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Cusp conditions are obtained for the coalescence of any number of particles interacting Coulombically. This is an

extension of the results of Ho5nann-Ostenhof and Seiler for atoms and molecules in the infinite-nuclear-mass

approximation in two aspects: (1) the center of mass is first removed, and (2) the masses and charges are all allowed

to differ.

I. INTRODUCTION

The Hamiltonian for an N-particle Coulombic

system in the nonrelativistic regime,

p~
—-zfVr, r& =r -rf g fy

with k Planck's constant, e, the charge, and m,
the mass of particle i, has a potential which be-
comes singular at all points of particle coales-
cence. Eigenfunctions of H which do not vanish
there must satisfy clsP conditions' (or coalescence
conditions' in general, whether they vanish or not).

Recognition of the cusp conditions in the case of
two-particle coalescences is useful, say, in the

united atom perturbation theory of diatomic mole-
cules, ' although they have generally proven to be of

little help in the construction of accurate varia-
tional wave functions (see Ref. 2 for a discussion).

Nonetheless, it is of interest to know as much

as possible about the behavior of exact many-

particle wave functions, including the coalescence
of more than two particles. Earlier work on this
problem' has been somewhat sparse, but a re-
cent paper by Hoffmann-Ostenhof and Seiler' gives

exact cusp conditions for the coalescence of k

electrons at an atomic nucleus or elsewhere, and

extensions to molecular systems, within the in-
finite-nuclear -mass approximation.

Pack and Byers Brown' have derived the two-
particle cusp conditions with the removal of this
approximation, and it seems reasonable to expect
that such can be done for the higher-order coales-
cences also. It is the purpose of this paper to show

that the results of Hoffmann-Ostenhof and Seiler'
can be easily extended, as they suggest, to derive

II. SEPARATION OF THE c.m. MOTION

The part of H due to the uniform motion of the
c.m. may be eliminated by an orthogonal trans-
formation of (mass-weighted) coordinates, ' "

R, =Z D„r (2)

N

P, =Z(D "),p,
f=1

where

D —
p

~ ymii 2
t (4)

m and p are diagonal (m, &
=m, 5&&, p, &

=p, 5,&), and

p N is fixed as the total mass of the system:

pN-M- m

The remaining N —1 p, , are arbitrary positive
scale factors which play the role of reduced mas-
ses. The N x N orthogonal matrix d is

the conditions for coalescence of an arbitrary num-

ber of particles interacting Coulombically (with

possibly different masses and charges). The ef-
fects of the Pauli exclusion principle have been
discussed before, '"' and are not dealt with here.

In Sec. II, the center of mass (c.m. ) is removed

by transformation to Jacobi coordinates, which are
particularly well-suited to this problem. In Sec.
III, the Jacobi coordinates are used in place of,
and exactly analogously to, the electronic coor-
dinates of Ref. 7, resulting in the cusp condition
as given in Eq. (28). Section IV considers more
than one coalescence point.
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The intermediate inass sums in Eq. (6) are

Mg= m, , MN -=M.
j=1

This transformation delivers the well-known

Jacobi coordinates, with R~ the c.m. :
m„,.M, I(

]/2 i f~
R, = " '

~ g —r, -r, ,), 1- N —rr

&gMg, ~) f=g Mg

(6)

I

made, but this is not of concern here.
The Hamiltonian is now (with P» the total mo-

mentum)

H 2M+8 s

(12)

where the internal Hamiltonian is diagonal in the
kinetic energy

P', g e~e~

tx g &&f gf

The key use of these coordinates in the current
circumstances stems from the fact that R&~S&

-re» where 5R is the c.m. of the first k particles.
For the coalescence of the first k+1 particles,

r =r = =r =S =S =
1 2 k+1 1 2 ~l 0 (9)

and we have R, =o for i&k. The remaining coor-
dinates only contain the coalescent variables as
a multiple of S~„.The customary restrictions are
made here that (i) r&4 5~, and (ii) r& or& for i and

j&k+ 1. The first, (i), is essential for the deriva-
tion of the cusp conditions, ' although (ii) seems
too strong (see Sec. IV).

The interparticle distances may be expressed in

terms of the internal coordinates R„i&N:

(N,M,
)

(r,m. )'"- (RW, )"'-

R + ~ ~ R

and in fact, for i,j ~k+1, r,f |s a linear combina-
tion of no more than the first k R,'s. Different
choices for the arbitrary scale factors can be

the notation x, representing functions of the in-
ternal coordinates as in Eq. (10). The reduced
Schrodinger equation one would want to solve is
then

(h -E)g(R~,R„.. . , R~, ) =0. (13)

The cusp conditions for coalescence of the first
k+1 particles are now sought in precisely the
same manner as in Ref. 7. The surface difference
is that the potential terms appear more compli-
cated here, but this turns out not to be any prob-
lem.

III. CUSP CONDITIONS FOR ARBITRARY
MASSES AND CHARGES

The treatment of Ref. 7 uses hyperspherical co-
ordinates in a 3k-dimensional space, where the
Cartesian coordinates of the first k electrons are
converted to 3k -1 angles and one extensive vari-
able. In our case, the first k Jacobi coordinates
are transformed into an alternative set of hyper-
spherical variables given by Delves" some 20
years ago.

First the spherical polar angles &„P,of R„
i ~ k, are taken as 2k variables. The radii R,
are then used to define a set of k —1 hyperspheri-
cal angles and one hyperradius:
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I

R, =R Sino, Sine, ' ..Sine ~11/2

p.,' 'R, =R cosa., sine, sine&»

3 R3 R cosa, sino31/2

~ ~ ~

p ~ R~=R cosa& 1.
(14)

escence point of the k+1 particles are
0+1

V»=Q ' '= V»(R„R„.. . , R»).
jCf if

It can be proven as in Ref. 7 that

=—, [(3k —I)o, ,] '

(23}

The hyperradius R is the only extensive variable and
has the significance of being related to the trace
of the inertia tensor of the k+1 particles mea-
sured from their c.m. (Refs. 8 and 11):

Wl

R = p ', = mjrj-S~,

where

&& R V» d(d $(0,y),
g 3k'-1

il., (R, y) = 4(», y)d~,
1

0'3a 1 $3@-1

(24)

(26)

0+1 4+1
m&m&

My+1
(15)

If particle 1 is very heavy compared to the rest,
then this reduces to

R2=— m r -r
ice

(16)

which is essentially the same as the definition
used in Ref. 7 when all of the masses other than
m, are equal.

The volume element in $3» is, up to a constant,

dR dR "~ dR~=R dRd~, (17)

d(d= cos a,. sin ~ 'o. da&
~

i~1

x (I [2'ne, de)de(),
E y'='1

(18)

J 2 3k-2

»»-2 R» ' I'(3k/2) (19)

Following Hoffmann-Ostenhof and Seiler, we de-
note the 3k Cartesian coordinates by simply

(R»eR»e. . . 2R») =R(d
2 (20}

and the remaining coordinates Ry 1 R~2 RN

collectively by y. Equation (13) is transformed
tO6I 10s 11

where 0 & u, & s/2. Integration over all the angles
gives the volume of the 3k-dimensional unit sphere

and $(0, y) is independent of sp.

The simplest term of the integral on the right-
hand side of Eq. (24) is the r» term, which, by
using Eqs. (10), (14), and (18) is evaluated as

J
mm»/2

t d(d
X

q3~1 sine sine ' ' ' sine

1(m,m, ' '4 &3~1)/2 p, f'3k —1

2 )
(26)

While all of the other terms appear to be more
complicated, it is known that any desired reorder-
ing of the k+1 particles can be accomplished by a
kinematic rotation, ""an orthogonal rotation of
the angular variables. This means that by a rede-
finition of the angles, each of the xj& terms can be
brought into a form analogous to Eq. (26), except
that the charges and masses are changed accord-
ingly. ' Consequently,

&3a 1)/2 '
~ m 1/2

RV~ du=4—
»»-2 ' I'((3k —I)/2), ~ & ~((m, +m~

(27)
and Eq. (24) reduces to

0+1 )1/28$.,(R, y) g g m, mg
~

(0
aR „~,~ ' ~ mj+m~]

(28)

IR " R"—-W)e(Rte, e)=o,9 8

eR eR (21)
2,g, I'(3k/2)

r ((3k+1}/2)
' (29)

where
N-1 E

W= —,—I '2'+ —,(I ' ' —R), (22)R j.~,l j 5 ( j&y f'jy

and A' is the square of the grand angular moment-
um operator defined on $

In line with the statement after Eq. (9), the terms
in the potential which become singular at the coal-

This is the completely general set of cusp condi-
tions alluded to by Hoffmann-Gstenhof and Seiler
(ignoring statistics since the charges and masses
may not be the same at all} for the eigenfunctions
of the reduced Hamiltonian h. There is no re-
striction on the number of particles coalescing,
nor of the species involved. If we take particle 1
as a nucleus (charge Ze) and the remaining k as
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x e ~' y(p, y), (30)

which reduces to Theorem 1 of Ref. I when m, /m

When k = 1 (a two-particle overlap),

v'a~( syi x ~ I m ~(0 } (31)8R „~ k' m, +m,

Recognizing from Eq. (15) that R = [m,m, /(m,
+m, )]'~'r» brings Eq. (31) into agreement with
Pack and Byers Brown. '4

Finally, again borrowing from Hoffman-Qstenhof
and Seiler, ' we may obtain similar results for
the bound-state reduced densities"

pa(Hg, Its, , aa) = Ig(Rx, R2 . , H» i)'
Ig3(N -P-j.)

x dR~, dR„,. (32)

With p& being given by p& averaged over S'» ', then
0+1 g /2—p (R) = 2& g egest

'
pa(0) (33)dR ',„~,~ ' ~ (m, +m,

Note, however, that this is not precisely the same
definition of particle density as given in Ref. 7.
A definition closer to that can be formulated, but
we will not do so here.

IV. MULTIPLE COALESCENCE POINTS

As general as the preceding results may be, it
seems conceivable that there is more information
to be gleaned from such an approach. The usual
conditions that no more coincidences of particles
take place appears to be unreasonably restrictive.
Certainly the manifolds in configuration space for
which the many-particle Coulomb potential be-
comes singular are much broader than those con-
sidered here (a single coalescence of k+1 parti-
cles).

For instance, consider the next simplest possi-
bility, two coalescences in distinct separated clus-
ters of particles. Internal coordinates (and hyper-
spherical coordinates"} can certainly be defined
so that each coalescence is described by the
vanishing of a different set of independent vari-
ables. We describe the wave function (with c.m.
removed) by $(R,„R~&»y), where a and k cor-

electrons (charge -e, mass m), Eq. (28) becomes

sg,„(R,y) m, ,
'~', g, k(k —1)

respond to the two separate clusters and y denotes
any remaining internal coordinates. There are now
two separate averagings: $,(R„R,&u„y)is obtained
from an average over &g„g~(R,&u„R„y)from an
average over &u~, and $,~(R„R„y)from an average
over both. We then have two separate equations
of the form of Eq. (28}:

a
$,(R„R,&u„y) = Q,Q 0, R,&u„y), (34)

9
$,(R,~„R~,y) =Q,g(R, &u„p,y),

the constants Q, and Q~ being appropriate to the
two separate clusters. Differentiating Eq. (34)
with respect to R~, averaging over &„andthen
using Eq. (35) with R, =0 leads to

(35)

R, =R cosP, R~ =R sinP.
The change in the volume element is
R3~a-~R3~o-~dR dR0 R

=R ~~~& dR cps I P sjn ~o PdP
=R' ~ ~ 'dRdy, (P),

(37)

(38)

allowing an additional averaging of the wave func-
tion over P as well as &, and ~~. Then, using

Ra 8 R,
(R~+Rmg~&2 sR (R2+R~)&& ~ sR

Eqs. (34) and (35), and the fact that

4.(0 P, y) =0,(P, o,y) =4(p, o, y),
we obtain

(39}

(40)

= Q.Qg4(o, o y} ~ (38)
Ro Ry=o

which can also be obtained starting from Eq. (35).
Similar results would then occur for any number
of independent coalescences.

This is obviously not a rigorous proof (which
would be welcome); the normal restrictions pre-
clude those regions of configuration space where
both coalescences take place. The point is that
the two singularities are independent of each other
and involve different independent coordinates.

An example was giVen in Ref. 7 of cusp condi-
tions for two electrons situated at different (fixed)
nuclei. " To obtain the analog for the a and b sys-
tems (with k, +1 and k, +1 particles, respectively},
we change variables from R, and R, to R and a new
hyperangle P (0 & P & v/2):

dp p dp p cosp g„+sinp
~

~

-1
d p, P d p, P Q, cosP+Q~sinP f 0, 0,y =Q,~g 0, O, y) . (41)
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Here Q„is given by
kg+ j. 0 ytl

(42)

where the subscript a or b denotes the appropriate
cluster. This result reduces to Eq. (25) of Ref. 7

when a and b each contain one electron and one

infinitely heavy nucleus.
Equations (36) and (41) are in accord with the

general idea of attributing individual prefactors
for each two-particle interaction to the wave func-

tion, '" used to remove the singularities from the

Schrodinger equation. The explicit form for the
higher-order cusp conditions may serve as useful
restrictions on Ans'atze for such prefactors, or for

expansions around the singularities which remove
the angular averaging. "
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