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Calculation of the muonic He hyperfine structure
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A calculation of the ground-state hyperfine splitting in muonic He is given. It is based

on a perturbative approach that was applied to the analogous calculation in muonic He.

The result for the hyperfine splitting is hv =4164.9 +3.0 MHz. A semiempirical value

for this splitting, based on the measured splitting in muonic He, is hv =4166.5 +0.4
MHz.

I. INTRODUCTION

In a recent paper, we reported a calculation of
the ground-state hyperfine splitting of the muonic
He atom ( Hepe) based on nonrelativistic pertur-

bation theory. ' That result is consistent with ex-

periment and other calculations. In this paper,
we apply the same method to evaluate the ground-
state hyperfine splittings in the muonic He atom

( Hepe). This requires a generalization to include
the effect of the magnetic moment of the He nu-

cleus. In this case, the nuclear spin and the muon

spin are strongly coupled to form either a spin-zero
or spin-one ( Hep)+ effective nucleus. For the
spin-one state, there is a subsplitting due to the in-

teraction of the ( Hey)+ effective magnetic mo-

ment with the electron spin to form states with to-
tal angular momentum —' or —'. Our main interest

2 2'
here is in this smaller splitting, which should be
measurable. ' Comparison of theory and experi-
ment for muonic He could provide a test of our
understanding of the structure of this unique atom.

The Schrodinger equation for muonic helium is
(in units in which fi=e =1)

given by the expectation value of

8~5H= — p~ p 5(x )
3

8a
p&'p, 5( x& —x, )
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p, p~5(x, ),

where

—c se' IN (3)
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(
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where p, = —g, e/(2m, ) s„p&———g&e/(2m&) s&,
and pz ———gee/(2mp) I & are the magnetic-
moment vectors of the electron, the muon, and the
nucleus, respectively, and where mp is the proton
mass. The nonrelativistic ground-state wave func-
tion factorizes into a product of coordinate-space
and spin-space parts, so the level shift can be writ-
ten as the spin-space expectation value of the
operator

58, = —a I~ s„—bs„s,
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(4c)

where x& and x, are the position vectors of the
muon and the electron relative to the nucleus, and
where Mz ——m„m~/(m&+mz) and M,
=m, m~/(m, +m~) are the reduced masses of the
muon and the electron with respect to the nucleus.
The hyperfine perturbation of the ground state is

and where ( ) denotes the expectation value in
coordinate space. In Ref. 1, we calculated the
leading contributions to b in powers of M, /M„.
The leading contributions to a and e are calculated
in the following section.
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II. CALCULATION

To evaluate the coordinate-space expectation
values in (4a) and (4c), we apply perturbation
theory with the division

H =Hp+5V

in which

Thus, the zero-order contribution to the expecta-
tion values in (4a) and (4c) are

2@a A'gp pd fda Xpg Xejip Xp~Xe
3

mmmm~

)&5(x&)gp(x&, x, )
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2M~ 2M, xp x,
(6)
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3 mpmp
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5V(xp, x, )=
X~ Xe

The zero-order wave function for the ground
state is the product of normalized 1s hydrogenic
wave functions

yp(x, x )=y p{x )y p(x )

= —(2aM M) ~e
p e

7T
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&(5(x,)fp(x„,x, )

8'ega mp=Eve
4 mp

(9b)

—aM xe e (8)
with b,vF ——8a(aM, ) /(3m, m& ).

The first-order correction to the wave function is

n, n'~, p Epp+ Ee0 Epn Een'
(10)

where E&p and E,p are the zero-order hydrogenic 1s-state muon and electron energies. The first-order
correction in a is

3 mpmp

Substitution of (10) in (11) yields nonzero terms only for n =0 because of the orthogonality of the electron
wave functions. We thus have

tt „(0)(t„„(x)a"'= " Jdxg„p(0)g '" '"
V, (x)g„p(x),

m,m„~' „~ E„p—E„„
(12)

where

V, (x)= Jd x,f,p(x, )5V(x, x, )l(,p(x, )

a —2aMex[aM x —1+(aM x+1)e ' j . (13)

As in the previous calculation, ' only s states contribute to the sum over n in (12), so we may replace the sum

by the s-state reduced Green's function for the muon, with one coordinate set equal to zero

22aM& —2a~ x
e

1 —ln(4aM~x ) + —, —y —2aM~x
5

4aMpx
(14)
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In (14), y=0.5772. . . is Euler s constant. Evaluation of (12) with the aid of (13) and (14) yields a result of
order (M, /M„) a' ' for a"', which is negligible to the accuracy considered here. The term a"' may be re-

garded as the correction to the muon density at the origin due to the perturbation of the muon wave func-
tion by the electron. Only the fraction, of order (M, /M&), of the electron charge distribution inside the
muon Bohr radius is effective in modifying this density.

The quantity c"' is

x~ xg 0 x~y x~ xg ] x~~ xg

(15)

Because of the orthogonality of the muon wave functions, only the n =0 term in (10) survives upon substitu-
tion in (15). Hence,

6~(0)S,N(x)

(16)

where

V„(x)=fdx„f„o(x„)5V(x„,x)g~(x„)

=——( I +2cLilf„x)e
X

(17)

Only s states contribute to the sum over n in (16), so we may again employ the s-state reduced Green's func-
tion

g, (0)f, (x)
Eeo Ee~

2 ~z
C 1 —1n(2aM, x)+ —,—y—aM, x5

2aM, x

Substitution of (17) and (18) in (16) yields

(18)

(() gear ~pc =hvF
4 mp 2M+ M M+' +'' +

M~ M~ 3f,
(19)

The leading term in (19) can also be obtained by applying Zemach's formula to take into account the effect
of the finite charge distribution of the effective ( Heiu, )+ nucleus on the electron-nucleus hyperfine interac-
tion.

III. RESULTS

Diagonalization of 5H, in (3) yields the eigen-
values (21a)

I

case, a && b and a g& c, so A.
~

and A.2 are well ap-
proximated by

3
a + 0 ~ ~

A~ 2 ——4(a+b+c)
I I

A,2 ————a+ —(b +c)+ ~ . ~ (21b)

+-, (a +b +c —ab —bc —ca)'~, (20a) where the omitted terms are higher order in b/a or
c/a. The smaller splitting is given by

1

A3 ————(a+b+c) . (20b)
hv=k2 —A3 ——

4 (b +c) (22)
Both A, ~ and A,q are doubly degenerate and A,3 is
quadurply degenerate, corresponding to angular

3
momentum —, and —,, respectively. In the present

to lowest order in b/a and c/a.
The lowest-order results for a, b, ' and c are
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a = —,a(aM„) =3.3X10 MHz,
1& 3 gNgp

mpmp (23a)

3/2
gegp M, ~ Me

b =AvF 1 —3 +—,S)g24 M~ M~

=4461.7 MHz, (23b)

based on the constants S&&2 ——2.8+0.2, m„/m,
=206.7686, mp/m, =1836.15, mN/mp ——2.993,
g~ ——4.25525, g, =g& -2(1+a/2n ), 1/a
=137.0360, and R =3.289842X10 MHz.

%'e thus have for the He hyperfine splitting

ggN m„3 M,c =hvF 1+— =1091.5 MHz,4 mp 2M

(23c)

=4166.5+0.4 MHz . (25)

The error estimate in (25) is based on the assump-
tion that the uncalculated contributions are weakly
dependent on the nuclear mass.

terms, including terms of relative order
(M, /M„) 1n(Mq/M, )

It is of interest to compare the He and He hy-
perfine splittings. To the accuracy considered here,
we have hv( He) =b( He}, where the difFerence,
b( He) —b( He) =1.2 MHz, is due to the difFerences
in the reduced masses. Hence, employing the ex-
perimental value, ' hv( He}=4465.0 MHz, we can
obtain a semiempirical estimate for the He hyper-
fine splitting-

hv( He)= , (b+—c)

= —,hv( He)+ —,c

+ 4 [b( He) —b( He})

hv= 4164.9+'3 MHz,

where the uncertainty arises from uncalculated

(24)
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