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The n-dimensional Thomas-Fermi equation is derived and some of its properties are studied. An analytic solution

is obtained in two dimensions for both neutral atoms and positive ions. It is shown that for n & 4 the density is too
singular at the origin to be normalizable.

The Thomas-Fermi model' had been considered
a crude, virtually obsolete description of the
many-electron atom. The recent proof by I.ieb
and Simon2 that the Thomas-Fermi results cor-
respond to the N-~ limit of the exact solution of
the nonrelativistic atom, such that N/Z = constant
& 1, has provided new significance to this model.
In particular, it has rigorously established that
the Thomas-Fermi term is the leading term in the
density-functional formalism. In this context it is
remarkable that the Thomas-Fermi density be-
haves qualitatively differently from the density of
a finite many-electron atom, both close to the nu-

cleus and at asymptotically large distances.
In view of this situation it is of interest to ex-

tend our knowledge of the properties of the
Thomas-Fermi model. Qne avenue of investiga-
tion, which has been demonstrated to be fruitful
in other contexts, involves the examination of the
effect of space dimensionality. 4'5

In an obvious extension of the standard treat-
ment in three dimensions' we relate the electron
charge density p(r) and the potential 4(r) via an
n-dimensional Poisson's equation

V24(r) = —4vp(r), (1)

where V'„= 8'/ar2 + [(n —1)/r]8/Br + (1/r )
xA(8„8,, . . . ,e„,) is the n-dimensional Lapla-
cian. Because of the spherical symmetry of 4(r)
the angular terms in Eq. (1) vanish.

The maximum local momentum is given by

P„(r)'
2m

=e [4 (r) —4 ~]=—e4'(r),

where m is the electron mass and Co is a constant

to be determined. For an N-electron atom the
phase-space integration yields

2 V ~Ptf NQN
0

Before attempting a solution we point out that
the fundamental solution of Poisson's equation for
the potential corresponding to a point charge Ze,
V2P(r) = —4vze6(r), is6

4wZe
I (n 2)f)„

'
P(r) = & —2Ze lnr n=2

!, -2vZer, n=l.
(6)

For n = 3 we obtain the conventional Coulomb po-
tential. The potentials obtained for n=1 and n=2
were used by Lenard~ and Dyson, 8 respectively,
in studies of the one- and two- dimensional Cou-
lomb gas. These potentials have only discrete

where the first factor of 2 is due to the spin de-
generacy, V„ is the occupied volume in configura-
tion space and the rest is the occupied volume in
momentum space, fl„=nv"~ /I'(n/2+ 1) being the
area of the n-dimensional unit hypersphere.

For the charge density we obtain

p = eN/V„-= -e "—„=-~ 4"~, (4)
2A„pp
n"h =-4m "

where P„=[8ve/1'(n/2+ 1)](v'2vme/h)" .
Substituting Eq. (4) in Eq. (1) we get

8 4' n —18%' —
p +N 2
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spectra, and as such have recently been extensive-
ly studied in the context of the confinement models
of quarks. ' For n~ 4 we obtain singular poten-
tials whose bound spectrum is continuous, extend-
ing to arbitrarily negative energies. ' To the ex-
tent that Poisson's equation is the appropriate
route towards generalizing the three-dimensional
Coulomb potential to an arbitrary dimensionality,
the three-dimensional space appears to be unique,
possessing both a discrete spectrum within a cer-
tain finite range of energies and a continuum above
that range.

Furthermore, from Gauss's theorem, which is
a consequence of Poisson's equation, it follows
that close to the origin the potential has to ap-
proach the bare nuclear potential,

~(~) = 4(~) .
Consequently, close to the nucleus the density be-
haves like Q

"~'-r&'-"&"~', a singularity which for
n & 4 cannot be compensated by the shrinking vol-
ume element dr= Q„r" 'dr. This means that

fp(r)do' diverges for n ~ 4, a feature which should
be expected for a singular potential, "but which
precludes further discussion of the Thomas-Fermi
model in four and higher dimensions.

We note in passing that insisting on the 1/r be-
havior of the potential for no 3, though of some
interest in the context of the one-electron atom
[e.g. , preserving 0(n+ 1) symmetry"], results in
sacrificing Gauss's theorem, which is the source
of considerable mathematical simplification and
physical transparency in the treatment of many-
electron atoms.

For the total kinetic energy we obtain

E = d7 QP"' dP- d7 p '""' "gag p2
k 2m

In the limit n -~E,-fdr
~ p ~

=Ne, i.e. , the total
kinetic energy is proportional to the number of
particles. For a finite dimensional. space we ob-
tain a higher than linear increase of the kinetic
energy with the number of particles. This is a
consequence of the Pauli principle, which ceases
to be effective when the number of spatial degrees
of freedom is infinitely large.

The n-dimensional Thomas-Fermi equation, Eq.
(5), has a Sommerfeld-type particular solution of
the form 4s ——A„r', where s =4/(2-n) and A„
= [4n(4-oo}/P„(2-44)o] &~o', for all odd n. This is
so because A, =~, A4 ——0, and A, „(44 & 2) is imagi-
nary. For n = 3 we obtain Sommerfeld's solution
Cs ——(12/P, )or 4. Only for n & 2 can the Sommer-
feld-type solution be used as a starting point for
constructing a solution which is physically accept-
able at large r. These properties of the Sommer-
feld-type solution are in harmony with the previous

observations concerning the uniqueness of n=3.
In analogy with Jensen's three-dimensional re-

sults, ' it can be shown formally that in any number
of dimensions the charge density is continuous at
the radius rp beyond which it vanishes, i.e. ,

, +-—=P,4', Po=4oooe /}f . (10}

Defining R =r2ev m/5 we obtain

O' =C
& Io(R ) +C oK o(R )

where Ip and Kp are the modified Bessel func-
tions. ' Their asymptotic behavior is given by
Io-1; Ko- —lnR for R-0 andIo-e"/$2vR;
Ko-4v/2Re" for R ~. To satisfy Eq. (7), i.e.,
4- —2Ze lnR for R -0, we have to choose C2 ——2Ze.
For a neutral atom the large R behavior will be
satisfied by choosing C, =0, hence 4=2ZeKo(R}
and p = (2mZeo-/vko)Ko(R) Note th. at fo p2wrdr
= -Ze, as it should be. The long-range asymp-
totic form of the density is exponential, unlike the
three-dimensional 1/ro behavior.

For a positive ion we determine Rp and C, using
Eqs. (8}and (9}which result in the set of equations

C &Io(Ro} 2ZeKo(Ro) =0
and

[C,I,'(R, ) —2ZeKo(Ro)]2Mme/g =(Z N)e2/ro . -
Noting that Ip=If aIldKp= KJ we obtain for Rp the
equation

Ro~Ko(Ro)
' ' +K&(Ro)

~

=1 -q,
i

where q =N/Z.
For q 0 we must have Rp 0. Using the small

argument forms of the modified Bessel functions
we obtain Rp= 2q' 2. The corresponding result in
three dimensions is' Rp -q

For q = 1 —~, where 0 & e «1, we use the asymp-
totic forms of the modified Bessel functions to de-
rive v'27FR pe p —o' or Rp = —in&. The corresponding
result. in three dimensions would be of considerable
interest.

P(ro) =0.
From this result and Eq. (4) it follows that 4 o

=C(ro). From Gauss's theorem it follows that

=(Z N)-dC 1dg (9)
fl Z dr )II

p
t'p

For a neutral atom (Z =N) we must therefore have
rp= and 4p ——O.

For n =2 the Thomas-Fermi equation obtains the
linear form
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