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Critical phenomena of fluids: Asymmetric Landau-Ginxhurg-Wilson model
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The critical behavior of simple singl~mponent fluids near the liquid-vapor critical point (and of other systems in

the same universality class) is examined via an asymmetric spin Hamiltonian in Landau-Ginzburg-%'ilson form. The

leading important odd terms to be added to an Ising-type system are a five-spin interaction fp (x) and a nonlocal

cubic interaction -jp'+'y. These two operators can be combined into two different eigenoperators with distinct

physical interpretations. One combination can be shown to be exactly equivalent to the mixing of field variables (e.g.,
chemical potential and temperature) in the temperaturelike variable of an Ising or Ising-type system. This mixing

has been used phenomenologically, found in certain models, and justified on general geometric grounds. This is the

first proof that all asymmetric models, assuming universality and barring accidents, will have such mixing; this

imphes the universal occurrence of a t' Quid diameter. The second combination is treated by renormalization-

group methods and its contributions to the Helmholtz fr'ee energy, magnetic equation of state, and correlation length

are calculated to 0(e'), a=4 —d. There are several novel features of this interaction which persist to all orders in

perturbation theory. In addition to the expected renormalized M contribution to the free energy, there are also

terms linear in h (the magnetic field) and M which could be described as nonanalytic fluctuation-induced shifts in the

order parameter and field. These might appear experimentally as apparent shifts in the background terms for h and

M.

I. INTRODUCTION

There has been a long and profitable association.
between the critical behavior of simple liquid-
vapor systems and the magnetic Ising model.
This identification, founded partly on the notion
of universality, can only extend so far without en-
countering the real differences between the sys-
tems. The magnetic system described in terms
of the magnetic field h, magnetization M, and

reduced temperature t = T —T has a global sym-
metry h--h, M--M, which the fluid system,
described by chemical potential p, de'nsity p,
and t, does not. In the simplest form of the lat-
tice-gas model~ the order parameter I of the
Ising system is identified with p —p„and the
ordering field h with p —p(p„ f) with f unchanged.
This neglects entirely the real asymmetries of
the fluid.

One way to introduce asymmetry is to assume
that chemical potential and temperature mix
both in the ordering field and temperaturelike
variables. For example, one might assume that
the singular part of the pressure was given by
an Ising-type (lattice-gas) pressure P„„(p,f)
=P~(h, t&) with h as above and f& a linear combi-
nation of p, and t. The phenomenological eon-
sequenees of such a revision of the scaling fields
are reviewed in Ref. 2. The behavior is found
in certain models' and it has been argued4 that
such mixing can generally be expected on geo-
metrical grounds. ' Although this mixing would

lead to asymmetric terms, experimental veri-
fication of its existence is hard to establish since

the asymrnetries are relatively weak. One
characteristic consequence is the prediction of
a weak singularity in the fluid diameter, defined
as the sum of the liquid and gas densities in the
two-phase region:

~ = p, +d, It t' +d, It I+ ~ ~,p+p

where o. is the specific heat exponent. A simple
rectilinear diameter (d, =O) is sufficient for most
fluids over a large ranges although some evidence
of curvature has been observed' and fit' with (1.1).
The primary result of this paper is to demon-
strate that the asymmetric Landau-Ginzburg-
Wilson (LGW) Hamiltonian model of the fluid sys-
tems does exhibit this mixing. The mixing does
not represent an exact change of variables in
the Hamiltonian' but rather is a consequence of
the effects of the asymmetric terms on the free
energy and correlation functions. As will be shown

in Sec. II this proof of mixing is independent of
perturbation theory and the renormalization group.
If the universality of results derived for the LG%
model is accepted, ' then the universal occux'ence
of mixing and its consequences in Quids is es-
tablished.

This does not imply that mixing is the only
source of asymmetric terms. Truly nontrivial
non-Ising interactions are also present and can-
not be removed by adjustments of the variables
and background terms. The second emphasis
of this paper will be the determination of the
proper form of these new terms and theix cal-
culation within the renormalization group. To
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begin, consider the usual LGW Hamiltonian

corresponding to a simple nonmixed but asym-
metric system, ' in dimension d =-4 —e. The
usual terms can be written as"

(1.2)

In Eq. (1.2) the constant fields t and k have been

replaced by spatially varying fields t(x) and k(x)
for the usual convenience. of defining generating
functions for the correlation and vertex functions. "
The uniform limit is taken at the end of any spe-
cific calculation. A latticelike behavior is pre-
served through the cutoff A imposed on the wave

vectors of the Fourier transformed spin field

y(k). This can be imposed as an absolute sharp
cutoff or by modifying the form of the gradient-

squared term in (1.2); this is indicated by the

subscript A. When an explicit form is needed,
the following will be used: (&rp)~2 (V(((()'

+A '(p'y)'. In Eq. (1.2}, it may be supposed that

M =(y) is proportional to the density p. The non-

Ising terms may be removed if the fields h and

p are shifted:

The LGW Hamiltonian is thereby transformed
to an Ising form [O(ff) terms are dropped for

simplicity].

SOs=g)

uA'
v505 =85 p ~

(1.5a)

(1.5b)

where a unit volume is taken. The constant term
hf~(t} can be dropped if the behavior of the

order parameter M'=—(rp') is considered; in the

original variables this represents an analytic
background term in the Gibbs free energy. Thus

the new Hamiltonian is precisely an Ising-type
Hamiltonian with the provisos that the experi-
mentally interesting quantity p- p, differs from

the.order parameter M' by a background analytic
in t and that the ordering field h' is a function

of both p, and t. With these conventions, the

primes may be discarded.
The new interactions that need to be considered

are

These interactions are the leading nontrivial odd
interactions not included in Eq. (1.2). As shown

elsewhere i 3 both interactions must be included

to have a consistent theory of their influence on

the fluid system. The factor of uA' included in

0, keeps the balance in the Hamiltonian between
the four and five spin terms independent of u.
The new interactions are smaller than those of
the original Hamiltonian by factors of v,y (i =3, 5)
and it is therefore expected that the effects on

the thermodynamic functions will be smaller by
(renormalized) v,M. In any event e,M will be
considered as a small term having no particular
order in the & expansion.

There are two other terms that are of compar-
able size:

t(x)y'(x)

Psych . (1.6b)

These are just special cases of the previously
treated odd terms and could be removed as in

(1.3). However, their existence determines the

form of the renormalization group equations

(Sec. IV) and 0,' is needed in the demonstration

of LGW mixing (Sec. II).
The critical-point exponents associated with

the insertion of the 0, have been given" to O(e').
It is shown that both operators correspond to
irrelevant perturbations and therefore represent
correction-to-scaling terms. It is thus justi-
fiable to treat these interactions linearly, that
is to O(v, ). (The y' theory is considered near
d = 10/3 in Ref. 13 and is shown to have no fixed

point. ) However, the full crossover behavior

of the O(v, ) terms will be considered when ex-
plicit calculations are made. As will become
clear below, this is necessary for a proper under-

standing of their contributions.
In Sec. II, the equation of motion approach'4 as

applied to the cutoff (rather than renormalized)

theory is used to provide a simple proof of the

generality of the field mixing discussed above.
In Sec. III, a brief discussion of the formal fea-
tures of crossover equations in the context of
the renormalization group is given. The method

used" is a modification of that of Bruce and Wal-
lace" which leads to the most compact and easily
interpretable crossover forms. The crossover
equations for the Ising-type model are discussed
both as an example and because they form the

basis of the non-Ising calculation. In Sec. IV

the renormalization group treatment of the 0&

is given and the proper form of the renormali-
zation group equations is derived. In Sec. V
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explicit expressions to 0(E') for the nontrivial
contributions are given. A concluding discussion
is given in Sec. VI. The perturbation series used
are collected and details of the renormalization-
group matching are given for the Ising case in
Appendix A and for the non-Ising terms in Appen-
dix B. Further consequences of the equation of
motion are given in Appendix C.

II. MIXING IN ASYMMETRIC
LANDAUWINZBURG-WILSON HAMILTONIANS

In this section it is shown that a general LGW

Hamiltonian with odd interaction terms v,0, will

exhibit a statistical mixing of field variables.
The term "statistical" is used to distinguish this
mixing from one that is implemented by a mixing
at the level of the Hamiltonian. In the latter case,
an exact line of symmetry exists in precise anal-

ogy with the magnetic case. In the present situa-
tion, the operator which induces mixing at linear
order itself deviates from mixing at second or-
der and destroys the line of symmetry at third
order, i.e., very weakly (cf. Appendix C). Of

course, the nontrivial, non-Ising interaction
breaks the symmetry at linear order. However,
in practical terms linear mixing is sufficient
since the corrections to the Ising-type behavior
are weak and only the linear consequences of
mixing are usually considered. 2' The proof does
not depend on the form of the cutoff used or on

the properties of the renormalization group and,
insofar as the p' LGW Hamiltonian describes
the system of interest, holds everywhere, not

just in the region of the critical point. Of course,
special systems can be constructed with no mix-

ing; in the present context, if v, and v, are re-
lated in a specific way so that the amplitude of
the mixing eigenoperator is zero, then there is
no mixing. However, there is no reason to think

this is the case for the fluid systems of interest.
The equation of motion method is used, " "but
without taking the A-~ limit.

The Ising-type LGW Hamiltonian with spatially
varying t(x) and h(x) is

+8 4
H =

~ ,'t(x)tp'+ —,'(v(p)A+ —+ h(x}pp(x)

t

e p[ 0(h(x), tht))] f Dt (x)e-xt[ tt]. -(2.2)

(2.1)

The generating functional for correlation functions
(Gibbs free-energy functional) is given by the
functional integral

(2.3b)

(2.3c)

The functional derivatives of G with respect to
h(x} are the correlation functions while the deri-
vatives of A with respect to M(x) are the one-
particle irreducible vertex functions. "

The equation of motion approach takes its name
from its starting point. The identity

0= Dp exp-
5[p x

true for all Hamiltonians, is applied to (2.1).
This implies

t(x)tt(x)+( ')h„t(e) x-e, —h(x)) =0.uA'(p'(x)

(2.4)

(2.5)

The quantity inside the brackets is exactly the
classical equation of motion. That is, if pp(x)

is a spatially varying field which minimizes the
Hamiltonian, then the quantity inside the brackets
would vanish. Equation (2.5) says that the class-
ical equation is satisfied in an average sense.
It is convenient to define

(2.6)

so that Eq. (2.5) expresses (h, (x)-tp(x)}=0. Now

differentiate. Eq. (2.4) by applying 5/5t(y),

(2(p'(y)&» (x) —6(y x)pp(x)) = (h—(x)—,'(p'(y)) . (2.7)

To relate Eq. (2.7} to the 0, , set y=x and inte-
grate over x

~ ~ ~

g hx = hg 2y2g +50 . 28

The 6(0) is not infinite in a cutoff theory but is
the volume of the Brillouin zone, 5(0)-A'. De
fining Oh =3(0~+ ~~~0»+ 00),

(0,) =( fh(x) ) Me. h (2.9)

The final term represents an analytic global
shift in the magnetic field which has no observ-
able consequences and will be dropped hence-
forth." Denoting the shift in G induced by 0, as
G„and inA by A, :

energy functional A, which is related to G by
Legendre transform:

X(M(x), t(x)) 0(ii(=x)t(x)),efh(x )M '(x )'(,h.he)

It is often convenient to use the Helmholtz free- C3= hg G, (2.10a}
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(2.10b)X, =

Finally, if an interaction v303 is added to the

Hamiltonian and its effects taken linearly, then

to O(V,), Eq. (2.10) shows that

A- A[M(x), t (x)+V~h(x)], (2.11a}

G-G[h(x), t( x)+V, h( )x], (2.11b)

which is precisely the statement of field mixing

in the temperature variable. By using the spa-

tially varying f(x) and h(x), Eq. (2.11}shows that

the mixing extends to all the correlation and ver-
tex functions.

If a new temperaturelike variable is defined by

(2.12)

then the true Ising-type order parameter is given

by -M'(x) =5G/58(x) at constant t'. The original

order parameter (related to the density difference)

now has a mixed behavior

H=, t Z +V3h y'X +-, Vy „'

uA'p4 x
+ —h(x) qr (x), (2.15)

(2.15}

if h, could be replaced with &(x) then the contri-
butions of 53 would be exactly equivalent to vari-
able mixing, as may be seen on the Hamiltonian

level. Thy equation of motion guarantees this
replacement to linear order. The equivalence

of the introduction of 0, to fluid mixing extends

only to first order. This is clear since mixing

terms in the free energy vanish if h =0 but

((0,) —(0,}}'e0. The use of the equations of mo-

tion to determine the second order contribution

is given in Appendix C; it differs from mixing

by terms giving the next even contributions to
the y' and associated operators.

An alternative to the equation of motion approach
is to apply the general result

56
M(x) =M'(x)- Vs,

)' 5tjx

(2.18)

which holds for any Hamiltonian H and operator

g [with h @(x)= 5H/5$(x)]. Then, setting g = p~(x)/2

yields Eq. (2.8}. Equation (2.16) and its relation-

ship to other methods will be discussed in Appen-

dix C.

5A (M ~(x), ti(x))
5M~(x)

(2.14)

With these conventions as to the meaning of t and

M, the primes may be dropped. Unless P3 0,
these mixing terms will be present, and thus the

LGW Hamiltonian will, in general, exhibit field

mixing. The presumption of universality extends

this to all asymmetric models. Although the proof

given above does not depend upon the renormal-
ization-group or perturbation theory, it is easy
to check that these results are reproduced to
O(e*) by the calculations of Secs. IV and V (cf.
Appendices A and B). Note that the simple form

of the present result depends upon the inclusion

of the trivial operator 0,' in 63.
There is a simple way to see the relationship

between the operator 53 and field mixing. The

LGW Hamiltonian with perturbation V303 can be
written as

This is the source of the asymmetries observed

in M in the phenomenological models. 4 It is con-

venient to evaluate the Helmholtz functional at

M'(x) rather than M(x); this restores the relation-

ship

HI. RENORMALIZATIONNROUP CROSSOVER
FUNCTIONS: ISING CASE

In this section a brief review of the technical

features of the renormalization group and its
application to the calculation of crossover scaling
functions is given. Further details may be found

in Ref. 15. Tgis serves to define the technical

tools needed for the non-Ising effects described
in Secs. IV and V as well as listing the principal

Ising-type results.
The method employed is a variation of the

matching point method of Bruce and Wallace. "
The basic idea is that a good crossover form
can be obtained by combining the perturbation
series calculations with the solutions of the re-
normalization group equations and choosing a
matchpoint value of the renormalization-group
parameter. A typical thermodynamic function

F satisfies (within the approximations of the re-
normalization group, see Refs. 15 and 16 and

below} an equation of the form

[6t+ e(M)]F =&(f,u, M.,h, ),
where the renormalization-group operator S is
given by
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8 8 8 M e
(R-=A—+ p(u) —+ [2 —I/v(u)1 t

8A eu et 2 eM'

(3.2)

The formal solution of Eq. (3.1) is

F(t,u, M, A =1)=g(l)F(t(l), u(l), S' 'M, A =exp[-l])

K l' 8 l'dl',
0

(3.3)

where

g =-exp- e(u(i')} dl'
0

t(l) =—t'l = t exp - [2 —1/v(u(l'))] dl',
0

eu—= —J3el

@=exp+ g u l' dl
0

(3.4a)

(3.4b)

(3.4c)

(3.4d)

The integral over the kernel K is occasionally
termed a trajectory integral. Although the val-
ues of p(u), 1)(u), K, etc. , are generally only de-
termined perturbatively, the form of (3.1) is
true independent of perturbation theory. This
also applies to the form of K as will be made
clear below. Given the existence of a short dia-
gram series for F, however, the use of renor-
malized quantities as in (3.3) changes the rela-
tive size of the terms in that series. The most
direct approach is to divide F into a lowest-or-
der part (mean-field portion) and a term due to

fluctuations,

l
F =g(l}[F 2(l}+aF(l}J+ Kg .

0
(3.6)

As l changes, the value of F itself is left invariant;
the changing contribution of the fluctuation term
being precisely compensated for by the changes
in the renormalized mean-field part and the in-
tegral of K. The mean-field portion is easily
understood in terms of its renormalized vari-
ables, while the fluctuation term is only known

perturbatively and needs interpretation. The
match-point method consists of choosing a val-
ue of l =l* such that the fluctuation terms can be
easily handled.

The choice which gives the most compact and

conceptually simplest result for the crossover
is to pick l* such that aF(l~) =0. Then

E=()() )F (l )+ f iC( ) ( )d ).d))($.())
0

All the information from the fluctuations is used
to determine l~, while the form of the final answer

is determined by mean-field considerations and

the renormalization-group equations. As is shown

in Ref. 15, this match point resums the N-point

h ua'M ~h—=t+ +~
M 6 M'

&h 2 ((z/A) -B,
M

(3.'la)

+ [(L+ 1)(L+2)+ L f]—
3M P'

+ (L'+ 2L —f) .
4

(3.7b)

In (3.7b) and elsewhere, v2 =t+uA'M'/2 (or its
renormalized value), L = In(&2/A2), B,= 1+e /2, -

and f = 4.5 (the values of B, and f depend on the
f'orm of the cutoff). Choosing a match point is
equivalent to choosing a value for L, . The Bruce
and Wallace choice would be I.= 0; to cancel the
fluctuations, it is necessary to pick J e 0; in fact,
L, will be a function of the thermodynamic vari-—
ables. To this order they are given by" "

Y(2-1/u)u expD (p 11)

S= Y~/" exp[- 1l/(d(p —u)J,

u(l)e "=uY'

(3.8a)

(3.8b}

(3.8c)

where P=u(l)/u~, u=u/u*, Y=(I-P)/(I —II), and
u* is the fixed point value of u, P(u*) =0. The
exponents of the ~'s are the critical-point ex-
ponents 1}(u")=1}.etc. , and &o is the correction-
to-scaling eigenvalue, (d = sp /su. The constant

D, is given by

2 —I/v d 19
D~= —=—u,

54 (3.8d)

& ( 1'l
u =B2u* =-

~

1+—&3(. 2V

The final form of the equation of state is

(3.8e)

—=X) tV+ (3.9}

The match point L is expressed by the specifi-
cation of the renormalization-group invariant

Py

vertex functions to their exact values in the spher-
ical limit. The function F will have crossed over
to its mean-field limit when l*-0. Although

this match point gives the most convenient cross-
over forms and has several technical advantages
it has the disadvantage that the values of l~ will

differ for different functions. It is therefore
useful. to evaluate functions not only at the op-
timal match point (3.6) but also at the optimal
match point of some other function.

As a first example, consider the magnetic
equation of state h/M, for which e(u) = —1l(u},
K=0. In this case to O(&2},
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Y' "-=exp(- &l~) =z'(l~) exp(-aL/2)
p

=z'B, I 4-tcP (f —1)+q(f+1) (3.10a)

where a subscript A again indicates that various
cutoff forms could be used. The crossover to
I'2 =t (the mean-field limit) occurs only as I'2

The usual renormalization-group expression
corresponds to the small t limit

uF' i SM
g2(lg =t'E+

2 (3.10b)
1+u 2 — —1

(3.13}

(3.10c)

As shown in Ref. 15, ~ is an exact global non-
linear scaling field while p and q are exact global
nonlinear scaling invariants.

In principle, Eqs. (3.8)-(3.10) provide a com-
plete specification of the equation of state; this
is, however, implicitly given through the scaling
field z for which no direct interpretation can
be given. Its meaning is elucidated by evaluating
other quantities at the same value of L. For
example, ~~ is related to the inverse susceptibil-
ity (two-point vertex function) by (at the h/M
match point)

I'2=uq' I+q+
~
I -+ — q(1-q/2}(f+1)

(3.11)

d~k
&~(6+I'2}

(3.12)

The field ~ is also essentially proportional to
the inverse correlation length (cf. Appendix A).

It is important to note that these expressions
cannot be sensibly used for l* ~ 0, which occurs
for z-1; this corresponding to a correlation
length of the order of the lattice spacing in these
units. In this range of z the renormalization-
group approximations break down and Eq. (3.1)
no longer applies. The crossover to mean-field
was described as the limit l*-0, however, and
therefore this sort of renormalization-group
treatment of the crossover is flawed in the asymp-
totic mean-field regime. The source of these
difficulties and a heuristic approach to repair
them can be found by examining the spherical
model. The disordered phase two-point vertex
function is given exactly by

where Bo, as mentioned above, is nonuniversal
and depends on the cutoff used. This form cannot
be used for large I'q and the mean-field form
I'2=t is achieved at I'2 =B, -O(1), correspond-
ing exactly to the l*=0 limit. The problem is
circumvented by retaining the renormalization-
group form given in Eq. (3.6) while smoothing
the transition of l* to 0 so that it occurs only
asymptotically as z —~ rather than at a-1. This
can be done by comparing Eqs. (3.12) and (3.13)
and making a corresponding substitution in the
matching condition (3.10a). This is exact for
the spherical model and is correct to one-loop
order for the Ising case. '~

A related consequence of the breakdown of the
renormalization-group equations for z-1 is that
the different functions have different values of
l~, rather than l~=~. Thus, Eq. (3.11) never
reaches a simple mean-field form, even at l*=0.
The best crossover expression for I'2 would be
given by choosing the match point L appropriate
to it (and smoothing out the mean-field limit);
alternately, the smoothed version of the equation
of state could be differentiated; only a smoothed
version should be used for differentiation because
of the abrupt nature of the l*=0 limit. This
smoothing is highly nonuniversal but a selection
of various forms of cutoff shows that the varia-
tion between smoothing choices is smaller than
between smoothed and pure renormalization-
group calculations, even in the ~~ 1 region.
The seriousness of this effect is reduced if u «1
(which may apply to the fluid cases of interest)
and vanishes for u, A '-0, uA' fixed. While the
results given here will be presented in unsmoothed
form the passage to asymptotic mean-field be-
havior should be understood in a smoothed sense.

An important example with nonzero kernel is
the free energy A for which K= -Bot2A '/2. At
its optimal match point the result is

(3.14)

The match-point is given by

,(„u=g'Bo 1-— 1+ 1+q 1-4 . 3.15)
p

fq'M uY' "~M t gg (Y ""-1)c (Y ""-1)
A =I) + — exp2D&(1 —u) —+ ——I+2Dg ~(I -&)2 4! @M ~ ! a/(uv ~~ 1 —n/(uv ]

I

Connection formulas like (3.11) can be found in
Appendix A. » Eq. (3.14), the trajectory integral
has produced terms which scale (have power-law
singularities} proportional to a power of Y and
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analytic terms proportional to t2. These terms
are not true background terms since as the mean-

field limit is approached and Y -1 the entire
integral vanishes, the limit of the scaling terms
cancelling the apparent background. This fluc-
tuation-induced apparent shift in background is
well known in the specific heat. Qualitatively, if
C were written as C =Cgt +Cp in the critical
regime, the constant C, would not be the true
background specific heat observed far from the

critical point. Writing C as C =C,(t —I)+C,'
would give agreement between C,' and the back-
ground observed at t-1. This is what is expressed
in Eq. (3.14).

The existence of a nonzero kernel is intimately
connected with the possibility of shifting the back-
ground specific heat by the addition of a constant
term to the Hamiltonian. ~e If it was desired to
make the free energy A scale (i.e. , make If = 0)
a suitable constant, A,t', . could be added to the
Hamiltonian and A() adjusted order by order in

perturbation theory so that R =0. This would

yield a free-energy equivalent to Eq. (3.14) in per-
turbation theory with the analytic terms dropped,
leaving only the singular portion. There are
several reasons that such a procedure is not

generally followed. First, the free energy will

now cross over to a mean-field expression with

an extra t term; for the most part it is more
convenient to take this term to be zero so.that

the renormalization-group calculation gives only

the anomalous parts. Secondly, the form in Eq.
(3.14) allows for the o -0 limit in a direct man-

ner. Third, the expansion for A0 for the general
n-component system has a singularity at z = —2

which is entirely unphysical; this is avoided in

Eq. (3.14), if, as indicated, the critical point ex-
ponents are not expanded as functions of g to
the appropriate order. In Ref. 15, the corre-
sponding expression for the specific heat is
exact for n = —2 (disordered phase only}.

The Ising results, Eqs. (3.8)-(3.15), illustrate
another general feature. The present two-loop
calculations determine the exponents and some
critical amplitudes to O(&2}. This is reflected,
for example, in the match-point expressions
(3.10) or (3.15) or expressions for functions, cf.
(3.11). However, the results for the scaling
fields (3.8} and for kernel integrals (3.14) con-
tain factors determined to O(s}. Thus, while
both the explicitly TV' dependent and kernel terms
are O(1/u)~(1/&}, the former terms are deter-
mined to O(c2) x0(1/u) = 0(c) while the latter is
given only to O(c) xO(1/u) =O(1}. The resolution
of this seeming anomaly is to note that Y -1 is
formally O(u), Y —1-u Iogv /& -O(c); this also
holds for p -u-O(c). In the case of the scaling

fields the p- I limit does give O(c, ) x (1-u} non-

universal scale factors which do not change the
amplitude ratios. For the Y -0 limits in the

kernel integrals the factors of exp2D, (1 —u) again
cancel, but the remaining terms provide ampli-
tudes determined only to O(c). Similarly, the

nonuniversal constant f cancels at this order.
Finally, there is a crossover feature of the

kernel integrals that should be described. Con-

sider, for example, the T &T„specific heat. In

mean-field theory it is zero; dropping inessen-
tial factors it is given by

(3.16)

The singular Y ""term has an amplitude that
is O(1/u) -O(1/&). One could say that the fluc-
tuations do not simply modify the exponent and

amplitude of the singularity smoothly [as would

be true if the amplitude were O(1)], but they in-
stead introduce a discountinuity in the amplitude.
Insofar as only critical amplitudes are considered
this is true; however, this discontinuity has a
crossover nature; in the mean-field region Y - 1,
C —0, restoring the mean-field behavior. From
this point of view, the kernel integral does pro-
vide a smooth rather than discontinuous change
from mean field to full critical behavior. The
discontinuity is, of course, real, but only in a
local, asymptotic critical sense; globally
there is a gradual buildup of the singularity.

To summarize the character of the kernel in-
tegral terms: they represent fluctuation-induced
nonanalytic background shifts which vanish
smoothly in the mean-field region. In the critical
region they split into regular and singular terms
with a corresponding discontinuity in the ampli-

tudes associated with the singularity. This split-
ting reduces by one order in & the accuracy of
the determination of amplitude ratios. The same
features will occur for the non-Ising terms; in

this case, the kernel terms contribute not only

to the specific heat but also to all the M deriva-
tives as well.

IV. RENORMAI. IZATIONWROUP TREATMENT
OF NON-ISING OPERATORS

In this section the renormalization-group for-
malism is applied to the Ising Hamiltonian (2.1)
augmented by the non-Ising interactions v,0, and

v, 0, [cf. Eq. (1.5)]. The form of the renormaliza-
tion-group equations is determined and the eigen-
operators, exponent function, and kernel are
evaluated to second order. The operators 0,'
and 0[ [Eq. (1.6)] which generate shifts in the
order parameter 1ll and field h will also be con-
sidered. The explicit calculations of the free
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energy will be given in Sec. V.
The free energy can be divided into Ising and

non-Ising parts, A =A, + veAB+ vu4~, where the

A,(i=3,5) are odd functions of the magnetization
M. The form of the renormalization-group is
then

v, +A, +v,y,'a, =v (4.1}

The form of the kernels depends on the possible
inclusion of the operators 0,' and will therefore be
discussed below. It is sufficient to note that K, =0
for t =0 and that the simpler renormalization-

group equation as applied to the vertex functions

13(k~, k2, k3) and I'5(ki, k2, k„k4, k, ) at t=0 canbe
used to determine the matrix y~. This is de-
scribed in detail in Ref. 13 and only the results
will be given here'

(4.6)

In gener'al, As and Ss are determined by

As ——ys+ y3 Ss,5 5 (4.7a)

+ AsSs= y3Ss+ ys .8Ss
eu

(4.7b)

To the order obtainable here,

the remaining non-Ising effects are due to the
other eigencombination of the 0, , 0, =0,+S,(u)0„
where S&(u) will be determined perturbatively.
The non-Ising interactions v,0, are replaced by

V,o„with vs =Vs+ 10v,/3, v, =v3+Sq(u}V, . Then,

only the contribution to the free energy corre-
sponding to 0, need be calculated and the renor-
malization-group equation will be

(8+A5)A5 ——K5 .

(4.2a) sAs=&s-VP (4.sa}

y 3= -20uBp+ 110u', (4.2b)
Xs=VBpN 4 + (4.6b)

in
y3 =~p ~iu +~N2 (4.2c)

Ss ——~u + +P /u . (4.6c)

3 & 2
ys = —

~2 (4.2d)

The renormalization-group flow equations for the

v, are

evg =-y'v . (4.3)

d- 2
Cd) =

2
+X] . (4.4)

The new correction-to-scaling exponents are 4,
= ~,v. The exact result on mixing of Sec. II im-
plies that

X,(u}= 2— 1 q(u)
v(u) 2

s 3 s= ys+Wiy3

=y3+Vys (4. 5)

Comparison with (4.2) and the expressions for
v(u) and g(u) (cf. Appendix A} confirms (4.5) to
O(c ). Since the effects of 53 are known exactly,

The eigenvalues (X„X5)of the y,
' matrix evaluated

at the fixed point determine the anomalous dimen-
sion (corrections to Gaussian exponents). The
new correction-to-scaling eigenvalues are

The expansion for the eigenvalue Xs is not very
well behaved; the fixed point value gives the fol-
lowing e expansion for the correction-to-scaling
eigenvalue ~s,

(d g
= 1 + 8 C —

~g
C + O(e ) . (4.9)

Al
[el+A, (u)]A, =B„(u)tA ' ' B„(u)t A 'M .

(4. 10)

As written at m = 1, ~s =0.VS; a simple Pade ap-
proximant gives ~s ——1.85. The precise value of
+s being so uncertain, ' the qualitative features of
the 0s interaction will be stressed below.

The deter'mination of the kernel Ks is intertwined
with the operators 0,'. It would be possible to set
Ks ——0 by adding a suitable amount of these opera-
tors to 0s just as the kernel for the Ising free
energy could be removed by the addition of a con-
stant (~ t ) to the Hamiltonian. In fact, it is the
addition of 03 to 03 that makes its contribution so
simple. However, to avoid the inclusion of terms
linear and cubic in I in the mean-field region,
no additions of the 0,' will be made, ' in this way,
the crossover will leave only an Ms term in the
mean-field region. Either procedure, taken ex-
actly, would give the same physical result; the
convenience of the crossover and the technical
considerations alluded to above for the Ising free
energy motivate the choice adopted here.

The form of the kernel is now determined and

Eq. (4.6) takes the form
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The kernel is restricted to this form since the 0,'

are e(luivalent to shifting M and h. To O(u, a) the
coefficients have the values

mines its optimal match point [E(I. (Bg}]. At that
point

+5/2 y4/aoM5

B (B)= B-(1————Su 1P
3 27 (4. 1 la)

B (B)=B (1— ———+-B (B)) .Su 1P 2

3 27u 3 ' (4. 11b)

The second term in the kernel contributes only to
the free energy, the magnetic field, and their
temperature derivatives. The first term, on the
other hand, persists in all the functions of inter-
est. For example, the two-point vertex function
at nonzero wave vector k divides into Ising and
non-Ising parts I'2(k} = I'2(k) + VS I'2(k), with

where 'U is defined by p5(l) = v, 'U:

u = Y"&'"exp [c(p —u) ],

c= ———— u= — E+ 0(c ),7u 5 235
27 108

(S.3a)

(5.2b)

D, + —"+c~(1-u)
Eu 2(d )

and 5& and 5„are effective nonanalytic shifts in
M andh,

I
(6t-q+A, )1,(k}=a„tA-~ ' '

(k) .
BM

(4.13} x [E&(YB~—1)+E((1—u)(Y'(' —1)], (5.3a)

In particular, the second-moment correlation
length is determined from the ratio R = I',/( 2: 5„= 2D~ ——+c 1-u-u exp

CQ 2(d

R= k2I (4. 13)
x [E2( YBB —1)+ E2(1 —u)( YB2' —1)] . (5.3b)

The exponents e, and amplitudes E„E,' are

Dividing R into Ising and non-Ising parts, R= RI
+ g5R, e = 2- —+—-&+A,1

v 2

(6t- g+A5)R =B„tA 'BRi/BM . (4. 14)

As detailed in Sec. V, this persistent portion of
the kernel is equivalent to a fluctuation induced
nonanalytic shift in the background term in the
definition of M. The same could be said of the
analogous term in the Ising free energy, which
represents a nonanalytic shift in the background
t term in the free energy. In the latter case,
the singularity associated with this shift is rela-
tively large, being the specific heat singularity.
The singularity in the non-Ising system is weaker,
representing a correction-to-scaling term.

V. NON-ISING CONTRIBUTIONS OF 05'. TWO LOOPS

In this section, the two-loop O(e ) calculations
for the change in the free energy A„magnetic
field hs, and correlation length ratio E, are
given. The results will be discussed at optimal
match points and at the Ising h/M point. The
former gives the expressions with the most com-
pact and transparent crossover while the latter is
useful for comparison with the Ising case and the
computation of amplitudes.

The free energy in the presence of a perturba-
tion @505 can be written as A=AI+ v5A5. The
diagrammatic expansion for A, is discussed in
Appendix B. Its t expansion [E(l. (BV)] deter-

(1 — ~) (S.4a}

e2= —~ + X5

=3(1 54 ~), — (5.4b)

a(1-$u) 3 41
e~(d 5 135 &

'

&(I —Iu) 1(1+ 1
e2~ 2

q 35&——1+D, + —+c — u I—
(o ' 2(u 9 ] 95

1 eg+ 1 108

(5.4c)

(s.4d)

(S.4e)

n 76-——1+2D, — +c ——u
2(o 27 61

e, +1 81
(5.4f)

The & expansions in E(l. (5.4) should not be con-
sidered reliable at e = 1 due to the poor conver-
gence of X5 and the generally poor convergence of
correction-to-scaling amplitudes. The magnetic
field can be decomposed as well h = h&+ v&85, so
that BAI/8M=hi in (5.1). As expected, vsAS is
smaller than A, by V~'Uu'~ M- ~t

~
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The A5 free energy divides into a renormalized
M' term, which enters in qualitatively the same
fashion as a quintic term in mean-field theory,
and the nonanalytic shift terms. The latter could
be removed formally by shifts in the order param-
eter and ordering field: M-M-Vst5„, h-h
+vst 5„. This would leave the free energy in a
renormalized mean-field form but with nonanalytic
h and M

The point of view taken here, on the other hand,
is to consider the analytic definitions of h and M
to be fixed in the asymptotic mean-field regime
(which has a well-defined nature for the present
model). In this limit, s„and 5„are zero leaving
only an analytic M3 term (1) =I)= Y = 1) as a con-
sequence of the 05 interaction. The t-dependent
background for M as well as the mixing of density
and entropy induced by 53 are not complicated by
the fluctuation terms in this region and may be
imagined to be determinable. Thus the meaning
of M in Eq. (5.11) is, in principle, unambiguous,

being that order parameter which is associated
with the asymptotic asymmetric mean-field
theory.

The s„and 5„ terms in Eq. (5. 1) could be de-
scribed as a gradual shift in the "best" back-
ground contributions to M and h. Suppose, for
example, that 45 is relatively large so that the
critical singularities in 5„and 5„are not easily
measured. Then it would still be true that a mea-
surable effect would arise from the analytic parts
of the 5's. If the background contributions to M
and h (proportional to t and t, respectively) are
determined relatively far from the critical point
where 5„=5, =0, they will differ from those
found asymptotically close to t =0 by V&ts„(Y=0)
and V,t'5„(Y=O). This effect has been observed
in the fluid diameter data ' but may also be
partly attributed to a similar effect arising from
the variable mixing (cf. discussion below). For
convenience, E, and h3 are given the Ising h/M
point

ur' "a)5/2
M'[I + 10(1 —f)(Qp)'/q]+ ths„+ t3M5„,5l

(s. sa)

YI / u 233 / 2 (
)i =i), 1+2 P —

(u(Mi) ) +( 3 — ((/+)) + ~.() f) - '
)}+)-),) +)~II, ', „2i

(5.5b}

(s.6)

where S3(up) =-up/12- e(1-p)/108 and Y, Q, p,
etc. are taken from Eqs. (3.8)-(3.11), and h,
I'2, and ~ on the right-hand side are determined
for the Ising-type case.

As discussed above, the mean-fieldlike terms
((X."li) are determined to O (1/u) xO (e') while the
kernel terms are O(1/u) x O(e) only. For ampli-
tude ratios which involve both sorts of terms the
O(u ) terms in (5.5) can be dropped. (Note that
at the h, optimal match point all the terms in the
curly brackets would be dropped. )

These changes in the free energy and field have
effects everywhere in the t-M plane. Only a few
will be considered here. The breaking of the
Ising symmetry means that h =0 no longer de-
scribes either the coexistence surface or "iso-
chore" M =0. For t &0 the iso-M line will have
h=g3h3(M=O), or

h=m, [ti', (M =0)5„+t'5„] .

h = exp[(2D, —q/2~+ c)(I -mj]Y('"-"/'"3""V5t

x-"(E,-E,) . (s.8)

In the ordered phase the Gibbs potential 6 =&I
+ 3)AD%3

- hM must be the same in both phases, or
to O(p3},

h = 'tT3/T3/M .
To lowest order this is

(s. 9)

I

The scaling part h =I%i(t /off) Y' is mixed with a
sing lar term proportional to ri/3t2 and a analytic
(t ) term. The detailed behavior is quite compli-
cated. The full expressions Eq. (5.3) increase
the complexity by adding an explicit correction-
to-scaling term E,'(Y'& —1). The leading scaling
part is

This has a crossover nature so that h=0 is the
asymptotic mean-field iso-M. To examine the
character of Eq. (5.6) it is instructive to evaluate
5„and 5„at the one-loop level. Then

v/t' 9 3 (Y' —1}
10 2

(5.10)

I/ Yl /3
(Y5/3 I) ( I)

~F 5 ~u 2 (5 7}
a combination of mean field and kernel terms.
The scaling part of the full result is
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Vt2
h= ' exp[(2D, -rt/2(d+c)(1-u)]Y" "" '"» "

Q
M = ——J'g I (s.13}

x —1+—
I
u'(1 -f)3 10 ~., E,ul-

10 3( e] (5.11) Using the h/M match points for A„h„and I'„

The amplitude ratio (in terms of I'; for Y itself
see Ref. 15)

~J Eg —E2
3e

10u

= -,'(1+—'„' ~) + O(~') . (5.12}

This dependence of h is only weakly nonanalytic:
h-ItI' ' 5, 2-n-t+~, -=2+~-268"/324.
The second derivative is therefore probably not
divergent at t =0. Equation (5. 12) shows again
the very poor convergence of the E expansion for
this problem.

Since &5 &0, this dependence of g on t satisfies
an exponent inequality derived by Griffiths. If
&5 &0 this would not imply a violation of the Grif-
fiths relationship since this would also imply the
05 was a relevant operator and a new fixed point
might dominate the critical behavior. In this
case & and P would change from the Ising-type
values.

Another important qualitative change caused by
0, is the shift in the value of the order parameter
from the simple Ising symmetry. Writing M
=+Mz+MDps (D for diameter),

M — ' [1+up —~ (up)' ——"u& (up}

+I(up)'(f-I}] —5 t.
(5. 14}

Again the direct term (r'U is determined more
precisely than the kernel term, -sg. Note that
MI ——-6tf'/uY'~ "B so that the nonuniversal scale
factor exp[(D&+7)/2(d+c)(1-u)] multiplies both
terms. At leading one-loop order, Eq. (5.15)
reduces to

iM = — ) I ——() )))I .V5t 3 3 1
u 5 5

(5.15)

(5.16}p = —+M~@5 —V

The h/M match-point expression for BA/Bt is

There are again singular and backgroundlike
contributions. Note that even if the Y' ' singular-
ity were too weak to observe directly, then far
from the critical point Mv - -', t/u, while near the
critical point Mv -

—,t/u, thereby shifting the di-
ameter "background".

The complete density diameter is affected by
true background terms and the mixing of fields

8& ) (P (~ ))) ta (q~(( )) (
" ) ~( ) (~2D)(( -)

Bt 2 2q t cu ' (n/&uv) &u 1 —n/&uv

(s. 17)

To leading one-loop order this simplifies to near the critical point

BAr 3Y t t( i(3
et u u

(

showing the contrast between direct and kernel
integral terms. To the same order the full-fluid
diameter is

(5.18)

up, = Bt+V t [B-Y"'- —.'(Y'" - 1)]

+3V,t[Y-'"- .'(Y "'- 1)] . -(5.19)

(5.20a)

The full result obtained by combining (5.18}with
(5.14}gives better values for n and X„extra
correction-to-scaling terms, and an adjustment
of the amplitudes of doubtful value. The general
features are the same as (5.20). Far from the
critical point

up@
——(B+f 'Vs + 3Vs)t,

up&= (B+—', v, +v,)t- —'v, It[()' 5 2p, ItI&-o

(5.20b)

+tl(1 n) =& 324@
~2 (s.21)

Finally the result for the non-Ising part of the

The kernel integrals shift the apparent linear term
(for simplicity, Y is taken to behave like

I
t

I

'~;
a nonuniversal proportionality constant is sup-
pressed) .

The relative strength of the mixing singularity
It I' and the new singularity It I

' 5 is hard to
assess due to the poor convergence of 45. To
o(c'),
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correlation length-1'& ratio R = I'&/$ =RI + VSR,
is

The Ising part A, is given in Appendix A and the
perturbation analytic for R in Appendix B.

VI. DISCUSSION

The inclusion of the leading asymmetric terms
to an Ising-type Hamiltonian provides a frame-
work for the understanding of critical phenomena
in fluids. Although some of the results are lim-
ited by the a expansion, the important qualitative
features are independent of perturbation theory.

First, the mixing of variables in the tempera-
turelike variable is shown to be a universal fea-
ture of asymmetric LGW Hamiltoni, ans. This is
not a simple revision of the Hamiltpnian variables,
but rather a "statistically generated" mixing which
is independent of perturbation theory. The proper
use of this mixing in, for example, the analysis of
the fluid diameter, requires that the nonscaling
nature of the Ising-free energy be considered. The
limitation to linear mixing [O(V,) only] is not in
contradiction to the geometrical ideas of Griffiths
and Wheeler' since their analysis applies to lead-
ing symmetric and antisymmetric behavior.

Second, the nontrivial interaction with a cor-
rection-to-scaling exponent ~, absent in symme-
tric systems, generates not only a scaling contri-
bution but also effective fluctuation-induced nonanal-
ytic shifts in the order parameter and field. These
will persist in all the functions of interest and

complicate the determination of background terms.
The E expansions of these effects are poor both
for the exponent &, and the amplitudes of interest.

If further additions were made to the Hamilton-
ian a similar division of effects could be made.
Some combination of operators can be determined
exactly by the equations of motion and are ex-
pressible in global form. The remaining terms
divide into scaling and nonscaling effects. For
example, at least one of the eigenoperators as-
sociated with y~ will have a kernel K-K„t SAz/
8M+K/3M corresponding to a diameter -t'. The
spectrum of singular contributions ~' 8 indicates
[at O(E)] that the new correction-to-scaling ex-
ponents associated with higher-order terms are
unlikely to be important.

In the present calculation the full crossover
forms of the new terms are given. In one sense,
this is inconsistent. Even the leading behavior is

weaker by O(~t
~

5) in the case of the 0, in-
teraction. By the use of crossover equations,
0( (t ~

+"~&) corrections are included, where
~v - —,'. There are many higher degree

operators (f q~) whose leading behavior is
larger than these crossover Wegner expansion 7

terms. However, this view can be misleading.
Each interaction in the Hamiltonian produces a
global contribution to the free energy. This may
separate into scaling power-law singularities and

background terms (kernel o0) but in any case it
deforms into a mean-field behavior away from
criticality. This was shown in the diameter,
where the Quid mixing of variables induces a
scaling contribution (coming from the tM /2 part
of the free energy) which behaves like ~t ~' near
the critical point and crosses smoothly to a ~t )

behavior farther away. In this case the critical
exponent o.' is returning to its mean-field value of
o.'=0. This linear behavior is not abackground
term but is understandable as the mean-field internal
energy. There is also a nonscaling term behaving
like t(

~

t
~

—1) near the critical point but vanish-

ing in the mean-field regime. This sort of be-
havior cannot be reproduced by a Wegner expan-
sion of finite order and yet clearly needs to be
considered if a consistent analysis is to be under-
taken. This global view distinguishes the present
approach from the work of Ley-Koo and Green
which includes the mixing of variables and the f q&'

interaction in a phenomenological scaling setting
consistent with the Wegner expansion to first
order (The .value of 45 is, of course, only given
to O(e) with a, =1/2+a. ) A scaling format is
equivalent to dropping the analytic parts of the
fluctuation terms (setting K=0) and cannot give
a good account of the background and background-
mimicking terms. The crossover method sup-
poses that the computation of the free energy and

other quantities should be ordered by the relative
size of the mean-field contributions in order to
provide a smooth matching away from the critical
point; full crossover expressions then follow the
development of these mean-field terms into their
critical limits. The crossover calculation method
used here, ""although it has limitations, appears
to provide a straightforward approach to higher
order in a. Other crossover methods might also
be used, "but do not seem as easily extended.
Although a global crossover equation is ex-
changed, the poor convergence of the e-ex-
pansion may prevent it from being more effective
than a local Wegner expgnsion in practice, at
least near the critical point. ' An extension of
the asymptotic series analysis for critical. ex-
ponents ' to the equation of state, if possible, may
be needed before detailed quantitative comparisons
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can be made.
Finally, as is made evident by E(ls. (5.6) and

(5.9), neither the iso-M nor coexistence curves
is analytic in t. Thus, p(p„ t) is generally not
analytic and if h —= i), —t(,, —p, , t —p, t'/2 (the degree
of precision necessary here), p, is the slope of
the coexistence curve, ' but p, 2 is not the curvature
(it is, in principle, identifiable with the curva
ture of the iso-M line in the mean-field region).
The asymptotic mean-field curvature of the coex-
istence curve, as well as the asymptotic linear
diameter is a mixture of genuine background and

fluctuation terms. The proper and complete in-
terpretation of experimental data must take these
considerations into account.

l
u~2M

-4 [2(L + 2L -f)+ (L+ 1)(L+2)

+ 2L+2 +q(L+1)] (A6)

The match point for A. is

8 =g 1 —— 1+ 1+q 1-4 (Av

for hlM:
A (

e "'=B.I-e ~ l(f-I)+q'
l . (A8)4
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APPENDIX A: ISING PERTURBATION SERIES

In this appendix the perturbation series for the
Ising case are summarized. Some relationships
between matching points are given. The free en-
ergy to O(e') is given by

The match point for F2 is more complicated since
L is a function of q even at lowest order:

e ' '=8 1+q+ — 2L +3Q+2-

1 (s')' (It/A) '
hA = -— -8, A '+8N z2 ' L+1 2p '

4

u2M 2K2
+

8
(L'-f), (A1)

where g'=t+uA'M'/2, L, =lux'/A', and f=4+))'
—8A. (X= 1.17). By differentiation

aA 1
A —= ——[(a/A) ' B,]z'A -'+~u((."A '(L+1)(L+2)

+ e (7L'+ 20L+ 10 —5f)8 (A10)

+(sP)
L

(L ~ 1))[1~ q(1-a/L)] '

with L = —(1+2q)/(1+q) on the right-hand side.
A more convenient match for I'2 involves two

matches:

h uS (I')M Y'i (I')I' =—+
M 3

u2M2
+

8
(L'-f+2L),

Ah= M'uA'A —+ (L2 f)—bt 4

(A2)

(As)

where the h/M match point is used for h/M and the
)' match point is

A g

e ' I = I+e (2f +1+q') l. (A12)
1 —(e/2) 4 j

(A4)

where q =uA'M '/», '

Ai', ([1+q(1-e/2)]()t/A) ' —(1+q)BJ

t) h (a/A) '-B, u
u MX2

' +—[(L+1)(L+2)+L'-f]
4

+
8

(L'-f+2L),

This is the point at which the large bracket in Eq.
(A6) vanishes. The series for R = I',]"is

+"~e-'& '1-'- -2u2 1+32
12 2& 2 I, 8

(L +)) + (1 —4I))
u2q 15

uK2

+ —(2L2+ SL + 2 —f ) + —q(7L~+ 20L + 10 —5f )4 8
q2

+—(L+ 1)u,
(A5)

Q+ [ /+ I —,' (I,+1)] . — (A12)

In (A13) I= —2X. By dividing the I', series by
R an expression for the correlation length is
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obtained,

, (I+ai', /~')
K (A14)

By inserting the value of L used at any match
point the match point z' can be related to. $ '. For
example, at the h/M match point,

2 2 4
1+q —1 ——— q(1 —q/2) (f + 1)up up (uP)'

' ~ )2 '
2

~
))) -S'-))-V)' —

) ")—"Pq & (uP) q q' &Ll
18 2 2 (4

(A15)

These series imply

p = —6Q+3Q Bo —+3 Q
u
6

2 —I/v -q=uB, -u'. (A16}

APPENDIX B: NON-ISING PERTURBATION SERIES

f

q,uA'M'/5! Therefore,

The effects of adding the interactions 0, and 0,
to the Hamiltonian can be divided into two parts.
First, when performing the loop expansion for
fixed M the Ising Hamiltonian defines effective
two-, three-, and four-point couplings (cf. Wal-
lace and Zia"). In terms of a shifted field

M 'A.' M»

+ z'(L +1} 2+—w(L'-f) I,
QMz'

» 2

8 3 j
(B4)

QMA u A
2K

qual
+ 2(Vq)) +

) q) +

with e'=t+uA'M'/2. The presence of the v, O,
shift

QA' QA'
(1+v, M),

(Bl) where hh is given by Eg. (A3).
03 has no mean-field term but does contribute

to the two-loop diagram shown in Fig. 1. Its val-
ue,

(L+ ) g 2 4
6 3

I 4 8+ —(L -f) zA

uMA uMA'
(1 g

)
(B2) is added to the result of (B3) to give

—V'+IS (-V')()+2 ~M + a'v v QM'P'

3 31 A~= —3, (hh) —6, K [2(L+1)~+2(L2-f)]

These shifts show that the v, e, insertions are
O(v, M) smaller than the Ising terms. The pertur-
bation series for the Ising case is modified by the
inclusion of these factors. The linear effects are
easy to work out: For the Helmholtz potential,

bA) =6» (hA),

2 K 8 4 8
6 =-—, ——MQ —-t (B3)

3 QA' BM 3 bu &so

l w(I'-f)} . .

f (~a)
3) QA' ' 3 ' 3 et

+ +A +—A = —h —+O(e'} (B6}

confirming the mixing of fields to two-loop order.
The other eigencombination A, =A, + S,(u)A, is

Combining Eqs. (B3)-(B5)with E)Is. (A2) and (A3),

sv 8 ~gl 8 8
6uA' &M ig3 sw su '

where LA is the fluctuation part of the Ising-free
energy [Eq. (Al)]. In Eq. (B3) w =uA'M'.

The second contribution is from the new cubic
and quintic interactions. To two loops the quintic
term has only the mean-field contribution

——uMv
I

FIG. 1. The sole contribution to theA; at two-loop
order. The slash on the propagator line indicates an
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w 2
~MsAe 6 3 s

A., = + ~ bh

—
& uMv3
2 ——uMv 3

(a)

+ [x3(L+1)'+—', u)(L3 —f))A '

uM'A' M'
+ t),h--, S3M(L+1)()t')'A '

P'

e ' 3=x'B 1-—up 3(f —1)+—(f+1)0 4 2
(B6)

&MAL'
+

6 [ x'( L+1)' +3u)(L' f)]A-', (B7)

where the fact that S, is O(u, e) has been used.
The match point for A, is therefore

2u vsM

(b)

FIG 2 Diagrams for l&(k) the contribution to
& = F~(0)$ is given by taking 8/&k atk =0. The onq-

loop 03 insertion is shown in (a) and the two-loop in-
sertion of 05 in (b).

Note that this differs only at O(e3) from the h/M
match point. The series for h, is obtained by
differentiation:

+ —(K3)3A ' I(L+1)'+ 2q(I.'-f)+ q[2 (L+1)(L+2)+—(L' f+ 2L)]I-.

Again the match point for h, is somewhat clumsy; to lowest order, L = —(3+ 2q)/(3+ q).
The ratio R = I', g' can be divided into RI+v, R, ; again R, =6,R, +R, . To the order needed

(B9)

R = —', M (+( )-— (B10)
V2

&G=v(}/) ——(v-(v&)') .
2 (C2)

R,"=u~M L+ 1 (B11)
Applying 6/at(x3) 6/6q (x, ) to the functional integral
defining G gives

corresponding to the diagrams in Fig. 2.

APPENDIX C: HIGHER-ORDER EQUATION OF MOTION
RESULTS

(-'q)3(x, )&(x,) —&(x, —x,) q)(x, )) = 0,
with A(X)=-h~(x) —h(x) which shows (y)
= J h(x)a G/at(x) +A'M. Consider inserting
[6/6q)(x3)][6/6q)(x, )] in the integrand:

(C3)

In Sec. II the equivalence of the 0, operator to
field mixing was shown to lowest order. Defining

(A(x, )A(x,)- r„(x,)6(x, -x,)) =0, (C4)

with I'„=t(x) —V33+uh'q)3(x)/2. Integrating E(l.
(C4) over x, and x, gives

f4 (4)4(x),'-. ', (Cl }
&„& —& x = I'„x =t+uh. 'BG et, C5

then the addition of v V to the Hamiltonian gives
the following change in the Gibbs functional:

a result that can be obtained by examining the
Hamiltonian. Applying [t}/at(x, )][6/at(x4)] to E(l.
(C4),

(xl) (x3} g( )q)3( )
9 ( 3} 4(x4) P ( }6( }

[q'(x,)P(x,)~(x.-x,)+ q'(x.)d(x.)6(x.-x,)] —,' [~(x,)& (x,)6(x, -x,}+q(x,}q (x,}6(x,-x,}]

+4(*.)4(*.)(&(*.—*.)()(,—|,I+ &(*,-*.»(*.-*,)) + ' ' (&(*,—*.)4(*,)+&(*,—*)4'(x ll) =() .

(C6)
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the field, critical temperature, coupling constant,
etc.

This result is intimately related to the operators
classified as redundant by Wegner. " In Wegner's
differential generator format, an operator is
termed redundant if it can be written (in the pres-
ent notation) as

(p ( )
5H 5$(x)

5y(x) 5y(x)
(C17)

where the second term is again the Jacobian of a
transformation corresponding to (C15). Wegner
shows that such an operator does not contribute
to the free energy at first order. The first order
contribution is, of course, just the expectation
value of the operator and its vanishing is just
(C16).

However, it is an error to consider such oper-
ators as having no physical significance. In the
present case, and presumably others, the inter-
action added to the Hamiltonian is not the full re-
dundant operator given in (C17); only the operator
fh„(x)g(x) is involved and therefore there are con-
tributions to the free energy, even in first order,
given by Eq. (C16). For the asymmetric LGW
Hamiltonian, the physical consequence is not at all
trivial: the fields are mixed in the temperature-
like variable.

The results obtained by functional derivatives
for correlation functions such as Eq. (C9) may be

)

recovered from Eq. (C16) by choosing a nonlocal

1& X2& XSy X~ h e

h~x$x .
= 0" xgx + (C18)

where the undisplayed terms represent the Jaco-
bian terms. Equation (C18) shows that any analy-
tic h dependence (compatible with the possible
symmetry of the Hamiltonian) may be introduced
into any coupling constant. With q= 1, a mech-
anism for providing the p-analytic regular part
of the Gibbs free energy is shown to reside in the
higher-order operators lt &. Equation (C18) also
shows that the operator f8~g has a definite anom-

alous dimension if t) has, given by dP —nq/2.
More conventionally, the coupling constant de-
pendence is removed from the leading power at y.
For p' theory, define hq=-y'(x)/6+(t-&'}y( )/xuA'.

The anomalous dimension of f (h~)"p is then
dp+s(e-17/2}. This can be a useful check
for calculations of anomalous dimensions of non-
trivial composite operators. ~ " Finally, Eq.
(C16) can be generalized to m-component fields
p&(x). Then with g &~

= 55C/5p&(x},

gince f is arbitrary the bracketed expectation
values must be zero for all (x„x„x„x,), yiei«ng
Eq. (C9). In the same way, any other relationship
obtained from the equation of motion or higher-
order partition-function invariances can be ex-
tracted from Eq. (C16}with a suitable p.

By iterating Eq. (C16}one obtains

(C17}
Inserting this into Eq. (C16) gives an expression
pf the form

(C19)
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