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Thomas-Fermi model: The second correction
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A simple derivation is given for the first quantum correction to the Thomas-Fermi

kinetic energy. Its application to the total binding energy of neutral atoms exploits the

technique for handling strongly bound electrons that was developed in a preceding paper,

and justifies the numerical value of the second correction adopted there. A proposal is

made for extrapolating this improved description to the outer regions of the atom.

INTRODUCTION

In a previous paper' the leading correction to the

Thomas-Fermi (TF) calculation of the total binding

energy of a neutral atom, the correction of relative

order Z ', was produced by a method that justi-
fied an earlier conjecture. In the comparison with

experiment for low-Z atoms, however, use was also

made of a correction at the next level, of relative

order Z . The latter is dominated by the ex-

change effect that, in contrast with the Dirac modi-

fication, is omitted in the simple TF model. But
there is also a smaller contribution, in the nature of
a kinetic energy correction. This had already been

computed numerically, using WKB approximations

to energy values, and that result was simply ac-

cepted in Ref. 1. This naturally posed the problem

of whether the TF treatment could be made more

self-contained by extending the method of Ref. 1 to
the second correction. That can indeed be done.

And then it turned out, once again, that I had sup-

plied a derivation that justified an already pub-

lished statement. In the hope that my method is of
some interest, nevertheless, it is described here; a
brief comparison with the earlier work is provided

at the end. And new ground is broken in a tenta-

tive attempt to extend the statistical description to-

ward the outer regions of the atom.

EXCHANGE

It will emerge that the kinetic energy eAect in

which we are interested is simply related to the ex-

change term. Accordingly, we begin with a short

elementary review of the latter, which also serves

to supply some of the needed background. In the

TF model the energy of Coulomb repulsion among

the electrons is

2

—, I (dr)(dr')n(r) n(r'),

where the electron density n (r ) is evaluated as the

momentum integral (2 is the spin factor)

n(r)=2 exp ——p r exp —p r(dp) i i

(2W)'

The domain of integration is the interior of the

sphere of radius pF( r },defined by

[pF(r)]'+ V(r) =O,
2m

which introduces the electron potential energy

(2)

exp ——p r exp ——p'r'

X exp —p'r' exp —p r
fi fi

But Fermi-Dirac statistics requires antisymmetry

of the two-particle wave functions for otherwise in-

distinguishable electrons, those of common spin

component. That is effectively introduced by sup-

plementing (5} with
i

exp ——p r exp ——p .r (6)

X exp —p'. r exp —p-r '

Ze 2

V(r)= — + f (dr ') n(r ') . (4}
T /r —r'/

In writing (2) we have made explicit the underlying

wave functions; this also emphasizes that the

evaluation of the interaction energy (I} involves

products of two-particle wave functions:
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which then yields the exchange-energy correction term

5E,„=——,
' f (dr)(dr')2 f exp ——

p (r —r ')
(2nk)

e2 (dp ') i

i
r —r'i (2m%)

The upper limits of these two momentum in-

tegrals, pF( r ) and p~{r '), respectively, are not the
same. However, for

~

r —r '
~

&&filpF, which is a
small distance in the TF domain of validity, these
integrals become negligible. Accordingly, once in-
tegration is performed over the explicit relative
coordinate r —r ', the integrand is effectively local.
And so, beginning with the integral {r—r ' is here
denoted by r)

I

This version of the exchange energy is (e /az
units)

4 00

5E,„=— (0.8853) f dx [f(x)]2 Z5/3 (16}

The known integral

f dx f =0.6154

then gives

(dp) i
(2W)'

5Ee» Oe 2208Z (18)

pF 1
3

3
—(siny —y cosy}, y =pzr/A,

2 R y

we then encounter
'2

2 1 siny —y cosy
dyy0 y y3

and arrive @t the result
'4

5E,„=— f (dr)
4

This can be rewritten, in terms of the density

1

36il3

(8)

(9)

(10)

V(x}=Vo+ —,mto x (19)

QUANTUM CORRECTION

The leading correction discussed in Ref. 1 is as-
sociated with the strongly bound electrons. The
correction we now consider is a property of the
bulk of the electrons. It expresses the inadequacy
of the semiclassical approximation that relates the
particie density at a point to just the potential en-

ergy at that point [Eqs. {3)and (11)]. There is a
particularly simple way of looking at this effect. It
begins in one spatial dimension.

With a suitable choice of origin along the x axis,
the potential function in a small interval can be
represented as

as

5E,„=— (31r } f (dr)tt (12)

which has the appearance of the oscillatar potential
(although t0 need not be positive}. The exact
dynamical solution of the oscillator is presented in
the time transformation function

It is more immediately useful, however, to intro-
duce the potential energy in the form

ZeV(r)= — f(x), x =r/a
r

(xt ix'0) = NlN

2mi A sincot

' 1/2

exp —m

(20)

where

a =[—,(3n/4}2r =0.8853]aoZ ', ao trt /me——
w = —Vot + [(x2+x'~)cosset —2xx'],

2 sincot

and f(x) obeys the TF differential equation

d'()
,i2[f(x)], f(0)=l, f(ao)=0.

dx

(14)
which is easily produced by a variety of tech-
niques, or, at worst, can be verified to obey the
Schrodinger equation and the initial condition

lim(xt ~x'0)=5(x —x') . (21)

(15) Anticipating the application to particle density, we
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place x'=x and get
' 1/2

As one verifies through its consequences, the semi-
classical limit is produced by the restriction

(xt ixO)= mco

277l A slilcot.

l
exp ——Vot

/cot
i «1, (23)

Xexp ——mrox tan( cot)—. (22)2
for then

(xr (xO)~
2mfit

' 1/2

exp ——(Vo+ —mco x )t = exp —— p +V(x) t
l ] 2 2 dP l 1

~ 27FR 2m
(24)

(25)

which exhibits the classical specification of the energy.
We now proceed to the next stage, in which the cubic terms are retained in expanding the trigonometric

functions of (22). With the identifications

1 d V(x) g g 1 dV(x)2 2

N =— » mcox
dx m dx

this yields

(xt ixO)
2m%'t

1/2
i t d V(x) i t

exp V—(x—)t 1+
12m dx fi 24m

d V(x)
dx

'2

(26)

It is then an immediate step to three dimensions, particularly if one adopts a local coordinate system that di-
agonalizes the dyadic V V V( r ), so that the three oscillator motions are independent:

(Ft
~
Po)=(F exp — Ht r)—fi

m

2mihf
exp — V(r)t—1+ V V(r) —— [V V(r)] (27)

1 dt i—exp ——Ht
2mi —~ t

(28)

where the integration path runs under the origin in
the complex plane. The resulting particle density
1s

The electron density is computed as the additive
contribution of all bound electrons, those for which
the single-particle energy H is negative. They are
selected by the operator

nr„(r)=Z f1 dt m

2' —~ t 2alf2t

3/2

)&exp ——V(r)t
fi

[—2mV(r)] ~1

3
(30)

And then the additional terms of (27) correct this
density to

2
d'

p
d3

n =nTF — V V nTF — (VV) nTF
12m d V2 24m d V3

(29)
(31)

1 dt in(r)=2 —r exp — Ht r-
2n.i —~ t fi

and the initial term of (27) does indeed produce the
TF density: or
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3n A' n =( —2m V) ——m (}' V( —2m V)
4

——m2(VV) ( —2mV)
8

Another way of presenting this quantum correc-
tion to the density is

(3ir A' n) = —2m V

V V 1 ((}'V)~+
12 V 4 V2

(32)

(33}

where the latter bracket is also given by

V'V 3 VV 1 ~ V

V 4 V 3 n

Vn

n
(34)

5(E)=f(dr)5n (3 imari n) /+ V
1

2m
1

fi - (}'n Vn

72m n n

.=0,
with V given by (4), makes clear the modified
form of the total energy (apart froin the exchange
term), namely,

(35)

E f (d~) 3 (3+irs)2/3n5/3
5 2m

fP 1 (Vn) Ze+ n
36 2m n r

2

+ —,f(dr)(dr ')n(r)

It displays the first quantum correction to the
kinetic energy. The stationary property of the en-

ergy functional implies that the energy shift pro-
duced by this correction is just

1 f (d~ (Vn)
36 2m n

n (r') . (36)

(37)

where n is the density in the absence of the correc-
tion. We therefore write

'2 2
Vn 1 3' 9 VV

+ 3 ( —2mV)

—V' V- V'( —2m V)', (38)
n iiii

the last form being consistent for small corrections.
The equivalent variational statement

and rearrange the latter form to get

5E= —f (dr) ( —2mV)'/ V V2M &

+ V ( —2mV)
1

3m

(39)

It is time to recognize that this correction should
not be applied in the region of strongly bound elec-
trons where it is seriously in error (the introduction
of the Coulomb potential gives a divergent: result).
We follow the procedure used in Ref. 1; the in-
correct TF contribution of strongly bound electrons
is deleted and the correct quantum contribution is
set in its place. Strongly bound electrons are
characterized by the single-particle energy require-
nient (p /2m}+ V & —e, where

Z8 Z8
J/3 ((6((

QpZ QpZ

This shift in the upper limit of single-particle ener-
gies, from zero to —e, is effectively produced by
the substitution V~V, +e, where the subscript c is
merely a reminder that the potential energy of a
strongly bound electron is essentially the Coulom-
bic function

V, (r)= (Ze /r)+eo, —eo B(Ze /a) .—— (41)

Thus, we subtract from (39) the analogous expres-
sion with V replaced by V, +e. But nothing need
then be added to represent specifically the quantum
correction to the kinetic energy of the strongly
bound electrons; the complete quantum energy of
those electrons has already been found in Ref. 1.
The volume integral of the difference,

Pri[( V)3/2 ( V e)3/2) (42}

is equal to zero, for the equivalent surface integrals
vanish, both at the outer limits, and at the origin.
Then, the multiple of 5(r ) that evaluates (}'iV, can-
cels against the analogous term in V V, inasmuch
as ( —V)'~ —( —Vc —e)'~ vanishes at the origin.
That leaves only the contributions to V V produced
by the electron charge density. Accordingly, the
desired quantum energy correction is

The total correction of relative order Z is

5Eq„= —f (dr)( —2m V) /
( 4n'e2n)—

24

2

, f (dr) = —,5E,„.(43)
18m
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(e /ao units)

5E =5Ecx+5Eql ——
9 5E

or

5E=— (0.8853) Jdx[f(x)] Z
44

9

(44)

The particle density n is given by (32) or,
equivalently,

3+$3n =( 2mV) ——+m ( —2m V) P' V

2m V)»2

(47)

=—0.2699Z /

This numerical coefficient differs insignificantly
from that adopted in Ref. 1, 0.266.

DISCUSSION

(45) We first work out the quantum correction associat-
ed with the explicit structure of the last two terms
in (47), keeping in mind the necessity of removing
the contribution of the strongly bound electrons.
In the integral

BE e2

az
= J (dr) —n(r) .

r
(46)

I

There is another way of looking at the quantum
correction. It begins with the stationary energy ex-
pression (36), in which Z is now regarded as a
parameter:

J (dr) —V [(—V)' —( —V, —e)' '] (48)

the function 5(r ) that is produced by the transfer-
ence of V has a vanishing coefficient at the origin
and this integral is zero. The 5 function that
evaluates 7 V„and also occurs in V V, similarly
has a vanishing coefficient. We are left with

2

= I (dp) — ( ——,A m)( —2m V) '~
( 4me2n) —= (0.8853) Z J dxf(x}az 31r fi

(49}

and (e /ao units}

5E,„pi———— (0.8853)Z i —
„ I dx f(x),

(50)

which is the following multiple of 5E&„[Eqs.(43)
and (16)]:

I
erally representative) implies the restriction

fP (VV)'
m(

or

1 [(d!dx)(f!x)]
Z2/3 (f/ )3

(53)

(54)

I dx f(x) dx x . 51

I am indebted to L. DeRaad for the numerical
evaluation

I dx f(x)=1.80, (52)

which says that 88% of 5Eqp is supplied by 5Eczp]
What gives the remaining 12%'7 Looking back at
the density expression (47) we see that this relative-

ly small piece comes from the TF density through
its dependence on V, which is also changed by the
quantum correction to the density. We shall not
trouble now (but see later) to verify that the needed
amount is supplied by this implicit part. Instead
we take up this indication that the structure of the
TF theory has been altered by the quantum correc-
tion.

Let me review the domain in which the quantum
correction is small, for which we return to Eq. (32).
The last term on the right side (which is more gen-

For the bulk of the electrons, those with x -1, this
is satisfied through the large value of Z . For
small- x the restriction becomes

x »Z r »Qp/Z (55)

which is the already stressed exclusion of strongly
bound electrons. Now to large x. The known

asymptotic form of the TF function is

x » 1: f(x)-(12) /x (56)

and therefore, with numerical factors set aside, the
restriction (54) reads

x «Z', r «ap . (57)

It is clear that when r becomes -ap the first quan-
tum correction is no longer small and higher
corrections will also be significant. In short we
would be entering the low density region that is the
domain of chemistry, where a full quantum treat-
ment is required. 6 The question we now pose is
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this: Can one suggest a simple but physically plau-

sible generalization of TF that might serve as an

extrapolation to cover the domain between (57} and

r -ao?
It is with the hope of doing this that we return

to the energy functional, this time including the ex-

change term, and present an alternative form in

which n (r } and V(r) are independent variables.

ZeVi V(r)+
r

4—ne n(r), (58)

we can verify the electrostatic energy identity

Using the definition of V(r) in Eq. (4) and the re-
lated Poisson equation

f (dr) Ze 2

n(r)+ , f—{dr){dr')n{r) n(r'}

Ze= f (dr)V(r)n(r) — f (dr) V V(r)+ . (59}
8me r

'2'

f (d~ 3 (3' ) 5/3 e (3g )q~3 R 1 (Vn)
V

1
V V

Ze
5 2m M 36 2m n 8' r

The n-dependent exchange and quantum kinetic energy corrections are of relative order Z / . To that
level of accuracy, it suffices to exploit the stationary property with respect to n variations and insert the
form of n produced by the initial TF energy, namely the nrF of Eq. (30), which involves no restriction on V.

That produces, as an intermediate stage,

(60)

—2m V)5" e' 2

E= f (dF—) + ( —2mV) + (VV) 1 — —( —2mV)3'' 4n fi 8mei 3n. fi

2 2
'

1 2q V q Ze q Ze

8~e 2 r r

L

The latter form is stationary for variations of V about the solution of (58). The correct treatment of strongly
bound electrons is still left implicit in the new version of the energy functional:

Then, the introduction of the new variable

V= V+(e /6irk)( —2m V)'

which is a small change under the TF cir-
cumstance,

~
V

~
&ye /ao, gives

1 ( —2mV)~ 11 e

5m 3 fi3 9

1 ~ V
Ze

8~e2 r

(61)

(62)

Ze f(x), f(0)=1,
r

which uses the TF dimensionless coordinate
x =r/a. We find that

(64)

I

first right-hand term of (39); the second term has
been absorbed in the definition of the variable V.

In retrospect, it is clear that replacing V by V
provides an approximate local description for the
nonlocality introduced by the quantum correction
to the particle density. A more convenient energy
expression emerges on writing

In writing the final form we have omitted the term

2 ~ Ze—f (dr) V ( —2m V)'~ V (63)
6M r

ZeZe
~ 2m V)]/2

r~
which will be canceled on deleting the TF contri-
bution of strongly bound electrons. Indeed one can
recognize here the 5-function part of V V in the

provided

f(x)—1

1/2

The parameter A, is

=0.

(65)

(66)
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(88 1/2 (88)1/2
(0.8853)Z ', = 0.99533' 3'

(67)

The stationary condition (65) supplies the differen-
tial equation

$(0)=1.461Z . (76)

One would then begin with the asymptotic form,
some multiple of e ~, and integrate the equation in
to the origin, which would disclose the correspond-
ing value of Z.

When one adopts this new scale of length,

d 2f f3/2

dx x2
= 1/2+

The initial behavior of its solution

x((l: f(x)=1 Bx+——,x /+ —,A, x +

(68)

(69}

a /A, = 1.005ap, (77)

the appropriate energy expression is (e /ap units)
2

2 (('/2—E =0.4661 dy +— + —,(()'
p 2 dy 5 I /2

is compatible with (66}. If the last term of (65) is

considered small, and f replaced by f, the implied

energy shift is just that of Eq. (45). But suppose
this energy functional, and the implied differential

equation (68), is taken seriously as it stands? The
obvious new consequence is at very large distances,
such that the last term of (68) dominates over the

preceding TF structure:

+ (0)[$(0)—1.461Z]
dy

(78)

=0.6811 — (0) = Z /
BZ dy 0 8853

which is so written that (76) emerges as a derived

property. Accordingly, we can now regard Z as a
variable parameter and infer that

f1/2' 1/2 Z —2/3 (70) (79)

where

x))1: ~A f .
dx

That gives the asymptotic form

0 9953r/a&— .

(71)

(72)

k =0.8812Z

But that can be somewhat avoided through the
redefinitions

(73)

which is qualitatively reasonable.
This suggests a program of reexamining those

physical properties, involving the outer reaches of
the atom, for which TF has not been very success-

ful; immediate examples are diamagnetic suscepti-

bility and electric polarizability. The necessary nu-

merical integration of the diFerential equation (68)

might be awkward, in view of the explicit appear-
ance of Z in

3 8
7 0.8853

(81)

9H
+ (0.8853)—I dx f Z /

and a reapplication of (79) supplies the information

Ba
BZ

(0.8853) —Z Z / dx f
9n 3 BZ . 11

which generalizes the relation between energy and
the initial slope of the potential function. A simi-

lar procedure applied to the energy functional (65),
with its leading Z factor, yields

BE 7 44 00

Z , E= (—0.—8853)—f dx f Z'
91r

(80)

The combination of this with (79) then gives the

binding energy

y =Ax, $(y)=A, f(x) . (74) (82)

They produce the universal differential equation

d 2y y3/2

2 1/2 (75)

although at the expense of altering the boundary
condition at the origin to

As a check of these results we apply the latter to
the situation of a small quantum correction, f f,
so that

(0.8853) f dx f Z
BZ 9g

(83)
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5f(0)=—,}{,'f dx f', {92}

=B+ 6 Af dx fp

This is indeed the result of differentiating

(84)

B~B+ (0.8853)'—' f dx f' Z-'"
in agreement with (84).

With all this before us, we can profitably return
to the question that, at the beginning of this sec-
tion, was left in limbo. For a quick review and re-

statement we begin with (46},

Z 3 1E — B+——
A, dx f0.8853 . ' (85) f(dr) n=—f—(dr) V V+BE e 1 2 Ze

Bz r err r

5f"=f f«f—5f(0)=0 .

We are led to solve

(86)

{87}

or of directly using (81).
For an independent derivation of (84) we consid-

er the differential equation (68} under the assump-
tion

(93)

and the expression of (47) in terms of the change in
the interaction V produced by the quantum correc-
tion:

2—V~5V= —( —2mV)'/ ( —2m5V)
3n A

4m 41M

An essential remark here follows from the observa-,
tion [implicit in the transformation (74)] that

P f(Px) also obeys the TF equation for arbitrary
constant P, a statement that sharpens into an in-
variance of the asymptotic form (56}. Accordingly,
the function

X(x)=— P f(Px) =f(x)+ , x f(x)—1 B 1

3 BP dx

(88)

+ , fPV ( —2m V—)' (94)

where

5Eq„———f (d r ) V 5V,
4n.r

{95}

The discussion of (48) shows that the last, Lapla-
cian, term is effectively removed, on excising the
contribution of strongly bound electrons from the
quantum energy shift. Accordingly, that energy
shift is determined by

is a solution of the differential equation
2

5V=5V+ ( —2m V)'/ (96)

d2 3 f1/2
X(x)=0

dx 2x
the one that obeys the boundary conditions

X(0)=l, — X(0)=-,B .

(89)

(90}

obeys

—V 5V= ——3 8
2 3&ap

' i/2—2mV
~

4
9&ao

{97)

Now let us multiply (87) by X(x) and (89) with

5f(x), followed by subtraction of the two equa-
tions. This gives

'T

X 5f 5f X =&'Xf-
dx dx dx

=A~ f~+ x f-
dx

(98)

The last term of (97) produces the explicit effect
given in (49). What precedes it in (97) is the object
of this inquiry. But it is simpler to work out the
total effect, the combination of explicit and implicit
contributions. To that end we rewrite (97) as

' 1/2
3 8 —2m V

&V
16

2 3$Qp 9&a 0

(91)

and a subsequent integration from 0 to 00 produces
Then the introduction of the TF dimensionless
variable
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Ze5V= — 5f(x)
T

(99)

[note that, in contrast with (86), the exchange ef-

fect is not considered here] converts (95}and (98}
into

5E,„=— „&f(0)
Ze2 d

(100)

d 3~'f fjf (0 8853)2Z —2/3f
dx 2 x' 9H

(101)

5Eq„——3
Z2~' (0.8853}f dx f2

(102)

5Eq„— (0——.8853) I dx f Z, (103)
qll 9

'
P

The application of (87) and (72) then gives (e /ap
units)

in agreement with (43) and (16}.
-The Grst attempt at the quantum kinetic energy

correction was that of von Weizsacker. I am in-

debted to D. Clark for a number of references in

which it is shown that this proposal is too large by
a factor of 9. The correct quantum kinetic energy
correction [as in our Eq. (36)] was applied to the
neutral atom binding energy calculation, where

the failure of this limited improvement at small

and large distances was handled by arbitrarily cut-

ting off the particle density and imposing boundary

conditions. According to the authors, "It can be
said that an electron cloud of a normal atom in the
considered model reminds one of an apricot
without a stone. " This approach produces a
correction of relative order Z ' ', but with the

wrong coefficient; it does, however, give, for the
correction of relative order Z, what we now

know to be the right answer.

Finally, it is worth mentioning that total binding

energies, with their relativistic modifications, may
soon be directly measurable through the develop-

ment of mass spectroscopy on completely stripped

heavy ions.
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