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We report measurements of the tilt angle ¢ near the second-order SmA-SmC transition in
azoxy-4,4’-di-undecyl-a-methylcinnamate. Data analysis shows that this transition, which be-
longs to the same universality class as “He, has, in the absence of a constraining field, a critical

exponent 8=0.36 £0.005.

The smectic-4 —to—smectic-C (A4 -C) phase transi-
tion in liquid crystals! is characterized by the continu-
ous emergence of an angle between the director
and the normal to the layers Z [Fig. 1(a)]. This tilt
angle ¢ may be identified with the amplitude of the
order parameter of the transition; and the azimuthal
angle ¢ giving the tilt direction may be associated to
its phase. That means that this transition belongs to
the helium category (d =3, n =2), with which some
similarities should exist.2 In reality, the experimental
situation is confused. The few existing studies of the
A -C transition report critical exponents from mean-
field** to nonclassical values.® The reason for this
discrepancy is probably that, as for all phase-
transition measurements, the experimentalist has to
overcome two major difficulties inherent in the
second-order phase transitions:

(a) At the transition temperature T,, the suscepti-
bility of the order parameter diverges; therefore, any
small additional field makes large perturbations in the
critical region, and particularly an apparent shift of
T..
(b) Owing to stabilization time and to the difficulties
of the ¢ measurement process, each T correction
needs time; therefore, 7, cannot be approached con-
veniently, nor directly measured.

In this Communication, we report measurements
of the tilt angle ¢ (i.e., the amplitude of the order
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FIG. 1. (a) ¢ is the angle defined by the normal to the
layers Z and the director . The azimuthal angle ¢ mea-
sured from the zH plane specifies the direction of the direc-
tor. (b) The laser light splits into two rays of orthogonal po-
larizations inside the sample. The phase shift between them
is measured and yields the tilt angle .

parameter) versus the temperature 7T in order to
determine, in particular, the critical exponent 3 at the
A -C transition in pure azoxy-4,4’-di-undecyl-a-
methylcinnamate (AMC-11). The experiments were
carried out using an interferometric method which al-
lows a high resolution of the tilt angle, provided that
the alignment of the sample is homogeneous. Thus
we have to be careful about the orientation of the
sample and check it constantly.

The sample is homeotropically aligned in the A4
phase using a silane coating of the glass plates.® In
the C phase, in order to suppress the director tilt de-
generacy, we apply a weak magnetic field H (which
forces ¢ =0). The angle (Fig. 1) between the normal
to the layers Z and H is chosen to be equal to 45° in
order to maximize the orienting torque. In this way
we can perfectly orient the smectic-C samples with
the layers parallel to the plates. The uniformity of
the alignment and the absence of defects make the
sample as transparent as in the 4 phase. Probably
because of the small thickness of our samples ( < 1
mm), and because of the strong surface anchoring im-
posed by the silane, the layers do not tilt, in spite of
magnetic field action. This is demonstrated by the ab-
sence of remanent tilt when returning to the A4 phase.

In order to avoid excessive chemical degradation,
the sample is sealed and is then left to stabilize for a
week. During this time, the gradients of T, (prob-
ably due to unavoidable oxidation when preparing the
sample) are reduced under the action of molecular
diffusion to an unestimable value; i.e., the sample
gives the same ¢ value over its whole width (4 mm).
In spite of sealing, a drift of T, persists which is less
than 107 K/h. Although this drift is small, we have
to organize the measurements in various series of
short duration (a few hours) and make a small
correction of T, on each point, taking time into ac-
count. The sample is placed inside a two-stage
servo-controlled oven, the temperature being mea-
sured by means of a platinum resistor. This oven has
to be small to fit inside the electromagnet; it has also
to be fast and precise. Its time response is a few
seconds, and its accuracy is better than 10~ K. Note
that we have to take into account the small magne-
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toresistance of the platinum probe.

Now, let us come to the principle of the ¢ mea-
surements. A He-Ne laser beam polarized at 45° ir-
radiates the sample at an incident angle of 45° (Fig.
1). Inside the liquid crystal, it splits into two rays of
ordinary and extraordinary polarizations. Outside the
sample there is a phase shift between these two rays.
By use of a Soleil compensator, this phase shift can
be compensated for, restoring the initial polarization
which is extinguished by a crossed polarizer. If now
some tilt angle ¢ occurs, the phase shift increases
linearly with . The measurement of this phase-shift
increase, when one knows the three optical indices
with their temperature dependence,’ allows us to cal-
culate ¢ exactly. This direct and first-order measure-
ment of ¢ is very accurate (— 3 x 10~ rad, depend-
ing on sample thickness and alignment quality).

The magnetic field couples to the phase ¢ of the
order parameter, giving a definite alignment; it also
couples to its amplitude ¢, according to the weak-
field approximation

XoH?
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where X, is the anisotropic part of the magnetic sus-
ceptibility, and a and b are the usual Landau coeffi-
cients.? For each temperature, we measure ¢ for a
set of H values from 0 to 16 kG, and we make a
least-squares fit of these measurements to Eq. (1).

In the A phase, we thus obtain a (T), which gives the
critical exponent® y =1.3; in the C phase, we find the
extrapolated value of the tilt in zero magnetic field -
v(T,H =0) (simply denoted as ¢s) which should
obey the power law ¢ = yio( T, — T)5.

Now, let us compare our results to this power law.
Since the transition could be weakly first order, it is
not convenient to use in this equation the value of 7,
extrapolated from the measurements in the 4 phase;
it is more correct to consider 7, as unknown and to
make a least-squares fit with the three independent
parameters: 8, Yo, and 7. In Fig. 2(a) is presented
such a fit of a series of measurements for a sample of
340-um thickness: ¢ vs AT =T, — T (where
T. =352 K). The fit determines T, which is found
to coincide, within 5 x 10~ K, our temperature reso-
lution, with the transition temperature deduced from
the A-phase study. Consequently we can consider
the A -C transition as second order down to 1073 K.

In order to avoid the saturation effect of y far
from T, the fitting is done excluding the points away
from a cutoff temperature 7;. The accuracy of the
experimental data and the quality of the fit can be ap-
preciated from the arrows which magnify 100 times
the errors is ¢. This shows that the statistical error
in ¢ is about 2 x 107 rad. Such precision is at least
an order of magnitude better than any other mea-
surement of the C order parameter to date. For the
first three points of the fit, the error is rather an er-
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FIG. 2. (a) Log-log plot of the experimental data: y vs
AT =T, — Tin kelvin (with T, =352 K). The points such
that T < T; (crosses) are not taken into account in this
least-squares fit. The arrows display the errors 8logy on
each point (dots), magnified by 100. (b) Fitted 8 values
with their associated error bars as a function of 7, — 7.
[The arrow shows the one corresponding to the fit displayed
in (a).] Calculated B correction (full line) with its error bar.
The asymptote yields 8 =0.359 £0.0015.

ror on the temperature than on ¢, and calculating it,
we find that it is less than 5 X 10 K. Such a
negligeable error means in reality that these first
points are under the control of the fitting. Their role
is just to define T,; consequently, it is useless to get
measurements closer to 7T, within our present accura-
cy. Now, let us come back to the higher limit: We
fit the data with different cutoff temperatures 7; and
plot in Fig. 2(b) the resulting values of 8 with the
calculated standard deviation as a function of T, —T,.
This cutoff analysis shows the decrease of 8 due to ¢
saturation far from the transition. On the other
hand, when decreasing 7, — T}, i.e., when keeping
fewer and fewer points in the fit, 8 stabilizes with
diverging error bars. The saturation introduces a
variation: 88 = 8logy = 8¢/, where 8y « ¢’ is the
saturation effect on the last fitted point; we deduce
88 « ¢ « T, — T,. Therefore, to first order, the sa-
turation of ¢ deviates 8 by an exponential in the
scales of Fig. 2(b). A least-squares fit correctly
weighted by the error bars gives the best exponential
(full line). We find that saturation begins when ¢
reaches 0.1 rad, which is an exceptionally low limit in
comparison with the literature. We deduce also the
asymptotic behavior of the order parameter ¢ and the
value of B with its calculated standard deviation:

Y=0:18ATPrad , (2)

and 8=0.359 £0.0015. Such precision has been ob-
tained on our best sample, but looking now at our
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results on samples of almost the same alignment
quality, we get independently 8=0.36 +0.005.
Although perfectly confident of the result of Fig. 2,
we prefer to retain that last result, which is supported
by several independent measurements.

In all the remaining samples which look more tur-
bid, and thus which are of poorer alignment quality,
with more numerous defects, we observe some hys-
teresis. It appears in two ways: first at a fixed tem-
perature, a slight hysteresis of (H) when varying
the magnetic field; second, a larger hysteresis effect
of y(H =0) when varying the temperature. Clearly
the tilt angle lags slightly compared to the expected
value given by (2) when T is increased or decreased.
This can be understood the following way: Since the
layer thickness changes with temperature,® the sam-
ple has to adjust the number of its layers; however, if
too many defects (dislocations) are present, it will be
difficult to form or to suppress a layer and this
results in a constraining field which acts on the tilt .
If we take it into account,® all our measurements on
samples of thickness varying from 48 to 690 um are
in perfect agreement with the asymptotic law (2).
This anchoring of the layers is a general problem of
defects. It should also exist in the unoriented sam-
ples of all the A4 -C transition measurements. It could
then perturb the measurements of all the critical ex-
ponents at the transition, thus explaining the wide
discrepancy mentioned above.>~*

We do the same analysis on the 4 phase,® with
a (T) being the inverse of the tilt susceptibility, and
we find the nonclassical exponent y =1.3. Assuming
the mean elastic constant K =5 x 10~7 (cgs) and
X, =1077 (cgs), we estimate the coherence length ¢
in the C phase:

0.5
i' ~100AT-066 & 3)

&= 2a

Now we can discuss the validity of the weak-field
assumption in Eq. (1), which supposes that the mag-
netic energy per coherent volume is much smaller
than k7. From (3) we deduce that it is true down to
AT =102 K. In fact, the fits to Eq. (1) denote no
anomaly when AT > 1073 K,

In conclusion, we find nonclassical behavior,
B=0.36. This result can be discussed in terms of the
Ginzburg criterion'?

AT, k2
= , 4
T. 327%(AC)2%E - @

where AC (=10° erg/cm*K) is the specific-heat
anomaly'! and & ~2 A is the correlation length at 0
K given by (3). Thus the limit of the classical region
is around AT, ~ 300 K, which explains why we do
not find a classical exponent for 8. Note that Safinya
et al.,* using the same Ginzburg argument, conclude
the opposite: that it always has a mean-field value.
This disgrepancy arises because they have chosen
£0=70 A from measurements taken at the
nematic—smectic-A4 transition'?; this transition con-
cerns another order parameter. (Moreover and
surprisiggly, from their own data'? we recalculate
£ ~3 A.) Nevertheless, their results* ¢(T) coincide
very well with ours for AT > 1 K which reinforces
the likelihood of similar behavior in 4 -C transitions.
Our result 8=0.36 is slightly different from that of
the “He model, for which one expects!® 8 =0.346.
The explanation could lie in the coupling between
and the smectic layers.2 However, if the fluctuations
of the layers are hindered by the plates,'* we should
revert to the helium model.'* In our samples this
would happen for AT smaller than 10~ K.
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Gennes for helpful discussions and to P. Keller, L.
Liébert, and L. Strzelecki for careful chemical syn-
thesis and purifications.
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