

2. Chunnel quadnrtures

As pointed out in Sec. II B, a different set of
weights and points can be introduced into each
channel. This can be more graphically illustrated
by attaching a channel label to the quadrature in-
dex in Eq. (20) to give

TABLE I. (a) Gauss-Legendre quadrature meshes.
(b) Eigenphase sums as a function of number of mesh
points for the same mesh in all channels for SE e-N2 Z~
collisions at 0.1 Ry. &c) Eigenphase sums as a function
of mesh size for SE e-N2 Z~ collisions at 0.1 Ry.'

Subregion~
(a)

No. of points in (r;, rf)
mesh ~umber

0.0-0.7
0.7-1.5
1.5-2.5
2.5-10.0
Total no.

1 2 3 4 5
5 5 5 10 10

10 15 15 20 25
5 5 10 10 10
5 5 5 10 10

25 30 35 50 55

6 7 8
5

15 15 10
3 10
2 5

15 20 30

(b)

Mesh no. Total pts. ~~m (rad)

25
30
35
50
55

200
240
280
400
440

-0.7034
-0.7893
-0.7938
-0.8132
-0.8145

(c)

Case M esh No. channeLs/mesh 0~ 6 (rad)

280 -0.7938
240 -0.7938,

200 -0.7940

160 -0.8918

170 -0.7930

(r&, ~&) gives the initial and final radial points of the
subregion in bohr. rN=1.034 ap.

i~=14, ~~=28, l~"=2, g&"6=2, r =10. ap CSW Np

wave function.
'See Table I(a) for description of scattering parame-

ters.
First mesh listed corresponds to lowest partial

waves. For example, in case 2, channels with l =0 to
10 use mesh 3, while channels with l =12 use mesh 6.

N~ is the number of points in the ith mesh, and g
is the number of distinct quadrature meshes. The
advantage of this formulation is at once made ap-
parent by investigating the behavior of channels
associated with large values of the orbital angular
momentum (i.e. , high-) values). For homonuclear
targets, these high partial waves make a negligi-
ble contribution to the cross section. Although
for polar targets the contribution to the cross
section from K-matrix elements involving high
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angular momenta cannot be neglected, these ele-
ments can be accurately calculated by more ap-
proximate methods such as Born I and unitarized
Born." Thus, for either case, the effect of the
high partial waves is simply computational; they
are needed in the single-center expansion to prop-
erly represent the solution in the strong-coupling
regime near the nuclei. For the high-) channels,
we can concentrate the points in region 2 near the
nuclei and eliminate or drastically reduce the
number of points in the other three regions. If
the number of points in region 2 does not sub-
stantially increase over the value used for the
low-partial waves, then the order of M can be
significantly reduced.

In order to further investigate these claims, we
consider the collision problem of the previous
subsection. In Fig. 1 we present the channel wave
functions f„(~&)as a function of the radial variable
for electron-N, collisions in the p symmetry at
0.1 Ry. The solutions for low values of I (~2) are
fairly spread out over the inner region (r cg); as
/ increases, the wave functions become progres-
sively more confined to the region around the
nitrogen nucleus. This pattern supports the strat-
egy mentioned above for selecting channel meshes
—namely, for the low partial waves spread the
points over the inner region and for the high par-
tial waves concentrate the points around the nu-
cleus. If the number of points in each channel
is the same, we gain accuracy by a more intelli-
gent placement of points for the upper channels,
but we -do not reduce the order of M. However,
we find that not only can the range of points in
the upper channels be reduced but also the number
of points.

In Table I(c) we illustrate some of the above
points for g-N, g, collisions. We use case 1 as
a standard. In going from case 2 to 4, we pro-
gressively place more of the upper channels on
the smaller mesh. By case 3, we have split the
channel space evenly between the two meshes.
We observe no loss of accuracy in the eigenphase
sum, while we have reduced the order by 30%.
Case 4 is misleading. The third and fourth par-
tial waves do contribute to the eigenphase sum.
By better representing these channels in regions
3 and 4, we are able to improve the solution with
only a slight increase in order (compare cases 5
and 4). The calculation of electron-CO, cross
sections in the 3 symmetry, in which 30 or more
channels are needed for convergence, is only
tractable within the LA approach due to this ability
to choose smaller mesh sizes for the upper chan-
nels.

In Sec. IIA we have described techniques for
reducing the number of quadrature points and

()8
IPO ($

I 1 I I

00 IL5 10 18 RO K5

R(a, )

FIG. 1. Che~nel wave functions f g f as a function of
radius for the erst linearly independent solution for
&-N~ &~ scattering at 0.1 Ry.

therefore the order of the LA equations. We
brieQy review our findings. First, we employ
high-order quadrature schemes which give a high
degree of accuracy for a small number of points.
Second, we divide the inner scattering region
(r ~ a) into subregions and choose the density of
points in each region to correspond to the strength
of the effective potential. Third, we reduce the
number of points in the high-partial-wave chan-
nels by concentrating them entirely near the nu-
cleus.

B. Partitions

Even the most judicious application of the pro-
cedures of the previous sections will not ineluct-
ably lead to matrices which can be accommodated
within small-core memory. Therefore, we must
investigate schemes for treating these very large
matrices. We have found that partitioning
schemes, much along the lines of the Feshbach
decompositions, "are usually adequate to solve
this problem. We return now to the matrix form
of solution in Eq. (14). As an illustration of this
technique, we consider only a single partitioning,
although the method can be readily generalized.

In order to demonstrate the partitioning tech-
nique more fully, we consider a particular exam-
ple. We assume that there are N, channels and,
for simplicity, that there are N~ points per chan-
nel. In this case, the M matrix in Eq. (14) has
an order p =N, xN~, and the matrices f andy
are p xN, in size. Each column off(g) corre-
sponds to a separate linearly independent solu-
tion. We now divide channel space into two parts,
say P and Q, with P space consisting of N,' chan-
nels and Q space with N; =N, N,' channels. We-
define two new orders Q~=N,'xN~ and 0 =N" xN~.
With this dicotomy, we can write Eq. (14) as
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(Mpp Mpq) (fp } (gp)
(Mqp Mqg) ( fq) (gq)

(30)

where M», M~q Mqp and Mqq are O~xp„,
O&&&p„p, &&p„and O, x O, matrices, respectively.
The fp(g~) matrices are of size p~xN, while the

fq(gq) matrices are O, xN, . We may then solve
for fp and fq by a simple 2x 2 linear-equations
scheme as

C. Optical potential for highs channels

In Sec. IIIA, we investigated schemes for
reducing the number of quadrature points as a
means of reducing the order of the LA equations
since we had little control over the number of
channels in the close-coupling expansions. How-

ever, there are techniques for attacking the chan-
nel problem. We could use a prolate spheroidal
rather than a spherical coordinate system. In

fact, Crees and Moores' in their LA calculations
on N, demonstrated that such a transformation
reduced the number of channels by two. Unfor-
tunately, prolate spheroidal systems are limited
to diatomics or linear polyatomics. Several
authors' have considered. expansions in terms of
adiabatic bases, much as is done in heavy parti-
cle scattering. These approaches appear to lead
to a reduction in channels, but it is unclear wheth-
er the number of points must be accordingly in-
creased. Thus, such techniques may be more
suited to propagation schemes rather than an LA
approach. The form of Eq. (31) provides another

(Mpp MpqMqqMqp )fp =gp ™pqMqq gq, (3 la)

Xq qq Eq qpfp (3 lb)

where M, ,
' represents the inverse of matrix M,.~.

It is important to note that n0 approximation has
been introduced in going from Eq. (14) to Eq. (31)—
the solutions of the two equations will be exactly
the same. What is gained by the form of Eq. (31}
is storage. If we assume that p, ~ p„ then all
we need for the principal storage of Eq. (31}at
any one time is two p„x O„matrices. In other
words, Eq. (31a) can be solved quite independently
of Eq. (31b). To solve Eq. (14) we must. store a
p x p matrix. We can see the savings in core
more readily by taking a particular example. We
choose the following parameters: N, =10, N~ =50,
N,'=5. Then, we have p =500, p«, &

=250. Thus
to solve Eq. (14) we must have 0' or 250-K posi-
tions in memory, while to solve Eq. (Sla) we need
only 2x p„or 125-K positions —in other words,
half the core. Efficient techniques for solving
large equations based on an N-partition scheme
are currently under development.

possible approach. We showed in the previous
section that the solutions for the upper channels
are not needed to construct the cross section. In
other words, if we let Q space contain all chan-
nels whose asymptotic solution makes a negligible
contribution to the scattering information, we no

longer need to solve for fq in (31b}. In addition,
we may be able to make an approximation to Mqq
in Eq. (3 la). Such a tact leads to an optical po-
tential formulation.

We consider this idea by investigating Eq. (Sla).
As a first approximation we consider the block-
diagonal form of Mqq. This leads to a great sim-
plification since the inverse of a block-diagonal
matrix is the inverse of eggs block. Thus, rather
than storing a matrix of the order MQQ we need
at any one time in the computation to store only
one block (NpxNp) of Mqq Phys.ically this ap-
proximation is equivalent to replacing the upper-
channel wave functions by their distorted waves.
We make no approximation to Mpq and Mqp so that
all forward and backward coupling of the high
partial waves to the lower ones in P space is re-
tained. Only the coupling bet&veen the partial waves
in Q space is neglected. We may then view Mpq
hfqq Mqp as an approximate optical potential. We
have found for e-N, scattering that from three to
four channels associated with high partial waves
can be added by this technique with a loss of ac-
curacy of less than five percent.

IV. RESULTS AND DISCUSSION

We divide this section into three parts. In the
first subsection, we compare the results of the
LA approach with those of other methods for sev-
eral molecular systems. The second subsection
is reserved for a comparison of the direct and
separable-potential approaches to the evaluation
of the exchange term. Finally, in the third sub-
section, we present static-exchange results of
electron-CO, collisions.

A. Comparison with other methods

We compare the results of static-exchange cal-
culations with the linear-algebraic method with
those of other techniques for several molecular
systems. In Table II, we present representative
results from electron collisions with H„N„and
LiH in the LA and iterative close-coupling' (ICC)
methods. We observe excellent agreement in all
cases. For the LA method, the calculations were
performed with the direct exchange procedure (Sec.
II C 1}with 30, 50, and 55 points in each channel
for H„N„and LiH, respectively. In the SE case,
a calculation at a given energy in the LA approach
takes a time equivalent to about two iterations in
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TABLE II. Comparison of the linear-algebraic and iterative close-coupling techniques in
the static-exchange approximation.

Molecule Symmetry k 14X g4X (rad)
LA ICC

H2

N2

LiH

0.04
0.49
0.10
0.50
0.30
0.24
0.20
1.00

0.25

14
10
15
10

5
7
7
6

20.0

10.0
10.0
85.0
10.0
16.0

100.0
16.0

100.0

-0.4224
-1.2752
-0.8132

1.5495
2.5873
1.3744

-0.3254
1.5470
1.8344
0.9090

-0.4229
-1.2747
-0.7912

1.5732
2.584
1.2382

-0.3103
1.5620

0.8961

the ICC method. In practical terms, this implies
that the LA method is faster by a factor of 2 or
more over the ICC technique. Even larger dif-
ferences of time are observed when the separable-
potential prescription is introduced in the LA ap-
proach.

We also find excellent agreement for these same
three molecular systems with the noniterative
close-coupling (NCC) method' and. various vari-
ational schemes such as the Schwinger (SV) (Ref.
11) and Kohn (KV).6 For example, for e-LiH Z
scattering at 1.0 Ry, the LA, SV,"and NCC (Ref.
26) give, respectively, 1.83, 1.82, and 1.74 for
the eigenphase sum. The slightly lower result of
the NCC method can be traced to a lower-order
expansion in the exchange term.

B. Separable exchange: LiH

In a recent paper, "we developed in more detail
the separable-exchange technique and applied it
to e-H, and -LiH scattering. We also made com-
parisons with a similar method developed by Res-
cigno and Orel. ' For completeness, we present
a brief description of our findings in this section.

We choose to illustrate the separable-potential
method on e-LiH collisions. In Table III, we study
the behavior of the eigenphase sum as a function
of the number of terms included in the separable
expansion [Eq. (26)]. We observe that from 10
to 20 terms seem sufficient to produce an accurate
representation of the exchange terms W„,. In fact,
a ten-term expansion guarantees an accuracy of
better than 10@. The computation time for the con-
struction of the M matrix is considerably reduced
in the separable approach over the direct method
of section IIC1. For the LiH case of Table III,
the separable approach was three times faster
in the collision step, due entirely to the more ef-
ficient construction of the exchange contribution
to M. However, to gain a more realistic com-

TABLE III. Eigenphase sum as a function of number
of terms included in the expansion of the separable po-
tential for SE e-LiH Z collisions at 1.0 Ry. ~

No. of terms in

separable expansion Eigenphase sum ~

10

20

45

1.3786
(1.3652)
1.7089
(1.6944)
1.8573
(1.8424)
1.8578
(1.8429)

Collision parameters: l~=7, X =14, no. of points in
quadrature =56.

'The numbers refer to matching the solutions to
asymptotic forms at R =16..0 and 64.0 a.u. , respectively.

The value from the same program using numerical
exchange is 1.8559.

parison between the two approaches, we must in-
clude the time spent in calculating the energy-in-
dependent expansion of the exchange kernel. Even
with this addition, the separable method breaks
even with the direct after about three energies.
Thus, when cross sections at a large number (~3)
of energies are sought, the separable technique
is preferable. Another advantage of the separable
approach is the straightforward analysis of its
convergence properties in g. The diagonalization
of the exchange kernel K in Eqs. (25) and (26) pro-
duces an eigenvalue spectrum. We find that this
spectrum contains a significant number of very
small values. The contribution of the eigenfunc-
tions associated with these small eigenvalues to
the representation of the exchange term is also
small. Thus, we can use the eigenvalue spectrum
to determine the minimum set of basis functions
needed to represent W», to a particular accuracy.
This approach also lends itself quite readily to
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the inclusion of other effects such as excited elec-
tronic channels and polarization through a separa-
ble-optical-potential formulation. We reserve
for a later paper a description of this procedure.

TABLE IV. Eigenphase sums as a function of energy for
e-C02 collisions in the static-exchange approximation.

&~ (rad)
rr,

C. Electron-CO2 collisions: static exchange

The collision of electrons with CQ, is one of
the largest cases that has been handled by a single-
center, close-coupling formulation. " In this cal-
culation, the exchange and polarization terms
were approximated by model potentials while the
static contribution was treated exactly. In order
to obtain accurate g, elastic cross sections, 30
terms (channels) had to be included in the single-
center expansion of the continuum wave function
or over twice as many channels as are needed in

N, and LiH calculations. Thus, the CQ, system
should prove a formidable test for the LA approach
and should provide a demonstration of its prac-
ticality in treating large molecular systems. In
addition, it provides a case for which exact static-
exchange results are not available.

We have performed e-CQ, calculations in the

Z„Z„, II„and Q„symmetries using the near
Hartree-Fock-SC FMQ g,' ground-state wave func-
tion of McLeari and Yoshmine' at the equilibrium
separation of 2.1944 g, between the C and 0 atoms.
In all calculations, we represented the exchange
term through the direct method described in Sec.
IIC 1. As the p, symmetry presents the greatest
challenge to convergence, we begin by describing
our calculations for this symmetry. We found,
much as in the earlier model study, "that 30 chan-
nels (I = 58) were needed to converge the scat-
tering orbital. With this choice, we judge from
extrapolation that the g eigenphase sum is con-
verged to 10%. Such a large number of channels
presents a difficulty to the LA approach for CQ,
since the number of points in the lower channels
must be large to cover both the regions around
the C and Q nuclei and to span the remaining inner
region (r ~8 a,). In fact, if 60 points were neces-
sary in each channel, then the order of the M
matrix would by 1800—far outside the storage of
present machines. However, the technique de-
vised in Sec. IIIA2 of introducing a different mesh
in each channel comes to our aid. We find no loss
of accuracy in the eigenphase sum or K-matrix
elements by making the following channel/mesh
assignments: (I) first six channels with 60 points,
second two channels with 87 points, (2) all re-
maining channels with 26 points. The first mesh
has points spread throughout the inner region with
a concentration near the nuclei, while the second
mesh has a greater concentration near nuclei and
a small number of points in regions 3 and 4 in

0.036 75
0.0735
0.1472
0.2205
0.2940
0.4410
0.5880
0.7350

)ex
m

ex
Sf

-0.3263
—0.4548
-0.6264
-0.7605
-0.8788
-1.1025
-1.2536
-1.3244

58

100

-0.1556
-0.3461
-0.5786
-0.7762
-0.9467
-1.2244
-1.4404
-1.6115

19

100

-0.0370
-0.0577
-0.1039
-0.1561
-0.2117
-0.3266
-0.4338
-0.5280

20

100

-0.1082
-0.1834
-0.1973
1.9960
2.2406

23

13

100-

order to communicate scattering information to
the boundary. Finally, mesh 3 has all its points
concentrated on the Q nucleus. This choice yields
an M matrix of order 934 or almost half the order
of the one first considered. The exchange con-
tribution is, of course, represented by a much

smaller expansion of the bound and continuum
orbitals. We found that a choice of )'"=6 and
n'" =4 (for all nine bound orbitals) guaranteed an

exchange term converged to better than 5%,. A

typical 'E, calculation for one energy on the CRAY-
1 computer took around 35 seconds. This time
can be reduced by going to the separable
exchange form. For the p„and p, symmetries,
far fewer channels were needed for convergence, '

and the LA calculations were performed with the

same mesh for all channels. In Table IV we pre-
sent a summary of SE eigenphase sums for all
four symmetries for e-CO, collisions, while in

Fig. 2 we present the integrated cross section as

OO-
SH

II
I

OA) 1A) P 0 3.0 4.0 50 LO 7.0 LO 9' 10'
Electron Energy (eV)

FIG. 2. Integrated cross sections as a function of ener-
gy for ~~, Q, and II~ symmetries for e-CO2 collisions.
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a function of energy for the nonresonant symme-
tries.

'The resonant Q„symmetry formed another test
of the LA method. In this case, the number of
channels needed to converge the scattering solu-
tion was not as great as in the s', symmetry [14
(I =27) as compared with 80]. However, near
the center of the resonance, more terms are
needed to represent the exchange term due to the
greater concentration of the resonant, scattering
wave function in the short-range region. We find
that a choice of &'"= l3 and n, ,=7 guarantees con-
vergence of the eigenphase sum to only about 10%%u~

at resonant center (-5.4 eV). However, slightly
away from this point the convergence significantly
improves. For the parameters, ) =23, $'"= l3,
and nP, = 7, we obtain a width (I') of 0.68 eV and
a position (E„)of 5.4 eV. While the phase sum
near E„ is in error by 10%, the position is prob-
ably given to a greater accuracy since it also
depends on values of p away from p„. In our
earlier letter, ' we reported a width of 2 eV and a
position of 8 eV. The difference arises from er-
rors in the calculation of the y2 and y' terms [Eq.
(22d)]. In the original program, these terms were
evaluated by upwards recursion. This scheme in-
troduces large errors for resonant symmetries.
Evaluating these integrals by downwards recur-
sion completely eliminates these errors. For
nonresonant symmetries we found very little dif-
ference in the two recursion schemes. The ex-
perimentally determined position of the resonance
lies near 3.8 eV. Thus, the remaining shift in
position is due to polarization terms.

We thus observe that even a case as CO„ in-
volving a large number of channels and points,
can be efficiently handled by the linear-algebraic
approach.

V. SUMMARY

We have presented a detailed development of a
linear-algebraic (LA) approach to electron-mole-
cule collisions. The set of integrodifferential
equations, which arise from making the fixed-
nuclei approximation in the body-frame and the
close-coupling approximation on the single-center
expansion of the bound and continuum orbitals,
are transformed to a set of coupled integral equa-
tions. We prefer this integral representation for
its stability and Qexibility. This set of coupled
integral equations is, in turn, converted to a set
of linear-algebraic equations of the form

M =g

by introducing a quadrature on the integrals.
These supermatrices are labeled by both the chan-
nels and mesh points. The M matrix contains

the representation of the scattering "potential, "
and/ contains the continuum solution. Equations
of this form can be solved by standard linear-
systems packages and are well suited to vector
machines.

We have developed two formulations for the in-
tegral equations based on the choice of boundary
conditions. In the first case, we choose asymp-
totic boundary conditions and solve for the con-
tinuum wave function over all space. This ap-
proach leads to prohibatively large systems of
equations for electron-polar molecule collisions
since the solution must be obtained out to very
large radii in order to extract an accurate g ma-
trix. An alternative approach is to impose loga-
rithmic boundary conditions at a given radius
(say u). The LA approach has clear advantages
over propagation schemes in the treatment of
nonlocal potentials like exchange and in the in-
clusion of channels with high partial waves. This
distinction disappears for a weak, local potential
such as is found in the region beyond the charge
cloud of the molecule. Thus, the best strategy
is to employ a different method of solution in the
inner and outer regions. In the inner region (~ &g),
where the static and exchange interactions are
strong, we employ the LA approach to solve for
the R matrix rather than the wave function. A
propagation scheme such as the R-matrix propaga-
tor is then used to extend the solution from y =g
into the asymptotic region.

The nonlocal character of the exchange inter-
action complicates the solution of the electron-
molecule collisional problems. We have devised
two methods for handling the exchange interaction
wit/in the LA approach. The introduction of ex-
change by either method does not alter the basic
form or order of the linear-algebraic equations
for a local potential; only the time to compute
the matrix M is increased. In our first approach,
we directly evaluate the exchange integrals by
numerical quadratures. Efficient ordering and
recursion schemes have been developed to reduce
the number of evaluations of these integrals and
the time spent in each evaluation. In our second
approach, we expand the exchange kernel in sepa-
rable form in terms of a discrete basis set. This
procedure, which is independent of the collisional
energy, leads to an expression for the kernel
which greatly simplifies the form of the exchange
integrals in the scattering formulation. For scat-
tering calculations, the two forms break even in
computational time after about three energies,
with the separable form being the faster there-
after.

We have also devised a variety of techniques
for efficiently solving the LA equations. The prac-
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ticality of the LA approach rests with the order of
the LA equations not becoming too large. The
order depends both on the number of channels
and the number of mesh points employed. The
number of points can be kept at a minimum by
three procedures: (1) by using high-order quadra-
ture schemes such as Gauss-Legendre, (2) by
judiciously selecting the density of points to cor-
relate with the strength of the interaction poten-
tial, and (3) by selecting a different mesh for each
channel or group of channels. For the channels
associated with high partial waves, only a few
points need be concentrated near the nuclei since
their wave functions are confined to this region.
Qn the other hand, for low partial waves which
are highly oscillatory, the points must be spread
throughout the inner region. This ability to re-
duce the number of points associated with high
partial waves makes the LA approach tractable
for large molecular systems since the introduc-
tion of channels with large values of ) does not

drastically increase the order of the LA equations.
We have also developed partitioning schemes for
treating large matrices that will not fit in small-
core memory as well as approximate, optical
potential techniques for reducing the large number
of channels that arise from the single-center ex-
pansion.

Finally, we have applied the linear-algebraic
approach with both forms of the exchange inter-
action to a variety of molecular systems (H„N„
LiH) and obtained excellent agreement with other
methods. In addition, we have demonstrated the
practicality of the method by applying it to the

CO, system.

ACKNOWLEDGMENTS

This project was performed under the auspices
of the U. S. Department of Energy through the
Theoretical Division of the Los Alamos National
Laboratory.

L. A. Collins, W. D. Robb, and N. A. Morrison, Phys.
Rev. A 21, 488 (1980).

~E. R. Smith and R. J.W. Henry, Phys. Rev. A 7, 1585
(1973).

B.D. Buckley and P. G. Burke, J. Phys. B 10, 725
(1977).

4G. Raseev, A. Guisti-Suzor, and H. Lefebvre-Brian
J. Phys. B 11, 2735 (1978).

5M. A. Crees and D. L. Moores, J. Phys. B 8, L195
(1975).

6L. A. Collins and W. D. Robb, J.Phys. B 13, 1637
(1980).

~B. I. Schneider and L. A. Collins, J. Phys. B 14, L101
(1981).

B.I. Schneider and P. J.Hay, Phys. Rev. A 13, 2049
(1976); M. A. Morrison and B.I. Schneider, ibid. 16,
1003 (1977); B.I. Schneider, M. LeDourneuf, and
Vo Ky Lan, Phys. Rev. Lett. 43, 1926 (1979); S. Chung
and C. C. Lin, Phys. Rev. A 17, 1874 (1978).

~T. N. Rescigno, C. W. McCurdy, and V. McKoy, Phys.
Rev. A 11, 825 (1975); A. W. Fliflet, D. A. Levin,
M. Ma, and V. McKoy, ibid. 17, 160 $978).
H. Takagi and H. Nakamura, J. Phys. B 11, L675
g.978).
D. K. Watson and V. McKoy, Phys. Rev. A 20, 1474
(1979); R. R. Lucchese, D. K. Watson, and V. McKoy,
ibid. 22, 421 (1980).
M. J.Seaton, J. Phys. B 7, 1817 (1974).

~3A. Temkin and K. V. Vasavada, Phys. Rev. 160, 109
(1967).
L. A. CoQins and D. W. Norcross, Phys. Rev. A 18,

467 (1978); N. T. Padial, D. W. Norcross, and L. A.
Collins, J. Phys. B (in press); J. Seigal, J.L. Dehmer,
and D. DQ1, J.Phys. B 13, L215 (1980).

+M. A. Morrison and L. A. Collins, Phys. Rev. A 17,
918 (1978).
J.C. Light and R. B.Walker, J.Chem. Phys. 65, 4272
(1976).

~~C. Bloch, Nucl. Phys. 4, 503 (1967); B.I. Schneider,
Chem. Phys. Lett. 31, 237 g.975).
G. Raseev, Comput. Phys. Commun. 20, 275 (1980).

+B.I. Schneider and L. A. Collins, Phys. Rev. A (in
press).

+T. N. Rescigno and A. E. Orel, Phys. Rev. A 23, 1134
(1981); Phys. Rev. A (in press).
Handbook of Mathematical Eunctions, edited by
Abramowitz and A. Stegun (U. S. GPO, Washington,
1968).

+P. E. Cade, K. O. Sales, and A. C. Wam, J.Chem.
Phys. 44, 1973 (1966).

+H. Feshbach, Ann. Phys. (N. Y.) 5, 357 $958); W. R.
Garrett, Phys. Rev. A 11, 1297 (1975).

+N. A. Mullaney and D. G. Truhlar, Chem. Phys. Lett.
58, 512 (1978); Vo Ky Lan, M. LeDourneuf, and J. M.
Launay, Electron-Atom and Molecule Collisions
(Plenum, New York, in press).

@R.R. Luccahese and V. McKoy, Phys. Rev. A (in press).
+G. Raseev, J.Phys. B (in press).
+M. A. Morrison, N. F. Lane, and L. A. Collins, Phys.

Rev. A 15, 2186 (1977).
+A. D. McLean and M. Yoshmine, IBM J.Res. Dev. 12,

206 (1968).


