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The solutions of the Lorenz system are investigated by examination of their complex-time singularities. It is found

that the location and type of singularity that occurs for complex time is critical in determining the behavior of the

real-time solution. By direct expansion of the solution at a singularity its structure is determined. In general, the

solutions are multiple valued in the neighborhood of a singularity; a property that is intimately related to the

nonintegrability of the system. h. numerical investigation is made of the analytic structure of solutions exhibiting

turbulent bursts and undergoing period-doubling bifurcatiops.

I. INTRODUCTION

The system of equations introduced by Lorenz, '

dX—=o(r X),-
dV'—= -XY+RX —K,
dt

has provided a popular model for investigating the
"transition to turbulence" of nonlinear (dissipa-
tive) dynamical systems. ' For various values of
the parameters (o,R, B), the Lorenz system can
be integrable or nonintegrable, ' have a stable lim-
it cycle or "strange attractor", ' and exhibit "tur-
bulent bursts"' and other complicated sequences
of bifurcations. '

The integrability of a dynamical system is in-
timately related to its analytic structure. In the
1890's Painleve and co-workers' determined those
second-order, nonlinear ordinary differential
equations whose only "movable singularities", i.e.,
singularities whose positions are initial-condition
dependent, are poles (thus excluding those sys-
tems with algebraic branch points or essential
singularities). Of the 50 possible equations in

this class, 44 were found to be soluble (inte-
grable) in terms of known functions; the remain-
ing six led to new classes of functions; these are
known as the "Painleve transcendents. " Ablowitz,
Hamani, and Segur' have conjectured that these
transcendents may play an important role in de-
termining the integrability of partial differential
equations and hence the applicability of the in-
verse-scattering-transform methods.

The singularity structure of a dynamical system
is not only relevant to determining its integrability
but can also provide a means of obtaining deeper
insights into the "chaotic" or "turbulent" be-

havior of its nonintegrable regimes. The recent
work of Morf, Orszag, and Frisch' indicates that
the growth of mean-square vorticity ("enstrophy")
in a three-dimensional, inviscid, incompressible
fluid is caused by a real, finite-time singularity
in the solution to the equations of motion (Euler's
equations). They conjecture, as did Leray" for
the Wavier-Stokes equation, that the singular be-
havior of the solutions to Euler's equations plays
an important role in the onset of turbulence.
Further work of Frisch a,nd Morf" contains de-
tailed studies of "intermittency" exhibited by non-
linear systems and shows that the high-frequency
behavior is determined by complex time singulari-
ties.

In this paper we present an analytical and num-
erical study of the analytic structure of the Lor-
enz system. One of the most important features
revealed by this study is that, in general, the
singularities have a complicated multivalued
structure. This multiple-valuedness seems to be
intimately related to the nonintegrability of the
system. Segux has found certain special parame-
ter values of the Lorenz system for which inte-
grals of the Inotion can be identified. In the cases
where more than one integral can be found the so-
lutions can either be expressed in terms of the
elliptic functions or else the equations reduced to
one of the Painleve transcendents. Thus the
"Painleve condition, " i.e., the property that the
only movable singularities are poles, would ap-
pear to be a useful guide for determining the in-
tegrable regimes of this system. However, for
other parameter values, integrals can also be
found without the Painleve condition being satis-
fied. Here, deeper properties of the analytic
structure of the solution are important. In gen-
eral, however, the system is completely nonin-
tegrable and the singularities are organized in a
complicated manner on an infinitely multisheeted
Riemannian manifold.

2157 1981 The American Physical Society



2158 M. TABOR AND J. GNEISS

II. LOCAL STRUCTURE OF A SINGULARITY
AND THE PAINLEVE CONDITION

We first of all introduce the scaling'

X Y Z 1
X —, Y», Z», t-et&

oE o6 ~(TR

from which it is easily deduced that

~=1, P =2, y=2,

a =+2i) 5 =+2$) c =-2 ~

(2.3)

(2.4)

thereby transforming the Lorenz equations to the
form

dx
dt
—= Y-creX)

To examine the behavior of the solution in the
neighborhood of the singularity at t* we make the
ansatz

2i
X=( ~) ~ a~(t —t»),

f=0

dY
dt
—= —XZ+X- cY) (2.1}

(2.5)

dz—=XY- cBZ.
dt

In the limit e-0 (R -~) these equations reduce to
a conservative integrable system and the solutions
can be expressed in terms of the Jacobi elliptic
functions. e These functions are doubly periodic
(i.e., periodic in both real and imaginary direc-
tions) and have singularities, which are simple
poles, arranged on an (infinite) periodic lattice in
the complex t plane.

We consider the leading order behavior of a
singularity at t =t* by setting

a
(t t*)"' (t t')"

ao=bo=co=1,

which follows trivially from Eqs. (2.5):

(3o —2B —1}»
a =

1 6 1
= -0'E'

(B —1 —3o)E
C1=

(2 8)

(2.7)

Z —
( }» Q cg(t

f~
On substitution of these expansions into Eqs.

(2.1) we obtain the following sets of rela'tionships
between the coefficients:

c
(t--t+)»

(2.2} and for j=2, 3, 4. . . ,

—0E'Qf

J-1 1

2

'a '
f-1

2 (2.8}
4=1

2 2 j-2 cf f-1
-2 g a&»b» —cBci,

0=1

Owing to the form of the coefficient matrix in the recursion relations (2.8) consistency conditions must

be imposed when j=2 and j=4 (for these values it has no unique inverse). If these conditions, which im-

pose restrictions on the parameters (o, », B}, are satisfied we can solve for the coefficient sets (a„b„c,)
and (a„b„c,} and hence for all (a~, „b).cHowever, the solutions for j =0, 2 will depend on an arbitrary
parameter; that is, (a„b„c,) and (a„b„c,) will be determined up to a vector that belongs to the null space
of their respective coefficient matrices. Thus, the general solution at a singularity will depend on three
arbitrary parameters, one each for j =2 and j=4 and the actual value of t*, providing, of course, the con-
ditions on the parameters (o, e, B) are met. These conditions are, for j =2,

»»(6o» oB —2o)-=B(B —1)e»

and, for j=4,
Q2

(B —1)[57(o——1)—15(B—1) +24] =»»o(2o —1)9

(2.9)

(2.10a)

» 2o -B —5 B(1—o»»)
2(l +B -o)a',c,» +»' + 20'01 +BQ1C1 = 0 ~ (2.10b)
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There are two conditions when j =4 (apart from
the "trivial" one e =0), since the inclusion of an
arbitrary parameter in the solution for (a„b„c,}
"splits" the condition for (a„b„c,). We could
have used the consistency condition at j =4 to fix
the "arbitrary" parameter and relax condition
(2.9). In this way a two-parameter branch of the
general solution at a singularity could be found.

In general, the conditions (2.9) and (2.10a)
specify e and B while (2.10b) determines e. For
these values of (o, e, B) the ansatz (2.5) is valid,
i.e., the solution satisfies the Painlevk condition.
These values have been given by Segur, ' who notes
that the Lorenm system satisfies the Painleve con-
dition w'hen

{i)o =0. The equations are linear and this case
is not included in the ansatz (2.5).

{ii)o =-'„B=1, R =0 (e =~). The equations have
two exact integrals and the solution reduces to el-
liptic functions.

(iii) o =1, B =2, R =o~ (e =3). There is one first
integral and the equations reduce to the second
Painleve transcendent.

(iv) o =-'„B=0, R(e) arbitrary. There is one
first integral and the equations reduce to the third

Painleve transcendent.

The other cases mentioned by Segur are as foll.ops:

(v) B =1, R =0, (e =~), o arbitrary. There exists
a first integxal but the Painleve condition is not
satisfied.

(vi) B =2o, R(e) arbitrary. There exists a first
integral but again the Painleve condition is not
satisfied.

For case (vi) we note that when B =2o, condition
(2.9) is satisfied but conditions (2.10) are not. We

interpret this as implying that the satisfaction of
one consistency condition indicates the existence
of one first integral. In view of this we suggest
that since (2.9) is also satisfied for B =1 —3o, an

additional case exists:

(vii) B =1-3o, R(e) arbitrary. The consistency
condition (2.9) is satisfied and a first integral may
exist (which we have not yet been able to identify)
but the Painleve condition. is not satisfied.
We also note that condition (v} is not related to
the consistency conditions and is presumably a
property of a more general form of solution which

vie shall discuss in the next section.

III. LOCAL STRUCTURE OF A SINGULARITY: GENERAL PROPERTIES

The expansion about a movable singularity is, in general, not of the Painleve-type and the resulting psi
series contains logarithmic terms. The form of this expansion for the Lorenz system is (where, for no-

tational simplicity, we set the pole position t* = 0)
oo

X-— ok~ t lnt
k=o f=o

F=, Q Qb, qt (t lnt)',
k= 0 /=0

(3.1)

g = o Q +coact (t lnt)
k=0 ~=0

A straightforward but tedious calculation gives the recursion relations

r
2k'+j -1
2 2

—(b +1)&a+i~ -o

—(0+1)bo+, y o god-o ebon i 2 gaol-~c~ 2 gaol- co —2 Q Q aa (, g ~ ~
wt=0

P 1 k-I
—(b +)Ic+o, ~ o

—eB&o~ o
—2g &oy-~boo-2+ soy-mba~ 2 g g eo i, g ~b&~

85=1 SCM g =I ill~

(3.2)
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To solve for a given (a», b», c») one must know,
in general, the coefficients (a„o,b„o, c 8) for all
(&, P) in the range

0~&p~& j,
0~20. +p ~2k+j .

(3.3)

Thus, for any coefficient set (a», b», c»), k,j &0,
the recursion relations are not closed.

The coefficient matrix in (3.2) is singular when

(i) k=j=0,
(ii) 2k+j=2,

(iii) 2k+j=4,

l.e.,

l.e.,

k=1,
k=0,
k=2,
k=1,
k=0,

j=o,
j=2
j=0,
j=2
j =4.

k-1 1

2k —2 2

At every point where the coefficient matrix is
singular, consistency conditions are imposed on
the solution and vectors belonging to the mill space
of the solution are introduced. The cases k =0,
j =2, and k =0, j =4 have already been described
in the previous section.

The recursion relations for all coefficient sets
(a„,b„, c„,) are closed and take the form

and using the values of (a«, b«, c«}as given in Eq.
(2.V) we obtain

62
z =—[B(B-1)- 6o'+cB+2o].9 (3.8)

We note that y is of order A, and that it does not de-
pend on the eigenvector introduced at k =0, j=2.
The eigenvector at k =1, j =2 is specified by the
consistency conditions at k =0, j =4. Finally, we
recall that the eigenvectors introduced at k =0,
j =2, and k =0, j =4 are, in general, complex con-
stants of integration. The above considerations
show that the recursion relations (3.2} are well
defined and consequently (3.1) represents the gen-
eral form of the formal expansion about a singu-
larity.

In order to investigate the leading order loga-
rithmic terms in the general expansion (3.1) we
introduce the generating functions

If the consistency condition (2.9) is satisfied, then
X =0. In this case the logarithmic terms in the
psi series enter as powers of t41nt- We will return
to this point later.

In a similar manner the parameter y is deter-
mined by the consistency conditions at k =1, j =2
which yield

—(2c-1}+
~ ( 6(3 & 3 & ( 3

(3.9)

(3.4)

(a, b, c ) =(1,1,1),

(a„,bio clo)

(a„,b„,c„}= (y, —Sy, 2y) + (0, 0, x'),

(8.5a)

(3.5b)

(3.5c)

The consistency conditions required for k =0, 1, 2
are trivial, i.e., they are identically satisfied
without restrictions on (o, e, B}or previously in-
troduced eigenvectors. It is easy to show that

4 (x) = gb, ~',
k=p

4'(x) = Qc,~,
A=p

where

x =f2lnt .

(3.10a}

(3.10b)

(8.10c}

(3.11)

where A. and y are parameters whose values are
fixed in the following manner.

The value of A. is determined by the consistency
conditions introduced at k =0, j =2. Explicitly, we
have (cf. Sec. II)

1 1 a~ X -g6apy

2' 0 2 b~ + X Qpp 65py 2Qp&cp]

20)kc ] (-l) i aBc —2 b-„„
(3.6)

Using the recursion relations (3.4) we can deduce

2x —-8++ =0,d8
dx (3.12a)

2x ——P4 +26% =0,
dx

2x——24' +284 =0,d4
dx

(3.12b)

(3.12c)

from which we obtain the following (closed) differ-
ential equation for 8:

which yields

8x =2a„(b„-ae)+cBc„, (8.V)

2H + =x—-8~~+e(e'- I},d'8 d8
dx dx

where

(3.13}
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We note the special values at x =0,

a«~e «)= sn(a«~, k)

Using «=t'lnt, we find

2t at(lnt)+
«(t) —

( ( )~ )
+o(t) .

(3.21}

(3.22}

8 =1, —=x, =2y.de d'e
d« d«

(8.14}

Before attempting to solve Eq. (8.13) it is amusing
to determine whether it is actually of the Painleve-
type. We make the ansatz

e(«) = ' ge, («-«,)' (8.15)
(« —«0

and find that

When 0. and P are not both positive, or not real,
the solution of (8.19) will take different forms that
are all expressible in terms of combinations of
Jacobi elliptic functions. Rather than write out

each case, we note that (a, P) are real when

2X~+10y ~ 0. (3.23)

Furthermore, the modulus k of the elliptic func-
tions used to express the solution is eithex' zero or
one when

3
80=1, 0, =~

0

1 x 1 21K
2 16+ 4

(3.16) OX'

Vx'-10y =0.

(3.24}

The coefficient I94 is arbitrary and the corxespond-
ing consistency condition requires that A. =0.
Thus, in general, Eq. (3.13) is not of the Painleve-
type. In the special case of X =0, as mentioned
earlier, the expansions (S.l) involve powers of
f4lnt. Some of the properties of the leading-order
logarithmic terms in this x'epresentation are des-
cribed in the Appendix.

In order to solve Eq. (8.13) we make the. sub-
stitution

sn(z, 0) = sin(z)

sn(z, 1) = sinh(z),

we might expect special. types of solutions when
k' =0 and k' =1. By algebraic simplification

W' —10y =
9 [(8 —1)'+(c+l)(B -1)+So(1-2o)]

('3.25)

e =«sf («~),

which yields

f"=2f' @f, -

(S.IV)

(3.16}

and for Xe 40, VX,
2 —10y =0 if

8 =1+90.

Ol

(8.26)

where primes denote differentiation with respect
to the argument of f . Using the special values
given in (8.14) we find

8 =-', (So +1).
In addition, we find that

(3.2V)

(f')' =f'- 6Xf'+W' -10y, (8.19) 22'+22 y =2y'}}2}2}—2}+2—14r]( )
whi. ch can be solved in terms of the Jacobi elliptic
functions. Let

a =Sr+ (2x'+10y)~,

p =Sr —(2~'+10y)~,

and define the (squared) modulus

=0

which, fox' A. &2&0, is satisfied when

OX'

B =30+Vi .

(3.26)

(3.29)

(8.30)

(pf a)2 (8.20}

whex'e sn 1s the Jacobl elllptlc funct1on and hence

where we assume a, p) 0. The solution of (3.19) is
We recall from Sec. II that there exists an in-

tegral of motion when B =1, v is arbitrary, and

R =0 (e = ~}. Of all the known integrals this alone

appeared to be unrelated to the structure of the
singularities. Our analysis suggests that the ex-
istence of this integral may, in fact, be related to
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the conditions k =0 and k =i. However, it is im-
portant to emphasize that the above analysis, al-
though interesting in its own right, only indicates
that the special values of B given in (3.26)-(3.30)
may result in the corresponding solutions having
some preferred property near a singularity. At
this stage the most we can say concerning the ex-
istence of integrals of the motion is that the con-
ditions (3.26), (3.27), (3.29), and (3.30) probably
provide restrictions on the parameter space in
which these integrals may be found. In Fig. 1 we
draw the lines given by Eqs. (3.26}, (3.27), (3.29),
and (3.30} in the B,o plane along with the lines
B =2c (for which an integral of the motion is known)
and B = 1 —3o (for which we believe an integral to
exist). There are a number of points at which two
or more of these lines intersect and which do not
correspond to parameter values for which an in-
tegral is definitely known. It is at these points,
e.g., o =~, B =& that we would predict an integral
is most likely to be found. Our numerical evi-
dence to date is not (and cannot be) conclusive
and further analytic work to find restrictions on
the corresponding values of & is required.

IV. NUMERICAL RESULTS

In order to investigate the complex-time behav-
ior of the Lorenz system we use two different
techniques: integration by Taylor series expan-

sion and integration by finite difference methods.
The former method enables a rapid location of the
singularities (along with their leading order be-
havior) and the latter enables a detailed study of
the structure of a given singularity.

Integration by Taylor series expansion is per-
formed here by using an algorithm developed by
Chang and Corliss. " These authors have develop-
ed accurate methods for determining the radius
of convergence of a long Taylor series and although
the primary use of their algorithm is for rapid in-
tegration along the real axis it accurately locates
the singularities nearest the real axis and de-
termines their leading order behavior. Applied
to the Lorens system the singularities of X(t),
Y(t), and Z(t) are always found to occur coincident-
ally and in complex conjugate pairs. More de-
tailed information about the singularities, e.g.,
accurate determiriation of their order and multival-
uedness is provided by using the finite difference
methods described below. Frisch and Morf" have
made a preliminary study of the singularities of the
Lorenz system in the strange-attractor regime,
R =28, also using Taylor series methods. How-
ever, since they restricted their integrations to
the real axis the rnultivaluedness of the singular-
ities was not revealed. We add that the Chang-
Corliss algorithm can be extended to integration
along paths off the real axis and this provides a
powerful tool for locating poles deep into the com-
plex plane.

Integration by finite difference methods in the
complex t plane is achieved by setting t =I +is and

X =X„(u, v}+iX((u, v),

Y = Y„(u, v) +i Y~(cc, v),

Z =Z„(u,v)+iZ, (u, v),

(4.1)

where R and I denote real and imaginary parts,
respectively, thereby obtaining the set of six (real)
first-order equations:

dry = Y~ -mX~,

= YI -(re~,

- -0.5

dY~
dN

= —X„Z~ +X~Zq +X„-cY~,

dYI =- X~ZI +XIZ~+ XI —& YI,

(4 2)

FIG. 1. Lines in the &,0 plane for which the modulus
k~ is either 0 or 1. Shaded areas correspond to regions
where k2 is complex. Intersection points E, E, and 0
correspond to (S ~ o} values of (s, 1}, (V, f), and (+2-y), respectively.

dZ~ =X„Y„-XIYl —eS

dZI
dQ

=X„YI+Xq Yg- cBZI ~
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The corresponding set of equations in terms of
derivatives with respect to the imaginary time
component v are easily deduced from the Cauchy-
Riemann conditions By restricting oneself to
contours made up of straight lines parallel to
either the real or imaginary axes, standard in-
tegrators may be used without modification. Here
we use the highly efficient algorithm of Shampine
and Gordon'4 which is based on a predictor cor-
rector method. Furthermore, by avoiding the use
of complex arithmetic and working with double
precision real variables one is able to achieve a
high degree of accuracy. The method was thoro-
ughly tested on differential equations of the form

d (z) +f"(z) =0, n &0 (4.3}

with the general solution

1f( ) -[(s 1)z+f-(n-1)) 1/n-I i (4.4)

which has a movable singularity whose position is
determined by the imtial condition f,. For ex-
ample, in the case n = 2, f (z }has a simple pole,
whereas for n =3 the singularity is a square root
branch point. Integration around closed contours
not enclosing branch points yielded initial and

final values agreeing to within 9 or 10 decimal
places. A similarly high degree of accuracy was
obtained on repeated integrations around contours
enclosing branch points. This sort of accuracy
was carried over, in general, to the set of "com-
plexified" Lorenz equations (5.2). We also men-
tion that the scaled equations (2.1) seemed to be
much more stable under complex integration than
the unscaled equations (1.1).

The order of the singularities can be accurately
determined by evaluating the integral

0.05 in u and 0.005 in v). We remark that our first
attempts to locate the singularities were, in fact,
performed by repeated applications of Eq. (4.5)
evaluated around systematically chosen contours
of ever decreasing size. This rather inefficient
approach did, however, reveal the all important
multivaluedness of the singularities. It was these
empirical observations that first led us to con-
sider expansions of the type employed in Sec. III.

For the parameter values of cr =10 and B =3& a
strange attractor first appears at approximately
R =25. For higher values of R this attractor
"shrinks" down to a periodic orbit. At around R
=166 the periodic orbit starts to exhibit turbulent
bursts and undergoes a complicated sequence of
bifurcations which rapidly results in the appear-
ance of a new strange attractor. This behavior has
been studied by Manneville and Pomeau. ' Here we
examine in detail the analytic structure of the so-
lution in the vicinity of one such burst which occurs
at R =166.1 (e =0.0245366). In Fig. 2 we show
the real-time behavior or Z(t) with a fairly low
degree of resolution. In Fig. 3 we show the "burst"
region in more detail and the corresponding singu-
larity structure, nearest the real axis, in the
complex t plane. We observe that the positions of
the singularities are correlated with the maxima
of the real-time solution and that the amplitude
of these maxima is a fairly smooth function of the
distance of the corresponding singularity from the
real axis. This dependence, which is essentially
inverse quadratic as would be expected on the
basis of the leading-order behavior (2.3), is plot-
ted in Fig. 4. One extremely useful consequence
of this correlation between real-time extrema and

singularity position is that the search for the lat-
ter is greatly facilitated by inspection of the form-

1 Z'(t)
dt = g Nzero g Npale q

2m' + Ziti poles

(4 5) 1.82

where prime denotes derivative with respect to
(complex) t and N„l. and N...o are the orders of the
poles and zeroes, respectively, contained within
the closed contour e (taken in the anticlockwise
sense). Similar integrals may be evaluated for
Y(t) and X(t}: The integrations were performed
by Simpson' s rule using anything up to 1000 points
per side of contour. In the case of the contour
enclosing regions devoid of poles and zeroes the
integral (4.5) gave a value of zero to at least eight
or nine decimal places, even for quite large con-
tours. For all the singularities investigated the
integral (4.5) gave values of 2.0, 2.0, and 1.0 to 5
decimal places for Z(t}, Y(t), and X(t), respect-
ively, when the siagularity wps isolated within a
fairly small contour (normally a rectangle of side

1.56—

1.30

1.04

0.78

0.52—

0.26—

(

410

Re (t)

I

820 1230

FIG. 2. Real-time behavior of Z (t ) for e = 0.024 536 6
showing turbulent burst beginning at about t = 820. Ir-
regularity of burst is exaggerated by low degree of res-
oluti. on. Initial conditions are @,&p Zp) = (0 0 0,0602,
0.1626).
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movable poles (the Painleve condition) we are able
to determine those parameter values for which
the system is integrable. This approach would
also appear capable of indicating the existence of
just one integral of the motion, i.e., less than the
full complement required for integrability. In the
nonintegrable regimes we show that the poles have
logarithmic corrections. Since the leading terms
of these corrections can be cast in the form of
closed recursion relations we have been able to
examine this multivalued property of the solution
without recourse to the full solution itself. Al-
though this analysis is not complete it suggests
the means by which certain parameter regimes of
the system, for which the solutions may have some

preferred properties, can be identified. Our vari-
ous numerical results show that the singularities
organize themselves in ways that directly influence
the real-time behavior of the solutions.

Finally, we would like to make a few remarks
concerning the analytic structure of dynamical
systems in general. In the case of the Lorenz
system the Painleve condition seems to provide a
Successful criterion for identifying (most of) the
integrable regimes. Clearly though, there are
many other systems which are integrable yet do
not satisfy the Painleve condition. A simple ex-
ample of this is furnished by the equations of mo-
tion for the pole representation of Burger's equa-
tion. Here, the movable singularities are branch
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points of order one-half. Here, our feeling is
that for such systems, providing the singularities
are of rational order, there will exist some trans-
formation such that the multisheeted Riemannian
manifold can be "unfolded" into a single sheet. A
Painleve-type analysis could then be applied. We
also add that the equations of motion for systems
of point vortices, although very similar in appear-
ance to the poles of Burger's equation have a much
more complicated analytic structure. "

The changes in analytic structure that occur for
nonintegrable motion are, as we have seen in the
case of the Lorenz system, very complicated. A
further example of this sort of complexity is pro-
vided by Hamiltonian systems. Here, it would
appear that a property of the nonintegrable regimes
may be appearance of a natural boundary. We have
recently studied such an object for the Henon-Heil-

I

es system and our results will be published in a
forthcoming note. "
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APPENDIX: FORM OF SOLUTION WHEN X = 0

a a
4

& a=o g=o
(A1)

When A. =0 it is appropriate to expand the solution
about a singularity (at f =0) in powers of t41nt:

with similar expression for 7 and Z. Using the notation of Sec. III, we find the following recursion re-
lations:

4k+j -1
4k+j -2

aug

4k+j -2 c~)

(k +1)ak+yf4 o~, akim 1

~ll
-(k ~ 1}b„i —I, , —5„,—Rgai c -2 a~ c

f j~
-(k+1)cking j 4 EBckq, -'2Q

akim bo —2
akim b,

m=1 tft =

g ak-i &- k
g=1

~~a~, g b
l =1 Nt=Q

(A2)

The coefficient matrix is singular when

(i) 4k+j -1=1,
(ii} 4k +j —2 =2,

i.e., k =0,
i.e., k =1,

k=0,

j=2
j=o,

'

j =4.
(A3)

By assumption (X =0) the consistency condition will
be satisfied when (k =0, j =2). It is possible to
show that the condition at (k =1, j =0) is trivial
and that the eigenvector introduced at (k =1, j=0)
is specified by the consistency condition (k =0,
j=4). In this way the recursion relations are well
defined and (Al) will represent the general form
of the solution when X =0.

As in Sec. GI the leading-order part of the ex-
pansion (A1} may be studied by defining

6»' +2» —= e(e*-1}cP8 de
dx dx

and when x=0,

e(o) =1,
ce

Y jCh x=Q

where

(A6)

(A4)
By expansion about a movable singularity, »0 (»0
xo},

where x =t~lnt.
We find that

e(»)= ' ge, (»-»,)'.
X XQ g Q

(A6)
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We find that Eq. (A5) is of Painleve-type. For ref-
erence we note that

5
Q

XQ

Equation (A9) is just Eq. (8.18) when X =0, ex-
cept here

5 5

84@0' ' 128@0

and 84 is an arbitrary parameter.5'
e(x) =«&q(x&),

(A7)

(A8)

Furthermore, if we substitute

e(x) =x~f(.~),
it is true that

f II 2f3

(A10)

(A11)

P will satisfy the equation

where y =x+.

(A9)

Equation (A11) is integrable in terms of the
Jacobi elliptic functions whose squared modulus
k2 is one-half (k' =-,'). Elliptic functions of this
type are called the Lemniscate functions. "
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