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In a recent paper, Bambini and Berman [A. Bambini and P. R. Berman, Phys. Rev. A

23, 2496 (1981)]presented analytic solutions to a certain family of coherent-coupling

pulses for a two-level system. They show, for nonresonant temporally asymmetric

members of the class, that there are no solutions corresponding to vanishing transition

probabilities. In this Comment, we examine the problem in greater generality and demon-

strate that this property is the norm for asymmetric pulses, and that a vanishing transi-

tion probability is possible only if severely overdetermined conditions are satisfied.

The problem of a two-level system coupled by an
external field has a long history in physics, dating
back to the 1930's.' Originally motivated by in-

vestigations on atoms in magnetic fields, theories of
such systems have more recently been applied to
laser-related problems.

Let a &,a2 be the amplitudes of the two states.
We assume that the coupling potential connecting
the two states is of variable amplitude and central
frequency 0, so that, in the rotating wave approxi-
mation, the time-dependent Schrodinger equation
becomes a pair of coupled equations for a &,a2.

t'a~ ——V(t)e' 'a2,

ia2 ——V(t)e ' 'a& .

(la)

(lb)

Here b, is the detuning of 0 from the atomic fre-

quency. We work in a system of units where 4=1.
For the case where V is a constant in time, the

solution for initial conditions a
&

——0, a2 ——1 at t =0
is

e' ' sin[(b, /4+V )' t]
(g2y4+ V2)1/2

This is the Rabi problem. For this to be
relevant, the approximation that the rise time of
the field is much shorter than other characteristic
times should be a good one. In their paper, Rosen
and Zener considered a case where this sudden ap-
proximation was not valid. They were motivated

by a serious discrepancy between results of the

sudden-approximation theory and experiment.

They analyzed the effect of a smoothly varying

pulse, choosing a hyperbolic secant because of the

exactly solvable nature of the equations that result

from such a time dependence. For the hyperbolic

secant pulse, one may make a change of variable

that transforms the equation of motion into the hy-

pergeometric equation. Robiscoe has shown how

to generalize this to the case of decaying states.

Recently, Bambini and Berman have gone

beyond the Rosen-Zener problem. They show that

there is an entire class of envelope functions that

may be mapped into the hypergeometric equation,

of which the hyperbolic secant pulse is tnerely one

member. All V(t) in the family, other than the

hyperbolic secant, are asymmetric in time, i.e.,
V(t)QV( t). Bambini an—d Berman show that for

these asymmetric pulses, there is no case, apart
from exact resonance, where there is a nonvanish-

ing transition probability, a striking and surprising

result.
In the case of the Rabi problem, on the other

hand, for any given detuning, there are always

values of the pulse area for which the amplitude a
&

returns to zero. In the Rosen-Zener case, the am-

plitude at(+ Do) goes like (sinA)/A, where A is the

pulse area, so that here too, once the hyperbolic
secant envelope function is specified, one can find

values of the area of the pulse for which a i(+ f2c )

vanishes. Similar remarks hold for other sym-

metric potentials, where solutions have been ob-
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(2a)

ai —(V/V id, )a2+ V a—2 ——0 .
t 00

Defining z =f f(t')dt' —,, with A —=f Vdt
and f= V/A, Eqs. (2) become, in the z plane,

(2b)

a", —i—a,'+A a~ ——0, (3a)

II ~a2+i —a2+A aq ——0. (3b)

We assume, with Bambini and Berman, that f (t)
does not change sign, so that the transformation,
which differs from theirs, is single valued. If one
transforms Eq. (3a) via the substitution

z

b=ai exp ( i6/2) —dz'/f(z') =aie
0

into an equation with the first derivative missing,
we have

or

b + + +A b=0,
4f2 2f2

(3a')

b"+ —— b=A b .
4f 2f

(3b')

tained with computers. ' It is a most remarkable
feature of the Bambini-Berman problem that it ad-
mits no asymmetric envelopes for 6+0 with a
nonvanishing transition probability. That is, it as-
serts that for asymmetric pulses of the form
studied, if the amplitudes a2 ——1 and a ~

——0 at
t = —oo, then at time t =+ oo, the probability for
finding the system in state 1 is nonvanishing, i.e.,
there will always be some population in state 1 for
this class of off-resonant asymmetric pulse. No
previous prediction of this kind of behavior seems
extant in the literature. It should be understood
that only envelopes of a single algebraic sign are
being considered, so that, for example, pulses that
are completely antisymmetric in time are excluded
from this discussion.

Bambini and Berman reach their conclusion by
obtaining a complete analytic solution to their
problem. Since most pulse shapes do not admit of
closed form solutions, it is of interest to inquire
whether the nonvanishing of transtion probabilities
holds for other smooth, asymmetric pulses and
whether this property can be demonstrated in a
general way, i.e., through the structure of the equa-
tions of motion. It is to this question that we ad-

dress the present work.
Equations (1) may be put in the form of uncou-

pled second-order equations

a —( V/V+i h)a, + V a, =0,

Equation (3b') resembles a one-dimensional,
time-independent Schrodinger equation for a parti-
cle of mass —, moving in the complex "potential"

V=— iaaf' I
4 2

where fi has been set =1.
This equation is to be solved subject to the ini-

tial conditions that b =0 at z = ——,. If the
dynamics of the problem permit a transition proba-
bility of zero for certain pulse areas, this means

1

b (z = + —, ) also vanishes for those values of A. In
short, we must solve an eigenvalue problem and
find those values of A for which the solutions of
Eq. (3b') vanish at z =+ —,. Now, for physical
pulses, only real envelopes exist. For these, A is
real and positive. If none of the eigenvalues A
meet this criterion, A will have an imaginary part
for all the eigenfunctions of Eq. (3b'), and none will
correspond to a system driven by an actual pulse,
i.e., there will be no physically meaningful pulse
areas for which the system undergoes a transition
probability of zero. In the following, we shall as-
sume a nonvanishing detuning. Note that the case
of exact resonance is entirely equivalent to the ele-
mentary quantum mechanical problem of a particle
in a box, whose eigenvalues A are n m. . In this
way, we confirm the simple result that the transi-
tion probability vanishes for pulse areas that are in-
tegral multiples of m., if 6=0.

We should comment that if one constructs an
asymmetric potential from two temporally distinct
symmetric pulses, one can, by making each of the
component pulses produce a net transition ampli-
tude of zero, cause the overall probability to van-
ish. To force the components to be exactly nono-
verlapping in time requires that they be sharply cut
off. Thus, these pulses do not conform to the
smoothness criterion of Bambini and Berman.

We consider now pulses where the imaginary
term is present. We examine first the case of sym-
metric pulses. Let A be a typical eigenvalue. If
we replace the imaginary term by its negative, then
the resulting equation will have A for its eigen-
value. Now, since f(z) is symmetric in z, f'(z) will
be antisymmetric. Therefore, the transformation
z~—z reverses the sign of the imaginary term on
the left-hand side of Eq. (3b'), but leaves the eigen-
value unchanged. Immediately, A =A, i.e., all
the eigenvalues are real, although not necessarily
larger than zero. For asymmetric pulses, the
transformation z~ —z does not reproduce the
complex-conjugate equation, and A will not, in
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bo ——Aobo (4)

'this is Hermitian and identical to a time-

independent Schrodinger equation, which has only

real eigenvalues. The imaginary term

iaaf'/2—

f
is to be considered as a perturbation.

We wish to contrast the case of symmetric and

asymmetric pulse envelopes. Assume f (t) to be

symmetric —f (z) is also symmetric. [Iff (t) were

not syinmetric about t =0, f (z) would lack sym-

metry about its origin. ] For this case, the unper-

turbed eigenfunction bo has definite parity, and the

perturbation i bf'/f 2 is od—d under reflection. It
follows directly that if one writes a perturbation

series for A as an expansion in the usual way, con-

tributions from odd powers of the "strength" of the

"interaction" will be absent. Since only the even

orders survive, and the strength parameter is pure-

ly imaginary, the resulting eigenvalues will be real.

general, be the same as A *. This does not abso-
lutely rule out the possibility that for particular

f (t) and detuning, one might have one or more
real and positive eigenvalues, but demonstrates that
it could occur only by accident. We shall show in
the following that the conditions that must neces-
sarily be fulfilled for A to be real for asymmetric
pulses are severely overdetermined.

To proceed, we will analyze the problem from a
perturbative viewpoint, and assume that the entire
perturbation expansion can be summed. We do not
restrict ourselves to the first few terms, but study
the parity-related properties of the full series. We
take the zero-order problem to be

If the potential V(t) is not symmetric neither

I /f nor f'/f will be operators of definite parity,
nor will unperturbed solutions bo possess well-

defined inversion properties. Hence, both even and

odd terms in the perturbation expansion will be

present, and the eigenvalues A will all be complex,
unless there is a case where, for a specific detuning,
the odd powers of the expansion sum to zero.

The latter is an extremely unlikely circumstance.
Equation (3b') is of the form

b=A b.2

f' f'
We require not only that the odd powers sum to

zero, but that they do so for a value of A, that is ex-
actly the square root of p. We cannot quite ex-
clude this possibility, but it is evidently highly
overdetermined.

To summarize, we have shown that the result
obtained for particular asymmetric pulses by Barn-
bini and Berman, namely that there are no non-
resonant cases for which the transition probability
vanishes, is the normal consequence of the general
structure of the equations of motion, and applies,
apart from some remotely possible accidental cases,
to all smoothly varying, asymmetric pulses which
possess envelopes of a single algebraic sign.
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