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Symmetry-adapted coupled-pair approach to the many-electron correlation problem. II.
Application to the Be atom
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The analytic forms of both the LS-adapted coupled-pair many-electron theory (CPMET) and its linear version
(LCPMET) are applied to the ground state of the Be atom in order to examine the reliability of the analytic coupled-
pair approaches. Using CPMET within a (7s,7p,4d, 3f,3g) set of orbitals, we obtain 97% of the experimental
correlation energy. Special attention is paid to the convergence properties for both radial and angular correlation
effects. By means of the partial-wave analysis of the various pair energies it is shown that the difference between
LCPMET and CPMET is primarily due to the quasidegeneracy of the Be ground state. The role of different types of
coupling terms for pair clusters is also examined yielding a basis for an understanding of various approximate
coupled-pair theories. The results are compared with other calculations and the role of monoexcited and triexcited
clusters is briefly discussed.

I. INTRODUCTION

Based on our orthogonally spin-adapted ver-
sions"' of the coupled-pair many-electron theorys
(CPMET) or its extended form' ' (ECPMET), we
have recently formulated the orthogonally spin-
and angular momentum adapted version' of the
CPMET (so called LS-adapted CPMET) in a form
suitable for application to closed-shell atoms using
an analytic form for the intervening one-electron
wave functions. This analytic approach has also
been referred to as the algebraic approximation'
(expansion of wave functions in a finite set of func-
tions) as opposed to the numerical approach in
which radial pair equations are solved numerically
(cf., e.g., Ref. 7).

Recently, there has been a considerable revival
of the coupled-pair many-electron theory, or,
generally, of the coupled-cluster approach, ' par-
ticularly for molecular systems. This renewed
interest was primarily stimulated by the fact that
these approaches are both "size consistent"' and
"size extensive" (cf., e.g., Ref. 10) and by the fact
that very efficient codes have been developed~"
for the simultaneous construction and evaluation
of many-body perturbation-theory (MBPT) dia-
grams characterizing the coupled-pair theory, ' at
least in its spin-orbital form. There has also
been a number of approximate pair theories de-
veloped, ~ which may be easily interrelated with
a general coupled-cluster approach' and which will
be discussed in a subsequent paper of this series. "
Very recently the coupled-cluster approach has
been successfully generalized to the open-shell
systems. ""

The aim of this paper is to study rather exten-
sively the simplest possible four-electron system
in which nontrivial pair interactions occur, name-
ly, the Be atom. Since we are primarily inter-

ested in molecular applications of the CPMET we
employ an analytic form (or algebraic approxima-
tion') of this approach as noted above, which is
closely related to the LCAO-MO approximation,
which is currently unavoidable in most molecular
electronic structure problems. With the numerical
approach based on the solutions of coupled radial
pair equations' "one can obviously attain more
precise results than with the analytic approach,
since the basis set incompleteness or overcom-
pleteness problems are automatically avoided.
Unfortunately, these numerical methods cannot be
readily extended to molecular systems for which
the analytic approach is the only feasible approach
at the present time.

Thus, rather than striving for the best possible
wave function or energy for the Be atom, using
either numerical" or analytic" approaches, we
wish to carry out a reasonably detailed test of the
CPMET approach on the simplest truly many-
electron closed-shell system. The ground state of
the Be atom represents an almost ideal system for
this purpose since it has been well studied in the
past with many different approaches and very ac-
curate results and details of its electronic struc-
ture are available for comparison (cf., e.g. , Refs.
6, 7, and 20-34). On the other hand, due to its
simplicity and high symmetry we are able to use
effectively large basis sets of Slater-type atomic
orbitals and thus obtain highly accurate and reli-
able results which exceed in accuracy all other ex-
isting applications of the coupled-pair theories
based on the LCAO approximation. In this way we
are able to examine in detail the convergence
characteristics of the correlation energy in the
analytic coupled-pair approaches. We note that
such investigations have often been carried out for
variational approaches (cf., e.g., Refs. 21, 31,
and 35) but not for the coupled-pair approaches,
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where a careful investigation of the convergence
properties of the correlation energy is even more
essential due to their nonvariational character and

the lack of general results concerning the conver-
gence. We thus examine this convergence with re-
spect to both radial and angular correlations.

Another problem encountered by the closed-shell
theories is the quasidegeneracy of the state con-
sidered. This effect is well known in the Be atom
ground state which gives us the possibility to ex-
amine the performance of the coupled-pair theo-
ries in the presence of quasidegeneracy. This is
particularly important for various approximate
pair theories which are discussed in a subsequent
paper. "

The structure of this paper is as follows. In

Sec. II we discuss the simplifications arising when

the general &S-coupled theory (paper I} is special-
ized to the Be atom. The resulting LS-coupled
CPMET equations for this special case are given
in Appendix A. In Sec. III we discuss the various
numerical procedures used while in Sec. IV we
present the results and their discussion. In par-
ticular, we analyze both the radial and angular
convergence properties of CPMET and of its lin-
ear approximation (LCPMET), and find that they
are quite similar to those of variational approaches
(except for the upper bound property} such as D-CI
(configuration interaction with doubly excited con-
figurations).

We find that the convergence characteristics of
the CPMET and the LCPMET, which represents
the crudest approximation to the former, are quite
similar. Hence, it may be expected that the regu-
larities manifested by the present results are a
general property of all coupled-pair methods in-
cluding the CEPA-like approaches" "which are
based on less severe approximations than
LCPMET. We also find that CPMET correctly ac-
counts for the well-known quasidegeneracy in Be
whereas D-CI and LCPMET do not. Finally, we
analyze various approximations to CPMET ob-
tained by using various subsets of the set of dia-
grams corresponding to the quadratic (nonlinear}
part of the CPMET equations. These results show
why several approximate coupled-pair (e.g. ,
CEPA) approaches give correlation energies in
close agreement with CPMET. Preliminary re-
sults on approximate coupled-pair theories both
fo.r the Be atom and other systems have been given
elsewhere" "and further results for the Be atom
will be presented in a subsequent paper. "

II. CPMET FORMALISM FOR BERYLLIUM

The general LS-coupled CPMET equations for
closed-shell atomic systems have been presented

in paper L' We now consider the simplifications
arising in the application of these equations to Be
using, for the most part, the notation of paper I.

For Be all hole-state l quantum numbers and the
intermediate quantum number &, are zero [cf.,
e.g. , Eq. (4.18b} of paper I]. This greatly simpli-
fies the orbital angular momentum factors appear-
ing in the CPMET Eqs. (5.11) and (5.12) of paper I.
In particular, all 6-j symbols and the 12-j symbol
which appear in Tables I-VI of paper I reduce to
simple factors. This follows from the identity

{
=(-1)'""[s &] "'5(«)5(&,c),

b d 0
(2.1)

III. BASIS SETS USED
AND COMPUTATIONAL ASPECTS

Our results for Be were obtained using Bunge's
set of 7s, 7p, and 4d natural orbitals which in-
cludes the Hartree-Fock orbitals"' "supplemented

by a set of 3f and 3g orbitals. " These orthonorm-
al orbitals are defined in terms of a set of 9s, 7P,
5d, 3f, and 3g Slater orbitals.

In the study of convergence properties we essen-
tially consider the following two classes of basis
sets.

(i) The set of five bases obtained by truncating
the largest basis indicated above by the value of
the l quantum number, namely, 7s, 7s7p, 7s7p4d,
7s7p4d3f, and 7s7p4d3f3g.

(ii) The second class of basis sets is defined as
4skp2d (k = 1, 2, . . . , 7} and is used in the CPMET
and LCPMET schemes when examining the radial
convergence of the correlation energy. The basis
4s3p2d is used for the analysis of the role of vari-
ous nonlinear terms in the CPMET approach. Al-
though these bases are relatively small they yield
rather accurate results for all quantities consid-
ered.

We have also calculated the CPMET correlation

or graphically (cf. Appendix I of Ref. 40) from the
rules for removing zero angular momentum lines
from the orbital angular momentum diagrams in

Fig. 4 of paper I.
It also follows that the l quantum numbers of the

particle states [cf., e.g. , Eq. (4.18b) of paper I] de-
fining the t, matrix elements are identical. Thus,

'
we can use the simplified notation

(n'n'I
{ t, (S,) {n,n, }-=(n In I

~

t (O, S,) {n On 0&

(2 2)

for the t, matrix elements and a similar notation
for the left-hand sides of Eqs. (5.11) of paper L

The CPMET equations for Be and the results
needed to include the monoexcited states are given
in Appendix A.
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where the coefficients a, represent the interaction
matrix elements of the Hamiltonian between the
ground state and the biexcited states, the linear
coefficients b, ~

and the nonlinear coefficients c,»
represent the interaction matrix elements between
bi-biexcited and bi-tetraexcited states, respective-
ly. Finally, the x, represent the distinct 4S-cou-
pled t, matrix elements and N their number.

The coefficients c,» were calculated and stored
linearly on tape as N lower triangular (symmetric)
matrices [c,&], one for each value of f, Eac.h of
these matrices is sparse (typically 3-4% nonzero
matrix elements for N-200} so only the nonzero
and diagonal (c,&&) matrix elements were stored.
In Fortran on an IBM360/75 computer the packed
form for the coefficients was implemented by stor-
ing the column index k in the least significant
(rightmost} two bytes of the double precision word
containing each nonzero c,». The indices i and j
were then controlled by program loops.

Let us recall here one of the advantages of the
orthogonally spin-adapted CPMET (Refs. 1 and 2)
as opposed to the nonorthogonally spin-adapted
theory, ' namely, the greater sparseness of the
[c,»] matrices in the former. For example, with
Watson's" 6s5p4d3f3g basis (N=169) one obtains
4.2% nonzero c,» matrix elements (101690 out of
2427685) using the nonorthogonally spin-adapted
version' while only 3.4% (81460 out of 2427685)
using the orthogonally spin-adapted" version.
Similarly, one also obtains fewer linear (ho)
coefficients with the orthogonal version than with
the nonorthogonal one (10014 vs 12185 out of
28 561; i.e., 34.9% vs 42.7% in the case mentioned
above) even though the [b,z] matrix is not sparse
unless a very large basis is used.

To solve the system (3.1) of nonlinear equations
we used a Newton-Raphson-type procedure (cf.
Appendix B for further details) and at each itera-
tion the resulting linear system was solved by
Gaussian elimination. 4' The starting iteration was
chosen as the solution of the linear system

a, + g b, &x&=0, i,j =1, . . . , N (3.2)

energies using Watson's 6s5p4dSf3g basis" and its
various subsets obtaining also very accurate re-
sults. ~ However, we shall use this basis here
only for a comparison and when discussing the ex-
tension of the CPMET.

A system of programs were written to imple-
ment the CPMET equations of Appendix A. These
equations have the general form [cf. Eq. (45) of
Ref. I]

a&+/ b,&x&+g c&»x&x, =0 (zj,b=l, . .. , N)
f&k

(3.1)

which corresponds to neglecting the quadratic
terms in (S.l) and is just the linear CPMET
(LCPMET) approximation.

We note that if normalized t, matrix elements
are used'"' then the matrix [b,&] in (3.1) is sym-
metric and in this case (3.2) and the equation

a, x,
i

(3.3)

determining the correlation energy can be con-
verted to the secular problem of the doubly excited
CI method (D-CI) using intermediate normaliza-
tion. "'" Thus, we have also computed the D-CI
correlation energies using simple modifications of
our CPMET program. "

IV. RESULTS AND DISCUSSION

A. Pair and total correlation energies
and their convergence behavior

In Table I we list the ss, pp, dd, ff, and gg par-
tial-wave contributions to the correlation energy
using various subsets of the 7s7p4dSfSg basis.
The breakdown of the correlation-energy contribu-
tion of each partial wave is given for the 1s' 'S,
2s''S, 1s2s'S, and 1s2s'S pairs for the CPMET,
LCPMET, and D-CI approximations. This
table shows that all partial-wave contributions
to the pair correlation energies change mono-
tonically if the results obtained for different basis
sets containing orbitals with increasing l quantum
numbers are considered. For both LCPMET and
CPMET all contributions increase (decrease in
absolute value) and a similar behavior is observed
for the D-CI contributions except perhaps for the
small dd contributions to the 1s2s'S pair energy.
The largest differences among the partial-wave
contributions obtained by the different methods for
the same basis set can be observed for the PP
2s' 'S contributions. These differences are due
to quasidegeneracy effects ' and are discussed in
Sec. IVB.

If for a given basis set the partial-wave contri-
butions for increasing l values are considered then
starting with the pp partial waves the contributions

The results which we have obtained for Be are
summarized in Tables I-V. Our goal was a de-
tailed analysis of the correlation energy &t in
terms of pair energies and partial waves [cf. Eqs.
(A5)-(A7) of Appendix A] for the CPMET,
LCPMET, and D-CI approximations using various
subsets of the basis mentioned above. With these
results we could determine the quality of the basis,
compare the three approximations, and analyze
the well-known quasidegeneracy of Be arising from

closeness of the 1s'2s' and 1s'2p levels.
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to the pair correlation energies decrease. The
rate of decrease (I-convergence characteristics
of pair energies) is different for singlet and trip-
let pairs: the l convergence is faster for triplet
than for singlet pairs. This is in qualitative agree-
ment with the l ' and l ' behavior of singlet and
triplet pairs, respectively, observed by Schwartz"
for the ground state of He and verified by Bunge"
for the Be atom.

Thus, the nonvariational LCPMET and CPMET
methods have the same angular convergence be-
havior and numerical stability as the variational
D-CI method since the rate of convergence is the
same for all three methods. In our case, for bet-
ter quantitative agreement, a larger basis would
be needed to achieve a full radial convergence for
each value of l.

In Table II pair correlation energies are given
for all three methods and in Table III total corre-
lation energies are given for different bases con-
sidered, as well as the differences between the full
CPMET and, respectively, LCPMET and D-CI
correlation energies. In Table III each correlation
energy is the sum of the four pair energies in the
corresponding row of Table II. Note that the cor-
relation energy obtained with the largest basis
7s7p4d3f3g yields 96.9' of the total correlation.
energy. "~' The number of biexcited clusters
(i.e., the number N of t, matrix elements) is in
thzs case 238.

The Tables II and III show that the pair energies
and total correlation energies decrease (increase
in absolute value) as the maximum l quantum num-
ber of the basis set increases. Again this 1 con-
vergence is similar for all three methods. How-
ever, although the CPMET pair energies in Table
II are in most cases lower than their D-CI count-
erparts, this need not be the case, as can be seen
for the intershell 1s2s 'S pair, where the varia-
tional results are slightly lower than the CPMET
ones.

In Table IV we summarize our results for the
pair energies, the pp partial-wave contributions
to the pair energies, and the total correlation en-
ergy using the bases 4skp2d, k = 1, 2, .. . , 7. The
CPMET results are given below the corresponding
LCPMET ones. Thus, we can examine the effect
of the saturation of the radial basis (radial con-
vergence) for p-type orbitals. Only the pp partial
wave is given since it is the most sensitive to de-
tails of the selection of the P orbitals from a given
subset. For all pairs except 2s''S, the pp par-
tial-wave contributions decrease as the number of
p orbitals in the basis increases, for both
LCPMET and CPMET approaches, whereas almost
the opposite takes place for the 2s' 'S pair. Simi-
lar changes are also observed for the total pair
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TABLE III. Total correlation energies obtained from CPMET, LCPMET, and D-CI for
various basis sets (in pH with signs reversed). The last two columns give the differences be-
tween the CPMET energy and the LCPMET and D-CI energies, respectively (in pH).

Basis' ~~CPMET LCPMET IhCI

~~CPMET

~~LCPMET

CPMET

g~~I

7s
7s7p
7S7p4d
7S7p4d3f
7s7p4d3f3g
4S3p2d

18 550
86 952
90 406
91 123
91373
84 859

18591
92 534
95 842
96 550
96 797
90 128

18 504
83 736
87 106
87 790
88 029
81 813

41
5582
5436
5427
5424
5269

-46
-3216
-3300
-3333
-3344
-3046

'All bases are subsets of the 7s7p4d3f 3g basis (cf. text for details).

energies. Finally, we note that the total correla-
tion energy decreases for both LCPMET and
CPMET methods as the radial saturation of the
basis is approached.

The remarkable regularities indicated in Tables
I-IV for LCPMET and CPMET energies, when

compared with those of D-CI method, resemble
the situation found in variational approaches,
even though we have no upper bound property for
these nonvariational approaches. These regulari-
ties could be exploited in extrapolations in much
the same way as done by Bunge ' in the case of the
variational CI approach. This is a clear indication
that coupled-pair methods yield not only accurate

global correlation energies but they also correctly
represent subtle details of the electronic structure
of many-electron systems.

B. Quasidegeneracy effect

For the largest basis considered ('ts7P4d3f3g)
the difference between the linear and full CPMET
correlation energies is +5.424 mH while the dif-
ference between the D-CI and full CPMET energies
is -3.344 mH. These differences amount to 5.94/o

and -3.66% of the total correlation energy. It
should be noted that while the D-CI yields smaller
correlation energies (in absolute value) in agree-

TABLE IV. Analysis of radial convergence of the pp partial wave, pair energies, and cor-
relation energy for the 4s, np, 2d bases, n=1, ... ,7. Energies are given in pH with signs re-
versed. 'The CPMET results are given below the corresponding LCPMET ones.

Basis~ 1s2
pp partial wave
2s 1S2s S 1s2s S 1s

Pair energies
2s 1S2s S 1S2s S

4s, lp, 2d
46 305

16 40 960
178
190

4 2 2d
21 627 46 101
21590 40 643

748
774

21661 46148 1096
21 623 40 629 1120

23 833 46 139 1391
23 790 40 549 1421

24 266 46 092 1818
24 221 40 422 1847

24 332 46 096 1823
24 288 40 423 1853

4 d 24186 46099 1648
24142 40462 1678

763
783

1082
1101

1486
1509

1758
1782

1921
1945

1927
1952

15 729 49 881
15 720 44 818

36 994 49 695
36 931 44 524

37 027 49 735
36 963 44 491

39 112 49 722
39 042 44 409

39 448 49 689
39 377 44 328

39 524 49 683
39 452 44 290

39 587 49 686
39 515 44 291

1345
1354

1905
1927

2255
2274

2549
2574

2811
2837

2983
3007

2988
3012

30 66985
30 61922

793 89 387
812 84 194

1111 90 128
1130 84 859

1514 92 897
1537 87 562

1786 93 733
1810 88 351

1949 94 139
1973 88 722

1955 94 217
1980 88 797

All bases are subsets of the 7s7p4d3f 3g basis (cf. text for details).
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'TABLE V. Percentage breakdown of the differences
between the CPMET and LCPMET energies and between
the CPME'T and 0-CI energies (values in parentheses)
into various pair and partial-wave contributions.

Partial
wave 2 iS s 1s2s S 1s2s 3S

0.52
(0.72)
0.85
(1.25)
0.02
(0.06)
0

(0)
0

(0)

1.14
(1.29)

105.40
(103.41)
-6.25
(-5.56)
-0.63
(-0.63)
-0.22
(-0.21)

0.11
(0.03)
-0.55
(-0.06)

0
(0)
0.02

(0)
0

(0)

0
(0)
-0.44
(-0.30)

0
(o)
0

(o)
0

(0)

ment with its variational character, the LCPMET
yields typically the overcorrelated results. These
differences, however, may be shown to correspond
to the same effect which manifests itself in the op-
posite direction in the correlation energies for the
LCPMET and D-CI approaches. Indeed, the par-
tial-wave analysis of these differences clearly in-
dicates that they originate in the P wave of the 2s'
pair, and may thus be associated with the quasi-
degeneracy of the Be ground state with the biex-
cited configuration resulting from the 2s2- 2p2

promotion. [Note that the coefficient of the latter
configuration is about 0.3 in the intermediate nor-
malization while the next largest coefficient is one
order of magnitude smaller (cf., e.g. , Refs. 21,
22). ] The next largest contribution to these differ-
ences comes from the d wave of the 2s' pair com-
pensating for the overshoot due to the p wave.

These contributions are most clearly apparent
from Table V where the percentage breakdown of
the differences between the CPMET and LCPMET
energies and between the CPMET and D-CI (values
in parentheses) energies into different pair and
partial-wave contributions is given for the
7s7p4d3f3g basis. This table also clearly displays
a completely parallel behavior in the two differ-
ences (note that the actual energy differences have
opposite signs).

This parallel behavior may be easily understood
ii we recall the close r~~hi heiwee the
LCPMET and D-CI methods: They both exploit the
same information; namely, the D-CI matrix of the
Hamiltonian. However, while this matrix is diag-
onalized in the variational procedure, in order to
guarantee the upper bound property unlinked dia-

. gram contributions are introduced. They are elim-
inated in the nonvariational LCPMET approach

where a linear system of algebraic equations is
solved for the biexcited clusters (cf., e.g. , Ref.
38 for details) to obtain a size extensive result.
The size extensivity (proportionality of the energy
of a noninteracting system to the particle number)
will not play a crucial role in only a four-electron
system. Thus, the main defect of both LCPMET
and D-CI wave functions will be due to the neglect
of the quasidegeneracy of the Be ground state
which is accounted for to a large extent by the dis-
connected tetraexcited contribution in the CPMET
[for a more satisfactory treatment one has to ex-
ploit the degenerate (open-shell) theory, cf. Ref.
47]. This is also consistent with the fact that with
the Vs basis we obtain very small differences in
the pair-energy contributions (cf., also Tables II
and III) among all three methods considered since
with such a poor basis not containing any p orbitals
the quasidegeneracy effects cannot arise (cf. also
Ref. 6).

These results concerning the quasidegeneracy
effects have also been recently corroborated by a
detailed study on minimum basis set models for
the various H4 systems and on the semiempirical
~-electron model of cis-butadiene. " In these
models the quasidegeneracy could be varied over
a wide range, up to the almost real degeneracies.
It is remarkable that even under these conditions
the CPMET yielded an excellent agreement with
the exact full CI results for these models even
though one would expect its breakdown in almost
degenerate cases.

Finally, it should be m, entioned that the quasi-
degeneracy found in the Be ground state is very
significant when compared with the situation en-
countered in most molecular systems near their
equilibrium geometries. Thus, out of 26 systems
studied by Pople et al. ' this system displayed the
largest relative difference (cf. Ref. 37) between
the LCPMET and CPMET correlation energies.
It must be stressed, however, that these were
relatively small systems (3-10 electrons). In

fact, for the three-dimensional electron gas model
studied by Freeman (considering only direct and

some exchange ring diagrams in the CPMET and
LCPMET equations) and by Bishop and Luhrmann
who obtained the exact analytical solution for the
t, matrix elements in the ring approximation, the
difference between the full and linearized versions
of the CPMET were of the order of 8-15% of the
total correlation energy obtained in this approxi-
mation in the range of r, values between 1 and 10.
In the Be case this difference only amounts to
about 6% while in most molecular cases it is less
than 1%. Clearly, these effects can be expected to
be much more significant for large metalliclike
molecular systems.
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C. Basis for approximate coupled-pair theories:
Analysis of individual coupling terms

'TABLE VI. Diagram contributions to the correlation
energy and the pp partial-wave contribution to the
2s2 $ pair energy. Energies are given in pH with signs
reversed. See text for details.

Diagrams
pp PW
2s"g Diagrams

pp PW
2s2 ig

1
2
3
4
5

12
13
14
15
23
24
25
34
35
45

90 128
92 260
92 204
86 841
81 507
98 924
94 845
88 364
82 427

104037
88 317
82 390

103 944
79 910
92 733
84885

46 148
48 452
48 404
42 598
37 178
55 535
51 269
44232
38 150
61 117
44195
38 127
61 031
35479
48 796
40 658

123
124
125
134
135
145
234
235
245
345

1 234
1 235
1 245
1345
2 345

12 345

90 001
83 405

113475
80 683
95412
86 173
80 649
95350
85 131
82731
81488
98 855
87 601
83 757
83 719
84 859

46 103
39 207
71484
36294
51 699
42 037
36 269
51 645
42 004
38 351
37 156
55458
43 583
39442
39413
40 629

aA11 results are reported for the 4s3p2d subset of the
7s7p4d3f3g basis.

In order to examine the relative importance of
various nonlinear terms coupling the different
pair clusters in the CPMET approach, we consider
in Table VI the contribution of individual nonlinear
diagrams and classes of these diagrams to the
total correlation energy and the pp partial-wave
contribution to the 2s pair energy using the
4s3P2d basis. These results were obtained by
solving the system of Eqs. (3.1) using only those
terms in the nonlinear part arising from the sets
of diagrams indicated in the table [diagrams 1-5
correspond, respectively, to those in Figs. 3(i„)-
(v) of paper I]. Thus, the first entry in Table VI
is the LCPMET result (no nonlinear diagrams) and
the last is the CPMET result (all nonlinear dia-
grams). Our first observation is that the results
show significant differences for different combina-
tions of diagrams. Other partial-wave contribu-
tions will also change significantly but are less
important in the description of quasidegeneracy
effects. Also the effect of different diagrams on
the correlation energy when compared to the
LCPMET result is to a certain extent additive.

These types of approximations to CPMET where
only selected nonlinear terms in (3.1) are included
are referred to as approximate coupled-pair (ACP)
methods and are studied in greater detail in a sub-
sequent paper. ""Thus, for example, the selec-

tion of diagrams 1, 2, and 3 is referred to as
ACP-D123. We note that ACP-D123 gives &0,

= -90.091 mH whereas ACP-D45 gives &a = -84.885
mH. The former is close to the LCPMET value
(-90.128 mH) while the latter is close to the
CPMET value (-84.859 mH). Therefore the con-
tribution of diagrams 1, 2, and 3 together is quite
small so in effect they almost cancel among them-
selves since their individual contributions (cf.
ACP-D1, ACP D2, a-nd ACP-D3 values) are large.
This compensation is due mainly to the cancella-
tion of the contributions of "nonenergetic" EPV
terms (those EPV terms which cannot be expressed
as the product of a pair energy and a t, matrix
element when summation indices are freed). This
cancellation of relatively large contributions does
not occur when the diagrams are considered sep-
arately. The remaining small effect of diagrams
1, 2, and 3 arises from the non-EPV terms and
these give relatively small contributions.

On the other hand, diagrams 4 and 5 give almost
the exact CPMET result. As in the ACP-D123
case all of the nonenergetic EPV terms effectively
cancel and both diagrams 4 and 5 must be present
to achieve this cancellation (cf. ACP-D4 and ACP
D5 values). Also, the non-EPV terms again have
a very small effect. However, all of the "energet-
ic" EPV terms (those which can be expressed as
the product of a pair energy and a t, matrix ele-
ment) arise only from diagrams 4 and 5 (cf. Refs.
35 and 38).

Thus, we conclude that among the nonlinear
terms in (3.1) only the energetic EPV ones are
important. These facts seem to justify the relia-
bility of the well-known CEPA-type approximations
to CPMET which arise when the nonlinear terms
are approximated by some selection of the energet-
ic EPV terms. We have considered two such ap-
proximations for Be (Ref. 39) and further results
have been presented elsewhere. "'"

D. Comparison with other results

The overall accuracy and reliability of the ana-
lytic coupled-pair many-electron theory can be
best judged by a comparison of the results obtained
here with very accurate results for the Be atom
obtained by either variational (CI) approaches by
Bunge'~ or with recently published numerical cou-
pled-cluster results of Lindgren and Salomonson. '
These results are summarized in Table VG for
individual pair-energy contributions as well as the
total correlation energies. For the sake of com-
parison we also include some results based on
many-body perturbation theory and MCHF (multi-
configuration Hartree-Fock) approximation.

We first observe that the total correlation energy
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TABLE VII. Pair and total correlation energies for Be obtained with various methods (in
pH with signs reversed).

Method

D-CIR
LCPMET
ACP-D45
CPMET
numer. CPMEN
DPM ET
PT(Kelly)
PT(BJ)
PT(SWB)
MCHF~
CI(180)
corrected
CI(650)-s.a '

CI(650)-abs.~

"Experiment'~

2 iS

41 712
41 856
41 781
41 780
42 630
42 083
42 120
42 470
41 110
42 143
40 869
42 610
42 564
42 537

2 2iS

41 091
49 773
44 414
44 378
44 780
44 381
44 880
44 820
44 770
46 161
45 104
45 500
46 731
46 560

Pair energies
ls2s S

3190
3166
3187
3190

ls2s3S

2035
2001
2014
2025

ls2s

5225
5167
5191
5215
5540

4966
5240
6040
4126
5240
5300
6016
5416

Correlation
energy

88 029
96 797
91416
91373
92 960

91970
92 530
91920
92 845"
91204
93 404
94 421
94 421

94 407
94283'
93 894
93 367
94305+ 25

This work using 7s7p4d3f 3g basis.
Reference 7, using numerical CPMET procedure.

'Reference 26, decoupled-pair many-electron theory.
Reference 24, numerical many-body perturbation theory (including continuum states):

'Reference 28, variation-perturbation theory to the fifth order in energy applied to de-
coupled-electron pairs using the Hylleraas type trial functions.

Reference 6, many-body perturbation theory to the third order with shifted denominators
using only discrete 10s9p7d basis.

IReference 20, numerical MCHF procedure.
"This correlation energy also includes the ls2p pair contribution of 416 p8 arising in view

of the multideterminantal reference state used in this approach.
Reference 31, 180-term CI expansion using 7s7p4d basis.

j Corrected for the spd limit and higher l contributions.
Reference 21, 650-term CI expansion using 10s9p8d7f Sg3hli basis.

1
Symmetry-adapted pairs.
Pair energies do not add up to the total correlation energy for symmetry-adapted pairs in

this method.
'Absolute pairs.
'Nonrelativistic estimates.
~Reference 51.
~Reference 26.
'Reference 27.
Reference 31.
Reference 21.

obtained with the largest basis considered
(7s7p4d3f3g), -91.373 mH, compares favorably
with the numerically obtained result of Lindgren
and Salomonson, ' -92.960 mH, the main difference
(0.85 mH) being in the ls' pair correlation energy
due to the limitation in our basis. We note that
Bunge's extrapolated value for the spdfg limit ~

gives the correlation energy 93.947 a.u. Our
basis thus yields 97.3' of this limit, which is a
very plausible value in view of the incompleteness

of our basis and neglect of monoexcited and triex-
cited clusters. We also note a very good agree-
ment between our D-CI correlation energy (88.03
mH) and the corresponding doubly excited spd limit
(87.79 mH). ' It is also interesting in this context
to mention the CPMET results obtained earlier~'
with the Watson's 6s5p4d3f3g basis yielding the
total correlation energy 90.151 mH and the pair en-
ergies 41.352 mH for 1s', 44.036 mH for 2s',
3.081 mH for 1s2s'S, and 1.690 mH for 1s2s'S
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pairs.
Let us also briefly discuss the effect of other

than doubly excited connected clusters. The mono-
excited clusters, whose main contribution comes
via their interaction with doubly excited clusters
(cf., Table VIII) and whose number is small rela-
tive to other cluster types, can be easily taken into
account using the equations given in Appendix A
(we neglect terms like T,T„T,', T'„etc., in the
cluster expansion which contribute for the first
time in the fifth and higher orders in energy; cf.
Ref. 53). The triexcited clusters on the other hand
are much more difficult to include, ' primarily due
to the large number of these clusters.

The contribution of monoexcited and triexcited
clusters to the correlation energy of Be can be
estimated on the basis of CI results" even though
these contributions are very much basis dependent
(cf., e.g. , Ref. 32). The extensive CI results of
Bunge" indicate that monoexcited and triexcited
contributions amount to about 0.35% and 1.1%
of the total correlation energy, i.e., significantly
less than the tetraexcited contribution which
amounts to about 3.3' (note, however, that in the
spd limit' the monoexcited contribution represents
0.6% of the correlation energy).

We have carried out a preliminary examination
of the singly and triply excited clusters for a
small basis set 4s2pld obtained as a subset of
Bunge's basis. '"" For a very similar 4s2p1d
basis (called BeG2 in their paper) an almost full
(82 term) CI was carried out by Olympia and
Smith yielding the total energy -14.6553412 a.u.
This corresponds to the correlation energy of
82.355 mH (E„r=-14.5 t2 986 a.u. for this basis}.
With the CPMET and its extended versions we ob-
tain correlation energies given in Table VIII.
Thus, the ECPMET including both singly and triply
excited clusters yields the result which is very
close to an almost full CI result of Olympia and
Smith, "namely, -14.655 426 a.u.

The results in Table VIII also indicate that the
correlation-energy contributions of singly and trip-
ly excited clusters are independent of one another
and are thus additive to a high degree of accuracy.
This effect was observed earlier in the case of the
BH~ molecule' and seems thus to be a rather uni-
versal property. In the Be case we thus obtain for
the monoexcited cluster contribution in the absence
and presence of the triply excited clusters the val-
ues 443 and 448 p, H, respectively. Similarly, the
triply excited contributions calculated in the ab-

TABLE V&II. Correlation energies « for Be obtained
with CPMET and its extended versions involving mono-
excited and/or triexcited clusters with the 4s2pld basis
(in pH with signs reversed). The one- and two-electron
components b&& and «2 are defined by Eqs. (A10) and
(A5), respectively. The first column indicates the type
of clusters considered.

(E)CPM ET
version Ae =he&+b, c2

t2

t), t2

tg, t2, t3

30
31

81 730
81 992
82 204
82 471

81 730
81 992
82 173
82 440

sence and in the presence of singly excited clusters
are 262 and 267 p, H, respectively. Unfortunately,
we do not know the monoexcited and triply excited
contributions in the CI wave function in this case
where the ECPMET result indicates a larger role
of monoexcited rather than triexcited clusters.
However, this reversal may be due to the relatively
small number of triexcited clusters which occur in
this case (4 t„23 t„and 32 t, matrix elements).

We can thus conclude that, as in an earlier study
of a simple 8-electron molecular system, ' the
CPMET and, in particular, its extended ver-
sions' ' yield correlation energies which are in an
excellent agreement with those obtained by varia-
tional CI procedures involving quadruply excited
configurations. We note that while a minimum
basis set was used in our BH, study a rather ex-
tensive basis set has been used in this paper for
the Be atom. Since in each case an excellent
agreement was obtained with the corresponding
variational results, one can hope that this behavior
will be generally valid.
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APPENDIX A: LS&OUPLED CPMET EQUATIONS FOR Be

For Be the left-hand sides of Eqs. (5.11) of paper I reduce to
2

(n n I IA2'0(&, }In, n.& = Q I,al( 1) R'(n"Inx0I n"ln20}.
ttnl

(Ala)
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(n'n'l
~
AP'(S, ) [ n, n, )

2

0,"(ii' l (/ (
n'l &(n'n' l

( r, (S,) ) n„n„-& —P 0,"&n,0 )/ (
n„0&(ii'n' l

(
n ( ~) (n, n; ))ffnl S ~1 tl 1

+ g Z 0,"G( '!n'l(n'l '()&n'n'l(n, (S,)(n, ii )+P 0,"S'(n,0n,0(n, 0ii,0)&n'0'l(n (S)(n,n, &)
S] tn1n2 ff 1f32
2

+ Q Q Q (-1)" {S,R (n" ln l [n~Onf0) —[l] 86 R'(n" ln-„0)n,On'l)(n n" l
[

T
2( S)) [n&nz),

a~ X 1 S) nfl~ 1

(A1b)

(n'n'l ~A)g(S, ) ~ n, n, )

=ZZ Z Z, R'(,On l~n, on'l)
S] S] n1n2 1a II

2

(-1)"[6(lsl)828~ (n n l
~

rm(S )
~
n„n~)(n n l [ rm(S ) [ n„-nm)

ffn 1

+ 5(l, 1 )d', 8',"(n' n'1
( r, (S',) (

n„-n2)(n'n'l
( r, (S',) ( n„n, )

—5(1,1)~,g',"(n'n" l
( r, (S',) (n, n, )(n"n'l

( r, (S',) [n,n, )
—l&isg4' (n n 1~ r2(S, ) (n, nm)(n n l

~
T2(S&) (n~nm)]

+-', S,S',"&n'n'(I n, (S',) In, n, )&n'n'iln, (S))ln, n, )) . (Aic)

(A2a)

(A2b)

(A2c)( 1)l[1]-1/2

and

G(n 1'n 1
~
n l n l )=g [l, l ] ~/ C"(l l

~
Pi )R~(n~l)n~lm~nslsn4P)

Thus, the f S-coupled CPMET equations for Be are given by substituting (Al) into Eqs. (5.4) and (5.5) of
paper L Corresponding to Eq. (5.12) of paper I the correlation energy is given by

(A2)

«2 = 2 p g p &sg, R'(n~On l
~
n20n l) (n n l

~
rm(S)

~ n~n2) .
Sg l e2

In the discussion of our results in Sec. III it is useful to consider the pair-energy and partial-wave ex-
pansion of the correlation energy. Thus, using normalized t, matrix elements'&' we can write

1

«2=2 Q S) ~. s ~n 0 (S()s

(A4)

(A5)

In addition to the notations and definitions given in paper I and Sec. II for the radial integrals, T2 matrix
elements, and spin factors we have defined

( 1)l [1]-I/ 2

(-1)'[1]-s/2

where

c„„(S()=(-1)" ([S]' '(d„„gP (-1)'[l] ' 'R'(n, On'l
~
n,On'l)N„'(n'n'1

( t,(S,)
~ n, n, ),

r N1n2

(d„„=[1+5(n„n,)] ',
f(/„= gl + 5 (n» n,)][1+5 (n'll n'1)]) '/ '

(A6a)

(A6b)

(A6c)

Each e„„(S;)is a pair energy aud for (n, n, S,) = (110), (220), (120), (121), respectively, we obtain the
1s' 'S, 2s' 'S, 1s2s'S, aud 1s2s'S pair energies. Finally, we can write (A6a) in the form

(AV)
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(AS)

where e„"„(S,) is the ll partial-wave contribution to the pair energy.I 2
For completeness we also give the results (cf. Appendix of paper I) needed to include the monoexcited

states using the notation

(n'
I f, (0) I n, &

= (n'o
I f, (0) In, o &

for the t, matrix elements. Thus,

(n'I A"(0) ln, &=~2(n olf ln, o&,

(n'I A"(0) ln, &=K (n'olfln'o&(n'I f, (0) ln, & g (n, olf ln, o&(n'I f, (0)
«&

+g [2 R (n'On)0 In, pn'0) —R (n'On'0 In)pn)0) l (n'
I f)(0) ln& & )

(n'IA"(0) ln, &= g g g g 5(i, o)s,"R'(n,on'oln, on, o)(n'n)olr, (s()ln, n, &

Sg «I 1«

+ Q &,gnR'(n'On'I In, pn'l)(n'n'l
I r, (S() ln, n, &

n

+ ( o, ))so, (n' lfol 'o&(n' 'ol~, (oi)ln, (&, &),

2

(n'n llA"(s() ln. n, )= g (-1)"'"" 2 5(i 0)gx R (n&pn&pin"Onxp)(n"
I ~)(0) ln, )

K, Ml ny

—-*'Z o,o, 'n'(n')n'o(n')n;o)(n
I t(o)l(&.)),

«&

4~, =V 2 g (n, O

nag

+ —' Q Q [2R'(n, pn'0
I
nnon'0) -R (n)pn'0

I nn pn 0)~(n'
I f&(0) I ni &(n'

I f)(0) Inn &

n~«2 «42

(A9a)

(A9b)

(A9c)

(A9d)

(A10)

APPENDIX 8: NEWTON-RAPHSON METHOD
FOR CPMET (REFS. 3 AND 4)

As mentioned in Sec. III we used the Newton-
Raphson (NR) method to solve the CPMET Eqs.
(3.1). In general the NR method is a quadratically
convergent iterative method for finding solutions
of,a nonlinear system of equations of the form

f,(x„.. . , x„)=0, i=1, . . . , N.

If we write f= (f». . . ,f„) and x = (x„,x„), this
system has the compact form f(x) =0. Using the
first two terms of the Taylor series expansion of

f we obtain

f(x+ ax) =f(x) +J(x)ax,

j(X ( n&) X (n ol ) +& (n ) p

where

s(n) f(x(n)) J(x(n))x(n&

(B5)

(Be)

Given x'n' this system can be solved for x'n' '.
For CPMET the function f,. in (Bl) is given by

the left-hand side of Eq. (3.1), Sec. III. Thus, the
Jacobian matrix is easily calculated and the linear
systems (B5) have the form

Then we expect under fairly general conditions that
the sequence (x(")) will converge to a solution of
f(x) =0. In general there may be many solutions
and the actual one obtained depends on the initial
guess x'". For each iteration (B4) is a linear sys-
tern having the matrix form

where J(x) is the Jacobian matrix whose matrix
elements are

J( )
sf((x)

ax,
(B3)

f(x(n))+ J(x(n))(x(no)) x(n&) P (B4)

Let x '"' =x and x'n"' =x+ ~x and define a sequence
(x("))of approximate solution vectors to f(x) =0 by

O( ) + P b(n)X(n ))
f

where
(n) (n) (n)

Q] =Q] —~ CgfkXf Xk
f&k

(n) (n) V (n)b]f =bqf+ ~ c,fkxk + ~ cqfkxk
k k

(k~ f) (k&f)

(BV)

(BS)

(B9)
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E we choose x'" =0 as our initial guess, then b,'&'

= b,» a,' '=a„and the first iteration gives the
LCPMET approximation x"' which is just the solu-
tion of the linear system (3.2) of Sec. III. This
choice of starting approximation is based on our
assumption that the quadratic terms in (3.1) are
much smaller than the linear ones. The iteration
process is continued until convergence.

As a measure of convergence we chose the dif-
ference in correlation energies for successive
iterations. For our 7s, 7P, 4d, 3f, 3g basis [N= 238
in (B7)] only three iterations (beginning with
LCPMET: x"'}were required to obtain conver-
gence using the precision

~

4c'""' —4a'"'
~

1 pH.
In Table IX the results of this iteration procedure
are given representing a typical case. The quad-
ratic convergence of the NR method is its main
advantage over the simple iterative approach [cf.
Eqs. (47} of Ref. 1] which may not converge at all
unless convergence acceleration methods are used.
In fact we have found'&" that in some cases for Be
the simple iterative approach gives correlation
energies and t, matrix elements which oscillate in
a symmetric manner about the corresponding
CPMET values as the iteration process is con-
tinued and that these oscillations do not die out
fast enough to obtain the above mentioned preci-
sion. The advantage of the simple iterative ap-

TABLE IX. Convergence of Newton-Raphson iteration
scheme for CPMET using the 7s7p4d3f3g basis. Ener-
gies are given in pH with signs reversed (cf. text for de-
tails).

Iteration
number Ta

1 (LCPMET)
2
3
4

-0.694 099
-0.604 079
-0.602 889
-0.602 888

46 173
40 184
40 105
40 105

96 797
91439
91373
91373

Value of largest &2 (unnormalized) matrix element
r (11=1~r2(0)~ 22). The normalization factor is N = ~a

b4&, is the contribution of & to the total correlation
energy b,&.

proach is that each iteration is less time consum-
ing since we correct only one t, matrix element at
a time and avoid solving a linear system at each
iteration. Thus, it is clear that further work needs
to be done to improve the convergence of the sim-
ple iterative approach. Finally, we note that for
larger systems of equations the simple Gaussian
elimination method which we have used in the NR
approach becomes unmanageable due to increased
core requirements and it is then necessary to use
an iterative "row by row" procedure.
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