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The kinetic theory for time-correlation functions at low density is studied for potentials with bound states and
finite collision times. The contribution to the binary-collision operator from bound pairs of atoms with arbitrarily
large interaction times is shown to exist and to vanish for times large compared to the characteristic scattering time,
justifying the Boltzmann limit for potentials with attractive parts. The effects of such bound states and finite
collision times on the short-time behavior of correlation functions are illustrated by a detailed calculation of the
velocity-autocorrelation function for a square-well potential. Good agreement with the corresponding results from

molecular dynamics is obtained.
I. INTRODUCTION

The description of time-correlation functions for
a low-density gas in terms of the Boltzmann equa-
tion results from several limiting conditions on
the phenomena to be described. At sufficiently
low density it is expected that only the first term
in a formal cluster expansion for the dynamics of
the system is required, leading to the binary-col-
lision approximation.! The Boltzmann description
results from the binary-collision approximation
with two further limits: (1) neglect of spatial vari-
ations associated with the relative distance be-
tween a colliding pair of atoms, and (2) neglect of
the time variation associated with the interaction
time of a pair of atoms. These conditions effec-
tively restrict application of the Boltzmann result
to spatial variations over distances large com-
pared to the force range and times long compared
to the interaction time. For most transport phe-
nomena the relevant space and time scales are
the mean free path and mean time between colli-
sions, both considerably larger than the corres-
ponding force range and interaction time at low
density. Consequently, calculations based on the
Boltzmann equation are adequate for a wide variety
of problems in gas dynamics.? However, a com-
plete description of low-density time-correlation
functions over all space and time scales requires
the detailed description of the binary-collision
approximation. The effects associated with spatial
variations over distances of the order of the force
range have been discussed elsewhere.® The ob-
jective here is to study the time dependence of
spatially homogeneous correlation functions for
short as well as long times in the binary-collision
approximation.

One motivation for this study is to investigate
the dependencé of the short-time dynamics of the
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gas on the potential model. To illustrate this de-
pendence consider, for example, the velocity-
autocorrelation function. For a hard-sphere gas
the correlation function has an exponential decay
for all times, whereas for a Lennard-Jones gas
the initial decay is a Gaussian followed by expo-
nential decay at long times. The reason for this
difference is that the Lennard-Jones potential al-
lows a finite interaction time for a pair of atoms
while the hard-sphere interaction time is zero.
The short-time behavior of the correlation function
thus provides a more detailed picture of the binary
dynamics for a given potential than can be ob-
tained from transport data. Such effects are easily
observed in dense gases or liquids, where they are
often modeled in terms of parameters determined
from the first few initial time derivatives of the
correlation function.? The low-density gas is a
prototype case where these effects can be studied
at a more fundamental level. Even at low density,
such finite-collision-time effects are important to
describe observed line shapes in pressure or col-
lisional broadening.® Furthermore, computer
simulations of gases at low densities are now
available® to provide a detailed test of linear kinet-
ic theory beyond the Boltzmann approximation.

In practice, the origin of finite collision times
is largely associated with the existence of an at-
tractive part of the pair potential. For such po-
tentials the binary-collision approximation leads
to contributions from bound pairs of atoms des-
cribing trajectories bounded in space and charac-
terized by an infinite interaction time. In con-
trast, the Boltzmann description has no such con-
tribution and contains information only about the
asymptotic scattered states. There is a technical
problem, therefore, as to how the Boltzmann li-
mit is obtained when the possibility for bound
states exists. As noted above, the Boltzmann
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description is expected to result from the binary-
collision approximation for times long compared
to the interaction time. For the scattering states
the interaction time is of the order of T=0/v,
where o is the force range and v is the average
velocity. In this case it is easily shown that the
binary-collision rate rapidly approaches its as-
ymptotic limit for > 7. However, since the inter-
action time for bound states is infinite it is un-
clear what results for long times from their con-
tribution to the binary-collision approximation.
The fact that the time dependence for the bound
states cannot be scaled by the collision time, 7,
has been a persistent difficulty in the many-body
analysis needed to justify the Boltzmann limit at
low density, and most such discussions are ac-
companied by a restriction to short-ranged repul-
sive potentials. An exception’ is the discussion
of Kirkwood for the time-averaged single-particle
reduced distribution function. Its relationship to
the present work is given in Appendix C. The
analysis of the bound-state contribution to the
binary-collision approximation presented here
indicates that there are no fundamental problems,
at least at the low-density level. More specifical-
ly, the bound-state contribution to the correlation
function is shown to exist for all times, and to
vanish on a time scale of the order of 7 as re-
quired by the Boltzmann limit, although consid-
erably more slowly than the scattering-state con-
tribution. Detailed calculations are performed
here only for the special case of a square-well
potential, but the same qualitative behavior is in-
dicated for more general potentials.

Another motivation for the study of finite colli-
sion-time effects in the binary-collision approxi-
mation is their importance at higher densities
when multiple collisions are accounted for. Pre-
liminary investigations based on a “repeated ring”
kinetic equation indicate that part of the density
dependence of transport coefficients is due to
collisional damping during a binary collision due
to collisions with other particles of the fluid.®®
A close relationship between the short-time two-
particle dynamics described here and higher-or-
der-density effects is found; these results will be
described elsewhere.!®

In the next section the binary-collision approxi-
mation for spatially homogeneous time-correlation
functions is recalled. The collision operator is
described for a general continuous potential and
for the special case of a square-well potential.
Inparticular, the velocity-autocorrelation function
for a continuous potential is considered in Sec.
III. The associated collision integral is separated
into bound state and scattering contributions. The
bound-state dynamics are represented as a series

of contributions from portions of trajectories be-
tween successive turning points. A more detailed
analysis of the velocity-autocorrelation function
for the square-well potential is given in Sec. IV.
Uniform convergence (with respect to time) of the
bound-state series is proved for a typical one of
the collision integrals. The Laplace transformed
series is also summed to illustrate the analytic
behavior of the bound-state dynamics. In general,
a countably infinite number of poles equally spaced
on the imaginary axis, corresponding to partial
collisions at the edges of the well, are found for
fixed impact parameter and relative velocity.
Both bound state and scattering contributions are
evaluated numerically and their rate of approach
to the Boltzmann limit demonstrated. The veloci-
ty-autocorrelation function is calculated for short
times and much of the structure observed at low
temperatures in recent computer simulations is
identified as due to bound-state dynamics.

IL. BINARY-COLLISION APPROXIMATION

The correlation functions to be considered are
either self-correlation functions

Fip (t)=1im %(Nab(t)), 2.1)
where (**+) denotes an equilibrium average, N is
the number of particles, V is the volume, and
a(®,) and b(p,) are single-particle functions of the
momentum; or, total correlation functions

Fis (0)=1im %(AB(t)), (2.2)
where A and B are sums of single-particle func-
tions

N N
A=Zla<ﬁ,>, B=);b(§,). 2.3)

It is also convenient to define the average of b or
a to vanish. In the kinetic theory approach the
correlation functions are expressed in terms of an
average over the single-particle phase space, ob-
tained by first averaging over all degrees of free-
dom except one to give

Fia®)=J aBp(p 006 1), (2.4)
Fﬁa(t)=f dp.b(p W (By5 1) - (2.5)

The functions ¥ and ¥’ are the first members
of sets of functions (1< I<N)

PO .. 1= ‘ﬂ_ll—)lfdxm“'dxnpa(pd-t)),

w1 W
(2.6)
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WP 1 )= '(N_mfdx,., - dx g (1)
(2.7)

The time dependence of the reduced distribution
functions ${(p,,t) and ¥ (p,,t) is governed by
the first equation of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy (with specified
initial conditions). A formally exact closure of
this hierarchy is possible,!! leading to exact kinet-
ic equations for ¥¢* and »¢T’. This procedure is
briefly described in Appendix A, along with a de-

the self-correlation and total correlation functions
may be written in the form

Fan®)=J d5.7,(0 0@y B0t) » (2.8)

where f,(p,) is the Maxwell-Boltzmann distribution
and y(pB,,t) satisfies the “kinetic equation”!

2ol i -3, (2.9)

with the initial condition y(p,,2=0)=a(p,). The
operator M(t) is defined by

rivation of the binary-collision approximation to dz -
the exact kinetic equation. The result is that both M(t)=f§ie"M(z) ) (2.10)
}
M(z)=-z f dt e ;}(p,) f dp AT [z + Ly(12)] (e BPt— g o022t £ (12)(14+ AP ) . (2.11)

o

Here f,(12) is the low-density two-particle equil-
ibrium distribution function, and L(12) and L,(12)
are the generators for two-particle dynamics with
and without interaction, respectively. The para-
meter A equals zero for the self-correlation func-
tion, F‘, or equals 1 for the total correlation
function F*™’. Finally, P,, is the permutation op-
erator that changes the argument of the function
on which it operates from p, to p,.

It is often convenient to associate the domain of
the collision 6perator, M (z), with elements of a
Hilbert space whose scalar product is defined by

@0)=2 [ a7, @0 ). (2.12)

Moy(2) =ty , M (z)¢,)——fdte'ﬂf dGdgdr (G

% (e-l.(xz)t_ e-Lo(IZ)‘)fo(IZ)[‘/’g(

(The factor of 1/n has been introduced to make the
scalar product independent of the density.) The
correlation function may then be expressed in
terms of its Laplace transform

u(t)=f gfie"i‘(z), (2.13)

F2)=n(b,[z+M()]a). (2.14)

Furthermore, let {%} be a complete set of func-
tions in this space (e.g., Hermite polynomials).
Then M(z) may be represented in terms of its ma-
trix elements with respect to this set,

-38)z+L,(12)]

$8)+24,(G+3D)]. (2.15)

Here a transformation torelative and center-of-mass variables has been performed ﬁs (f)z+ p,)/2,
g=p,-p,, r=r,-1,]. Also L(12) and L,(12) are the two-particle Liouville operators for the relative co-

ordinates. In particular, I‘:o(12) is given by

£,(12)=E-%Y,/m.

(2.16)

There are well-developed methodss'_13 by which the scalar product in Eq. (2.13) can be calculated from
knowledge of the matrix elements, M,,(z). Consequently, it is sufficient to restrict further attention to

the properties of these functions.

The right-hand side of Eq. (2.14) may be rewritten in a form useful for the purposes of the next two sec-

tions as

Mope)= -3 [ danwno d?(%v—' e PrG -3 DFE, G5

+2eBV Ny x (G -

QAR } 2.17)
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where V(r) is the pair potential and
‘pl -_—.zf dat e‘“e"‘“z"d) ( )\),

To(€,Gs0)=1,(G -38)+ 2, (G+38) (2.18)

Equations (2.9) and (2.16) define the binary-colli-
sion approximation for space-independent time-
correlation functions. These results have been
expressed in a form such that the force does not
appear explicitly and consequently they apply for
both continuous and discontinuous potentials. In
the next section (2.17) is further discussed for a
general continuous potential with an attractive and
a repulsive part. The detailed analysis for the
square-well potential is described in Sec. IV.

III. CONTINUOUS POTENTIALS

In this section it will be assumed that the po-
tential is continuous, differentiable, and of short
range. Without loss of generality it will also be
assumed that the potential is negligibly small for
r>R,. The second term of Eq. (2.17) can then be
transformed to a surface integral over a spherical
surface of radius, R>R,, which thus refers to rel-
ative distances such that the particles are initially
free. M,,(z) can then be written as the sum of a
scattering state and a bound-state contribution,
distinguishing the two regions of phase space giv-
ing rise to different kinds of trajectories. Let
V(r) be a central intermolecular potential charac-
terized by an attractive and a repulsive part and
two turning points R, and R,. The pair will be
bound if its initial position and velocity satisfy

R,<7<R,, (3.1)

(%[EO-V(T)])WS'US (%[EZ-V(r)])VZ, (3.2)

where E, and E, are the values of the effective
potential

V'(r)=V(r)+ mv2b?/r? (3.3)

at »=R,, (the minimum of the potential) and =R,
respectively, and b is the impact parameter of the
pair. When the initial position and velocity are
outside the range defined by Eqgs. (3.1) and (4.2)
the pair will be free. The matrix elements of Eq.
(2.17) may be written as the sum of scattering and
bound -states contributions,

Myg(z)= M3 (2)+ M2 (2), (3.4)
with

M;%(z)=:;1fdﬁd§f0(1)fo(2)
x_[ d?R“(F,g)(;gn--'G,e'""’zp:%’

+ze-BV(r)¢ (w wﬂ)

(3.5)
and

)= [ dSagr,05,@) ) iR e

X e.aV(')‘p:(ig’ _17)-3) ’ (3-6)

where ¥ is defined in Eq. (2.18) and the functions

R, (T,g) and Ru('f,g) represent the restriction on
the integration:

R,(T,g)=6(R, -7)6(r -R,)
X 6(g = [4m(E = V)]*2)o([4m(E,-V)]V2 -

(3.7)
and

R, (T,g)=1-R,,, (3.8)

where @ is the step function.

To be more specific, the following will be limi-
ted to a discussion of the velocity-autocorrelation
function:

F(t)=(v,0,&)/v2). (3.9)

The normalized x component of the momentum
may be taken as the first member of the complete
set {1,

Zpl=px/[(ps7Ps)]‘/z=px/(ka)1/2 (310)

The Laplace transform of the velocity-autocorre-
lation function is then given by Eq. (2.13) with a
=hHh= zpl ,

F@)=nly,, [+ M@, (3.11)

It is known that the corresponding Boltzmann-
Lorentz collision operator has the momentum as
an approximate eigenfunction,' and this will be
assumed to be true also for the more general bi-
nary-collision operator considered here. The
correlation function is then determined entirely in
terms of the single matrix element, Mm(z),

Fle)~—t . (3.12)

z+M, (z)

Before proceeding with the analysis of M 1'l(z) it is
noted that the binary-collision approximation pre-
serves the symmetries of the underlying dyna-
mics, including time-reversal invariance. As a
consequence it may be shown that M*z )=1f/1 (z*).
It then follows that Eqs. (2.13) and (3.12) may be
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transformed to

1

- “dw 1 \
F(t)=2Re - cos(wt)iw+M1'l(iw), (3.13)

l.l( ) f dv v2esm 2/4

24F (kT)

f dr[v.¥ V,e® T

where ¥’ is the “scattered” relative velocity
[Eq. (2.18) with x=0]

providing the analytic extension of 1,1(8) to z
=iw exists.

Substitution of (3.10) into (2.17) allows integra-
tion over the total momentum and the angular part
of the relative momentum with the result

V) +ze® T (T -F)], (3.14)

The collision integral M 1,1(2) can be separated in
the sum of a scattering-states and a bound-states
contribution, as in Eqs. (3.5) and (3.6),

= ° gt ,~L(12) £ - - -

v'_zj;_ dt e~ste LUty (3.15)I My, (2)=M%,(2)+ M (2), (3.16)

e (z)-——- m 5/2 -dvvze-emuz/qfd;R F v)[V--e e-sv(r)(;.;r)+ze-gv(r)‘7,(‘7:_‘-;)] (3.17)
2 ey \RT) J e " ’ '

M (z)= -2z L (ﬂ) ” ‘“’dvvze“"'“’zl‘1 dTR,,(T,0)e?" 5. (¥ -¥), (3.18)
e 247 \FT) J,

where the functions R,,(T,v) and R,,(F,v) are defined by Egs. (3.7) and (3.8).
The bound-state part and the second term of the scattering part can be further simplified by performing

an integration by parts over the time

V’Ezf dt e“'e‘z‘m‘3=§+f at et D (3.19)
o o dt
where

;(_t) = 6-2(12)36 .
Substituting in Eqs. (3.17) and (3.18), these become

/2 ©
A78c =—n_(m § 2 -awwz/-if = = TV eBVING " BV (1T, G
me,(z) 24‘/;.(“,) , dvv3e dTR,,(F,0){¥:V,e [V+V7(z)]+ze )}, (3.20)
/2 pwo

~ bs =_ n l"_ 54 2 '6”"’2/4[ - - V(T Tn

MY (z)= -z 24ﬁ(kT) , dvv?e drR,(r,v)e vev'(z), (3.21)
with 'equation

- © e AV(=1) (&) dr’

"(z)= te™st —— | 3.22 =

v"(z) fo dte T (3.22) o(t)=6+ \/ﬁvbf' TR -V (3.24)

Let F(r)= f(r)? be the relative force of the pair.
From the equation of motion,

m dv(t)

B EE=Feen,

Eq. (3.22) can be rewritten
Fe9)= f dt et (r(~t))cos(~t),  (3.23)

where 6(t) is the scattering angle, whose time
evolution is formally given by the solution of the

and 7(¢) can be obtained by inverting the equation

_ r(t) ar’ .
t_[ {4[E—V'(r')]/m}17§- : (3.25)

Inserting Eqs. (3.23), (3.24), and (3.25) in the ex-
pression for M1 ,(z), it appears that the calcula-
tion of the collision integral requires knowledge
of the trajectory of the scattered pair at all times.
However, the symmetry of the problem allows

a great simplification to be introduced for the cal-
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culation of the bound-states part of #,,,(z). For
any central potential with two turning points the
orbit of a bound pair is symmetric with respect

to the apsidal radii. The time integral in Eq.
(3.23) can thus be reduced to an integration over
the transit time T(T,v) between two successive
turning points,

]

©

-2

- 6")“ = —
m pa )

Ty ()

[V V"hs= 2 dt e”*tf(r(~t)) cos6(-t)

m pay Ty (Fov)
(3.26)

or, since T, is independent of the section of tra-
jectory considered, i.e., T,(F,v)=pT(T,v),

(¢ 17 :
erveraw [T gy 1 () coslo(-t) - (p - 1)8,] (3.27)

where 6, is the change in angle between the two turning points. In Eq. (3.27) use has been made of the

properties
r(=t-pT)=r(-t),
6(=t =pT)=6(-t) -p8, .

The bound-state part of #, ,(z) can then be written

s =4z

5/2 pwo
b __n_(m 3 -Bmv2/4f = = -8V (r)
Pt 12mw/7r_(kT) —/:) dwve A Ros(1,0)e

=1

= ¢ X
xz e""””“””’f o )dt e = (r(~t))cos[8(~t) - (p —1)8,].
[

(3.28)
The series may be summed for Rez> 0 to give
/2 p o -
A7bs — _n [(m 5 3 -emvzqu % =BV (r) G(r,v;z)
M=+ T (kT) , dvvie dre T2 cosg 7 o ° (3.29)
where
- - T (Fiv)
G(r,v;z)=Rb.(r,v)f dt f(r(~t)){cos(~t) — T ®v cos[o(-t)+ 6,]} . (3.30)
o

The bound-state contribution to # 1,1(2) is there-
fore seen to exist for Rez> 0. To show that it
vanishes in the Boltzmann limit z - 0 is somewhat
more difficult. The integrand of Eq. (3.29) has
poles at

z =-;,—cosh"(coseo). (3.31)

Consequently, for trajectories such that cosg,#1,
the integrand is finite and vanishes as z - 0. How-
ever, the limit is clearly not uniform in T and v
because for those trajectories such that cosf,=1
the integrand is finite and nonzero at z=0. Since
the Boltzmann limit requires that all bound-state
contributions vanish for sufficiently long times

(z - 0), it may be expected that the trajectories
with cosf,=1 are of vanishingly small measure
with respect to all possible trajectories. The dif-
ficulties associated with the long time or small-z
limits for the bound-state contribution may be
traced to the quasiperiodic motion of a bound pair.
In contrast to the scattering part, any limiting be-
havior can only result from a phase averaging ov-

'er the allowed initial conditions. Consequently,
the velocity and relative coordinate integrals in
Eq. (3.29) should be performed before the limit

z -0 is taken. In the next section this problem is
discussed in more detail for the square-well po-
tential. In that case the series corresponding to
Eq. (3.28) is transformed to the time representa-
tion. The series is then shown to converge uni-
formly with respect to time and to vanish term-by-
term as t -, This is sufficient also to conclude
%8 (z)~ 0 as z - 0.

The finite-collision-time effects also occur for
the scattering contribution to 7 1,1+ In that case,
however, the velocity v’ of Eq. (3.15) approaches
a limiting value for z <v/0, or about one mean
collision time

lim V'(z)=1im e*V. (3.32)
20 t—>wo
Since this limit exists for scattering states, the
second term in Eq. (3.17) vanishes for z - 0. Sub-
stitution of (3.32) in the first term of (3.17) and
transformation to a surface integral shows that
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I‘V'I’lfl(z =0) is simply proportional to the collision
integral 2, , obtained from the Boltzmann equa-
tion.

The finite collision-time effects are associated
with the z dependence of /i, ,(z). It is somewhat
easier to indicate such effects for the correspond-
ing time-dependent collision integral

1'1 f _eltM )

where, for a continuous potential, M, ,(t) is non-
singular at £ - 0.

The time dependence of M, (¢) arises from the
change in the collision rate during the passage
through the well, for both bound and scattering
states. For the scattering states, the final scat-
tered velocities are attained in a time of the order
of o/v~ao(m/kT)"2. As noted in the introduction,
the situation is more complicated for the bound-
states contribution because the times T, in Eq.
(8.23) are of the order no/v and no obvious time
scale or limiting behavior is indicated. Qualita-
tively it may be expected that the scattering con-
tribution to M, ,(t) should decrease from some

maximum value and vanish for ¢>¢/v. The area
under this curve would then be proportional to the
Boltzmann &, , integral. For the bound-state part
of M, ,(t), it may be expected that the function
should oscillate at a frequency associated with the
mean time between turning points and attenuate to
zero due to phase averaging over trajectories.

(3.33)

|

The area under the curve for the bound states
must be zero for the Boltzmann limit to be valid.
This general picture is verified in detail in the
next section for the square-well potential.

1V. SQUARE-WELL POTENTIAL

Determination of matrix elements of the colli-
sion operator in the binary-collision approximation
is straightforward in principle because only two-
particle dynamics are involved. In practice, the
evaluation can be difficult for a general potential,
but is considerably simplified for the special case
of a square-well potential,

o, r<o
V(r)={ —€, o<r<Ro . (4.1)
0, Ro<r

The force is therefore zero everywhere except at
the surfaces on which the potential is discontinu-
ous. The radial integration in Eq. (2.17) may
therefore be restricted to the infinitesimal volume
elements between the spheres Ro —8<r<Ro+ 0
and 0 —6<7<0+0, where § is an arbitrarily small
positive constant. The second term in Eq. (2.17)
is then vanishingly small; the first term may be
transformed to surface integrals with the result
(only the matrix element 1\'/11'1 will be considered
in this section)

o2 m 5/2 . 2
M= 24F (kT> , Qe ] a0 DIRAT T rer+ €T T )gr ~R2 T T Nge],  (4.2)

where T *=£T/€. The notation (V.V’), indicates the
relative scattered velocity for initial relative co-
ordinate . Consequently, the collision integral for
the square well is expressed in terms of collisions
initiating at Ro*, Ro~, and o*. The first term in
the square brackets refers to relative distances
such that the particles are initially free and con-
sequently have no bound states. The other two
terms at o* and Ro~ refer to particles initially
within the region of interaction and can be either
bound or free. The particles will be free if the
radial kinetic energy exceeds the potential energy,
i.e., tm(8+V)*> €, and will be bound if $m (5« V)?
<€ (6+7V has to be calculated at Ro”). With this
‘distinction, the memory function can again be
written as the sum of a bound-state and a scatter-
ing-state contribution.
The scattering part can then be separated into

the sum of three terms, referring to scattered
pairs originating at Ro*, Ro”, and o*, respective-

] -
ly. As noted above, the matrix element M, ,(z) is

expected to be proportional to the collision inte-
gral , ,, studied for the Boltzmann equation, in
the limit z - 0. To suggest this relationship a
generalized dimensionless collision integral is
defined by

9*(Z)EM1.1(Z)/[M1.1]HS s (4.3)

where [M,,,]ys= $n0*(kT7/m)"? is the correspond-
ing matrix element for the hard-sphere potential.
The contributions to *(z) corresponding to differ-
ent initial conditions are identified as

Q*E)=0%2)+QF-(2)+ R %(2)+ Q%,(), (4.4)

where
Qhee(2)=[1,(2)+1,(2)], (4.5)
Q%42)=e[I,2)+1()], (4.6)

Q},-(2)= e "[I,(2)+ I4(2)], (4.7)
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QF,(2)=eT Y, (z)+1,(2)]. (4.8)

The explicit expression of the integrals from I, to
I, and the details of the calculation are given in
Appendix B.

The two-body dynamics are entirely contained
in the expression (3.7) for Vv/. The simplifications
associated with the step potential are twofold.
First, as illustrated in (4.2) the force is nonzero
only at =0 and » =Ro so that initial data are re-
quired only at these two surfaces. The second
important property is that the relative velocity is
constant along each section of trajectory corres-
ponding to T, <¢< T,, so that Eq. (3.7) becomes

= /T
>, 4 -sT 35
vi=z dte*'v,

pa1 Tp=1

==Y (e Tr — e Tr), , (4.9)
p1

where T, is the time of the pth velocity change and
\7, is the value of the relative velocity during the
interval (T, - T,.,). For scattering events the
maximum number of velocity changes possible is
three and the series in (4.9) is finite. The types
of scattering for particles separated by Ro*, Ro",
and o* are illustrated in Figs. 1 and 2. For bound
states, arbitrarily many partial collisions can
occur and the series in (4.9) has an infinite num-
ber of nonvanishing terms. For the square-well
potential (and all discontinuous potentials) there
is a contribution to £(¢) associated with initial
instantaneous momentum change, leading to a
delta function in time. The form of ﬁ(t) is there-
fore

Q@)=8,6(t)+82,(2), (4.10)

where ﬁl(t) is nonsingular and vanishes as ¢t - 0.
In the hard-sphere limit ,=0 and &,=1, reflect-
ing the fact that the interaction time is zero. In
the case of the square-well potential it is found
(see below) that the bound-states contribution
vanishes for times long compared to the collision
time. It follows from the results of Appendix B
that only the integrals I,(z = 0) and I,(z = 0) contri-
bute in this limit and that the result is just the
Boltzmann collision integral §, , normalized to
the hard-sphere result. In the opposite limit of
short times &, contributes

J

(c) (d)

FIG. 1. Square-well trajectories for particles starting
at Rg* (a) and (b) and starting at ¢* (c) and (d), with
m(G-V)/4>e€.

lim Q()~Q5(t) , (4.11)
-0
where £, may also be identified as Re[2 *(z - «)].
All eight integrals, I,~I;, contribute in this limit,
leading to the result

Q,=1+R2E(T"), (4.12)
1 - 1\%2
(T *)=eVT* _ - -+, 1/2 —
E(T¥=e 9T+ /; dx e™x (x+T*) .
(4.13)

The first term in Eq. (4.12) is the hard-sphere
result and is regained in the high-temperature
limit where Z(T *) vanishes. (It may be interest-
ing to note that the short-time limit (4.12) agrees
with the low-density limit of the Davis-Rice-
Sengers model for square-well transport, which
is based on an assumption that only partial colli-
sions are important.!?)

Before describing the transition between these
two limits, the convergence of the contribution
from the infinite sum of partial collisions for
bound states must be established. In the time
representation, the bound-state contribution to
§(t) in Eq. (4.10) is given by (see Appendix B)

[B()]ha= @ohed )+ * 2A) | (4.14)

n=1

where A,(t) is defined by

A,,(t)sf‘dy y5e"'2fR dxx[R,(x,y)C x,)(t —nT4(x,v))+R,(x,y)D,(x,y)(t =nT,(x,y))] . (4.15)
1] o

Here R,(x,y) and R,(x,y) are restrictions on the
domain of integration, the coefficients C,(x,y) and
D, (x,y) are the differences between the scattering

langle after the nth partial collision for the positive

and negative hemispheres, and 7'; and T, are the
times between partial collisions for the trajector-
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FIG. 2. Same as Fig. 1 for particles starting at Ro "~
with m (G- V)/4>€.

ies shown in Fig. 3. The detailed forms of these
functions are given in Appendix B. 1t is straight-
forward to show that for fixed n the coefficients
A,(¢) go to zero for large {. However, to conclude
that the entire bound-state contribution is finite
and vanishes in this limit it is necessary to prove
that the series in Eq. (4.14) is uniformly conver-
gent. To simplify the discussion only the least
favorable case for convergence is described here,
namely that of a very deep well (€ -«) and well-
width large compared to the core (0 -0, Ro=1).
In this limit R,(x,y)—~1 and Eq. (3.24) has the li-
miting form

FIG. 3. Bound-state square-well trajectories,
m(o- V)%/4<e, for particles starting at Ro"~ (a)—(d) and
at o (e) and (f).

A,t)~a,t), (4.16)

© 1
a,,(t)‘='4(—1)"f dyy5e"2f dx x(1+ cos@)cosné
1]

0
x 6(t 'f a -xz)”?)

(4.17)
where cos[8(x)]=1-2x% The x integration may
be performed to give

(=1)" 7 ! 3,~ag
—n-—a dz z%e (1+cosf)cosné,
0

’

a,(t)=2

where now cos[6(z)]=2z =1 and @ =n/¢. A change
of variable to integrate over 8 leads to considera-
tion of the series )

Ean(t)=§;‘ (—lz)"f "'de(cose)G (a,g), (4.18)

n=1 n

with

7 4
G (a , g): o g3 21+cost/n)/2 (1 +COS _9_) sin(g) .
n/ 8 n n

(4.19)
In order to determine an upper bound for the
general term of the series in Eq. (4.18), it is con-
venient to write it in the form

nTX
an(t)=(_an) Zf a0 COS(9+p”)G [a’(s+2£)] )

#2070
(4.20)

Considering separately the case corresponding to
p even and p odd, Eq. (4.20) can be rearranged in
the convenient form

—1)n (n=1)r
a(t)=( 21) f d@ cos@

n n o
[ ( ,6) ( ’6 )]
n n n))’

(4.21)

for n> 1, and

a,(t)= —j:"de(cose)G(a,G) ,

forn=1. Theintegrand ina,(t) for > 1is thus written
as the difference between the function G(a, 8/n) eval -
uated at two points separated by m/n. For large

n, T/n becomes arbitrarily small and

G(a,g)-G(a,g+I)_. —ZG’(a,Q),
n n M)y 7 n

where G’ indicates the derivative of G: G’(a,6)
=(0G/80),. It is easily shown that the magnitude
of G’ is bounded by a constant independent of &,

|G'(e,0)|<K, O<@snm.

An upper limit for the general term of the series
is thus immediately found:
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(n=1)
Ia,,(t)|$%f" 'deicoselG'(a,e)
0

n
nz(lz—-—lg> max'G'(a,g) |
n?: n n

|a,(t)|< Kn2/n?. (4.22)

From Eq. (4.22) the series converges at least as
1/n?, and the convergence is uniform in time.

The bound-state contribution £} (z) in Eq. (4.4)
may be obtained from the Laplace transform of
Eq. (4.14). For Imz> 0 the series may be summed
to a closed form. For the limit (€~», 0-0,
Ro=finite) considered here the result is (see
Appendix B for the general case)

N

or

1+ cosf)(1 - e~2*T)

© 1
Qg,(z)~2f dyy5e'”2f dxx(
0 [\

D(x,y;z)
(4.23)
where D(x,y;2) is defined by
D(x,y;2)=1+2e™T cosf+ ™7 (4.24)

and T is obtained from Eq. (B30) for R=1. Analy-
tic continuation of Q}(z) to z =iw shows that the
integrand has a countably infinite number of poles
at w=[6 - (2n+ 1)7]/T (n=positive or negative in-
teger). The uniform convergence of (4.14) and
vanishing of [S—Z(t)],m for large ¢, however, assures
that Q},(z) is analytic for z =iw and the integral

04l e
Ny
m 0 \ =7 t += =
32 N 7
* N\ /
(-] /
[ ~_
Eio
L L 1 )
10 20 30 40

FIG. 4. Real and imaginary parts of *Gw) for the
scattering contribution only (---), and for both scatter-
ing and bound-state contributions (——); T*=1.5.

‘
)

Q) (1) (SCATTERING ONLY)
IS

FIG. 5. Contribution to &;(¢) from scattering parts
only; T*=1.5.

representation for the velocity-autocorrelation
function, Eq. (3.5), is well defined.

To illustrate the approach of the collision inte-
gral to the Boltzmann limit at £>> 7 in the general
case of finite € and o, the integrals I,(z) - I,(z)
defined in Egs. (4.4)—(4.8) have been evaluated
numerically for 2 =iw and R=1.5. Figure 4 shows
the real and imaginary parts of Q*z) at T*=1.5
and compares the total collision integral with the
corresponding result for scattering states alone.
The bound-state contribution is significant for w
# 0 and is entirely responsible for the two reso-
nances at wr~2 and wr~9.5. The corresponding
time-dependent contributions to the function
Q,(¢) is shown in Figs. 5-8. As expected, both
bound-state and scattering contributions present
a significant structure at short times, and ap-
proach the Boltzmann (scattering only) limit for
t> 7. The effect of the bound states on the short-
time behavior of the velocity-autocorrelation
function is shown in Fig. 9 in terms of its deriva-
tive at n*=0.01 and several values of T*. At high

[oX- A
04

w

2 o2 /\

(72}

2 o —+ S I i o

2

Q-02

S -04 =

e o8- | | | | |
2 4 3 8 0

t/t
FIG. 6. Contribution to £;(¢) from bound-state trajec-
tories not hitting the core (coefficient of ¢!/ 7* not in-
cluded); T*=1.5.
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FIG. 7. Same as Fig. 6 for trajectories hitting the
core.

temperatures the single exponential decay charac-
teristic of hard spheres is obtained. As the
temperature is lowered both the finite collision
time for scattering and the dynamics for bound
pairs gives additional structure at short times.
The relative contributions from finite collision
times and bound states at low temperatures are
illustrated in Fig. 10. The change in slope ob-
tained when only scattering contributions are in-
cluded is due to incomplete scattering events.
Also shown in Fig. 10 for comparison are the
molecular dynamics results of Michels and Trap-
peniers. Certainly all of the qualitative features
agree; further comment on the quantitative agree-
ment is given in the next section.

V. CONCLUSION

The presence of an attractive part in the inter-
molecular potential has been shown to affect con-
siderably the short-time behavior of velocity-cor-
relation functions, even at low density. In a kinet-

-5 1 1 I -l |
0.2 04 1.0 2.0 3.0 4.0

t/c

FIG. 8. Q(t) at T*=1.5 (scattering and bound-state
contributions).

t/t

dC(t/r)/dt

-4l

FIG. 9. Derivative of the velocity autocorrelation
function at T*=1.5 (---), T*=3.0 (0o), T*=4.5 (*¥¥),
and T*= (—); all at »*=0.01 and time in units of 7
=g/v.

ic theory approach, space-independent time-cor-
relation functions in a gas have been expressed in
terms of specific matrix elements of the binary-
collision operator, M(z), as defined in Egs.
(2.17) and (2.18). The attempt to calculate such
collision integrals for potentials with an attrac-
tive part immediately poses a technical problem
at low density. In a binary-collision approxima-
tion such potentials allow for the existence of iso-
lated bound pairs with infinite interaction times.
The problem of the existence of the bound-state
contribution to M(z) and of its convergence to the
Boltzmann (scattering only) limit for times long
compared to the collision time has been consid-
ered in detail. More exactly, the bound-state
part of the collision operator has been written as
a series of contributions from sections of trajec-
tories between two turning points [Eqs. (3.28) and
(4.14)]. The series has been shown to converge
uniformly to zero at £ -« for the square-well po-
tential. Explicit calculations have been performed
for the velocity-autocorrelation function for the

! ]
n =
[e] [e]

dC (t/7)/dt
&
(o]

|
»
o

FIG. 10. Same as Fig. 9 for T*=1.5 and n*=0.03
(~--), scattering part only (—), and molecular dynam-
ics (xxx).
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square-well potential. Figure 10 shows that the
presence of bound pairs and the effects associated
with the finite duration of binary collisions are
responsible for the considerable deviation from the
single exponential decay calculated for a hard-
sphere gas. The agreement with molecular dyna-
mics simulation here is not entirely quantitative
and the difference can be shown to be due to finite
density corrections. When collisions of a given
pair with other atoms are taken into account
through a collisional damping mechanism,® quan-
titative agreement with molecular dynamics is
obtained (Fig. 2 in Ref. 9). Even at the low densi-
ties considered here such corrections may be im-
portant at low temperature, since the rate of col-
lisional damping is proportional to n*eT *,

It can then be concluded that the details of the
potential model and the binary dynamics, which
do not influence transport coefficients in a low-
density gas, nevertheless strongly affect the time
dependence of velocity correlations. Further-
more, knowledge of the exact dynamics of colli-
sions appears to be important in interpreting
other properties of low-density fluids, such as
collision-induced light scattering, and some cases
of pressure braodening and frequency shifts of ro-
tational or vibrational Raman lines of diatomic
molecules perturbed by rare gases.® All the cal-
culations here have been limited to the case of
square-well potential because of the considerable
simplification of the problem. In the general case
of continuous potentials the equation of motion of
an isolated pair of particles in a central force
field has to be integrated numerically. However,
the structure of the collision operator is analogous
to the one obtained in the discontinuous case, and
the result can then be expected to be qualitatively
similar. This expectation is also supported by
molecular-dynamics results for a Lennard-Jones
gas.®

Finally, at higher density the inclusion of an at-
tractive part in the potential has a strong influ-
ence also on transport coefficients. This is con-
firmed by both analytic® and molecular dynamics
calculations® of the coefficient of self-diffusion at
moderate density for square-well potential. Simi-
lar effects are found for the viscosity, again de-
termined through molecular dynamics simula-
tion,'s both below and above the critical density.

This work was supported by the National Science
Foundation and the Petroleum Research Fund.

APPENDIX A: KINETIC EQUATION
IN THE BINARY-COLLISION APPROXIMATION

It is convenient to introduce a notation such that
the self-correlation and total correlation functions

may be treated on the same basis. To do so, de-
fine the permutation operator P,; which inter-
changes the particle lables 1 and i:

PA(1,i)=A(@,1). (A1)

Also let X be a parameter with the value 1 for to-
tal correlation functions and 0 for self-correla-
tion functions. Then both hierarchies of functions
{9} and {$¢{*} may be represented as

I . L. T m [ axyay - dnyp

Nil
x et (1+ A ZP“)a(l)

i=2

nlo(1,. ..

=U(,...,L;t)a(1). (A2)

Here the I-particle operator U(1,...,I;¢) has been
defined formally as the operator that maps a(1) in-
to ¢V(1,...,1;t). 1t is readily verified that these
operators are linear. The {¢ ¥’} satisfy the
BBGKY hierarchy of equations, the first of which
is

(:F' v, x) ¢‘“(1;t)="f dx,0,,9* (125¢)

(A3)
where 6, is defined in terms of the potential
V(F, -T,) by
l - - - -
912:;':-6'1 V(r,-T,)] (VPl "sz)- (A4)

Here it has been assumed that the interaction
among particles can be represented by a pairwise
additive continuous potential. The final form of
the kinetic equation obtained here will neverthe-
less be such that it applies for both continuous
and discontinuous potentials.

The Laplace transforms of Eqs. (A2) and (A3)
are
,1,2)=U(1,

nlq-s“)(l, . -»132)a(1) ) (A5)

(& +¥, -Vl)é‘”(l;zh¢“’(1-,0)+nfdxze,2&'>‘2’(1z;z).
(AB)
A closed equation for ¢‘*(1,z) may now be ob-

tained by eliminating a (1) in Eq. (A5) for the
cases [=1 and 2 to give ¢® in terms of $),

nd®(1,2;2)=0(12;2)01(1;2)(1;2) . (A7)

This assumes that U/(1;2) is invertible; in the
low-density limit considered here this assumption
is verified explicitly. Substitution of (A7).in (A6)
and inversion of the transform leads to the de-
sired formal kinetic equation,
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(:tw V)qb‘”(l t)= f‘drC(t—r)¢“’(1;r),

(A8)
where the “collision operator” C(¢) is given by
dz =
= [ & ¢
co= [ Eieer, (49)
z)Efdxzelzﬁ(lz;z)ﬁ'l(l;z). (A10)

[The right-hand side of (A9) is a Bromwich inte-
gral with contour parallel to the imaginary z axis
and Rez> 0.]

The binary-collision approximation results
from determination of U (12;2)0-1(1;z) to lowest
order in a formal density expansion. This expan-

" sion in density is generated by a cluster expan-
sion for [7(12;2:) and ﬁ(l;z). The results to low-
est order are

U(1;2)=[z+ LA)(1) , (A11)

U(12;2)= [z + L(12)Yf,(1)f,(2)e®" U2 (14 2P ) .
(A12)

Here L(1) and L(12) are the Liouville operators
for a single-particle and two-particle system,
respectively,

L(1)=7,.9V,, (A13)
L(12)=L(1)+L(2) - 6,,, (A14)

and f,(1) is the Maxwell -Boltzmann distribution.
The binary-collision approximation to the colli-
sion operator is therefore given by (A9) with

z )-f dx,0,,[z + L(12)]*

X f(12)(1+ AP ) f (1) + L(1)]  (A15)
and £,(12)=7,(1)f,(2)e®V". Use of the identity

0,0z +L(12)['=[z + L (12)][z + L(12)] -1 (A16)

allows this to be written as

Q%)= - o1

C(Z)=f‘ at e"‘fdxz[z+L0(12)](e'“‘"”‘ —eLoC2)t)

X f,(12)[z + Lo(;Z)](l+ hPlz)fgl(l) .
(A17)

Here L (12)=L(1)+L(2).

For simplicity the following is restricted to the
case for space-independent correlation functions.
Then ¢V is a function only of the velocity and
time, and C(z) becomes

/ dt e'ltf dxz[z +Lo(12)] e LUt _ oLy (12):)

X £o(12)(1+ AP ) f31(1). (A18)

To further analyze the collision operator define
y(1;¢) by

nd M (1;8)=£,(1)y(152). (A19)
The kinetic equation then takes the form
8y(1;¢) t
4 f drM(E -1)y(157), (A20)
M(t)= f o enil(z (A21)

Mz)= —z/ndt et 31(1)
o

Xf dxz[z+L0(12)](e'L az2)¢ _e-L0(12)t)
X fo(12)(1+ AP ;) . (A22)

APPENDIX B: CALCULATION OF Q*(z)
FOR THE SQUARE-WELL POTENTIAL

The details of the calculation of *(z), defined
by Eq. (4.3) are given here. For convenience the
scattering and bound-state parts are considered
separately.

A. Scattering states

The scattering states contribution to £ *(z) may
be obtained by restricting the integration in Eq.
(4.2) to sm(6-V)> €,

3 L]
_m (%) f dv vze-mzﬁnz‘f dﬂ(a . 6)6[%m (a. . ‘7)2 _ €]
0

X [R2(T +¥')gge+ €T *F +77)pe =R2eM *(¥ - ¥7)5-] (B1)

where 6(x) is the Heaviside step function. The integrand consists of three contributions corresponding to
particles initially separated by distances Ro*, Ro™, and ¢*. Accordingly Q*(z) will be written as the sum

of such contributions,

Q¥2)=0%+2)+ Q%5 (2)+QF%,-(2).

(B2)

The solid angle integration may be performed by writing it as the sum of integrals for (5-v)> 0 and
(6+V)<0. Let ¥/(v’) denote the scattered relative velocity originating on the positive (negative) hemis-
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phere. Then with the change of variables 6=~ 6+ 7, ¢ = ¢+ 7 in the integral for (6+V)<0, each of the

terms in Eq. (B2) can be written in the form

1 m 8 © 2 ->. - - - - >
*, == 2 ,=my</ART P 1 Aev)2 o T Ty
Q*z) an (kT) g(r)j; dvvZe j;a.'»odﬂ(o NOLim(G V)2 ~€](V V! =V-V"),, (B3)

where » denotes the separation distance (Ro*, Ro™, o*) and g(r) is the low-density pair correlation function
[gRo)=g(c*)=e"T*, g(Ro*)= 1]. Furthermore, the scattering is isotropic about the vector ¥, so that the
integrand is independent of ¢. Introducing the reduced velocity y =v(m /4kT)Y? and the reduced impact

parameter x=5/0, Eq. (B3) becomes

© R 2\ 12
Qf(z)=2g(r)f dyy*"e'”zf dxxe[yz(l —%;) -
0 ()

Here T *=FT /€ is the dimensionless tempera-
ture. It remains to calculate vV’ and V. from Eq.
(4.9) for the three relative separations Ro*, Ro",
and o*. The time integral in Eq. (4.9) can be per-
formed in the square-well case because the veloc-
ity is piecewise constant and only changes (dis-
continuously) at the edges of the well. The rela-
tive velocity of the scattering pair can be calcula-
ted for all times from consideration of the two-
body conservation laws and the geometry of the
well. The transit times, T,(x,y), between partial
collisions depends on the initial velocity and im-
pact parameter.

1. Particles starting at Ro*

For (6+¥)<O0 the particles are initially free and
remain free for all times; consequently, V/=7.
For (G- ?)? 0 two types of scattering events are
possible, as indicated in Figs. 1(a) and 1(b).
These are characterized by a critical reduced

impact parameter a defined by

a=(1+1/y2T*)V2, (B5)

For x> a the trajectory is that of Fig. 1(a) and de-
termination of v/ gives
- i')m,."”= (1-e*T1)¥. ;1+ eI, V.¥,. (B6)

For x<a the trajectory is that shown in Fig. 1(b)
and

(V¥ ))pos o= (1 = €T 2)V + ¥,

+ (70 T2 — ™2 T2)V « ¥, + 72727 .V, .
(B7)

The scattered velocities for each partial collision
are

-

Vi

n
<4

+6vB, (B8)

28 2\ 12 . B 2 \1/2
-2 -5) o267

(B9)

LI}
<

-
v

'D.-.’ -.'.’
](—va’-vv‘z’-) : (B4)
r

x2\V2
-2Ra (1 —;) ] B (B10)
- - B ¥\ B %2 \V?
V,=8vB+7V, [1 -3 (1 —R——-*zaz) +a(1 _?)
. B 22 \2 1/ %2\

_vl;[(1 _Rzaz) 'ii(l L)1 (B11)

Here B is defined by
x2 \ V2 %2 /2

BEa(l —R—zz;,z,) —(1 —R;E) , (BIZ)

and the interaction times T, and T, are
_R x2 \V2
Tl(x,y)=a(1 -W> , (B13)

Tz(x,y)E-zi—y[R (1 -}%;—Zy/z - (1 _Z—:)w]. (B14)

2. Particles starting at o*

The scattering events for particles initially
separated by =0 are shown in Figs. 1(c) and
1(d). For (§+V)> 0 calculation of V! gives

(VeVDp=(1 =TV eV, + ™ T3V Vg, (B15)
and for (§+V)<0 calculation of V! gives

(FoV)p=(1 —e*Tap2+ T35 .7, . (B16)
The scattered velocities are

-

V=V —020(1 —x2)V2 (B17)
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- _of[x® 22 \2 (1 x%\¥2 B’
V6=V[F+G(I—W) (l—k';) —-E(l—xz)‘/z]
& ﬂ_' 2 _ZLZ. 2)1/2
-ov[R (2¢%2-1)+ R® (1-x%

. 2 \l2 2\1/2
+2a (1 -1-;-:&—2) (1 “1%) (1-x2)1/2],

(B18)
- - x2\/2 B’ . B’
v,=v[1+B'(1 —F) —E(l —xz)l’z]+ov—1—e- , (B19)
with
x% \ V2 x2\V2

B'=(¥(1 —k—za—z) —(1 —R—i) , (B20)

a=(2-a?)¥2=(1-1/p2THV2 (B21)
The interaction time is

Tywy)=gs (R -x)% - (L-xt%].  (B22)

3. Particles starting at Ro*
The scattering for (6+v)<0 is shown in Fig. 2(c),
giving
(Vv )gg=VeV,. (B23)

For (§+V)> 0 there are two types of collision se-
quences. For x> a [defined by Eq. (B21)] there is
no contact at the core [Fig. 2(a)] with the result

(V¥ )pgmgoa = (1 —e T2+ e*Ta5 .5 .  (B24)
+/R0O" x> 9

For impact parameters x <a there is contact at
the core [Fig. 2(b)] so that

(Ve V' )Rompea = (1 — €™ T4)p2+ (7T = e"2#T4)T . ¥
+ e 2Ty, | (B25)

The scattered velocities are

Ve=V+ 0B, (B26)
. - , x2 1/2 . ,
v9=v[1+23(1—1?) ]—avﬁ y (B27)
Vw= \7[2962 -1+2(1 _xZ)xlz(Rz _x2)1/2}

-620R(1 —x2)V2 | (B28)

’ 2\ /2
‘7u=‘7{-&%x2(1 —x2)2y (252 1)(1 —}%)

+ [2(R2 _x2)1/2(1 _xz)llz
%2 x2 \W2 x2 1/2
cac-nfgha) (5]
—&v{ﬁ'(2x2—1)+ 2R(1 - x?)¥2

x2 x2 1/2 xzx/z
"[F*"‘(‘W) ("R—) ] ’

(B29)

[

and the interaction time is

T,,(x,y)=%(1 -,%‘Z)w ., (B30)

A summary of the results for various scattering
angles is
‘*,1,; x2 ( xz)uz xz)uz] -
B a1 (-5) Jmame,
Y—zzj.iy" = 2F§ -1 ’

Y ca[-FyFy+ (- IV 20 - F Y,

2
Fz(x,y)=1—2%

"J_v',‘i =2F,(1-F})Y2(1 = F2)Y % _F,(2F2 —1)=F,(x,y),

- - -

Ve v ‘v
%—:—f)——:Zrz—lEF‘,(x,y),

-

- - - -
V'V _Vg'V_Vp'V

R
xz x2 1/2 x2 1/2
=“[W+(1-Eza—z) 1-;;2)
Ean(xyy),

-

ooV YV alF,Fye (- F9V20 - V). (831)

Finally, the integrals defined in Eqs. (3.12),
(3.13), and (3.14) are

I,(z)=2 foy dyySe™ _/O.RdxxA(x,y) s (B32)
I,z(z)=2_/:”dyyse"'z(_[dxxA(x,y)

+ _[RdxxB(x,y)) , (B33)
Is(z)=2j:;ﬁdyy5e'”2 jo‘ﬂadxxC(x,y), - (B34)
I4(zr.)=2_/;:dyy5e"’2 [ldxxC(x,y) ) (B35)
15(Z)=2f::;; dy‘yse"zjo‘m dexD(x,y),  (B36)

© 1
Ia(z)=2'/;z dyyse"z(fo dxxD(x,y)
4

. RadxxE(x,y)) , (B37)

with 1
Y= [T*(Rz - 1)]—1/2 ,

and
A(x,9)=1~a(l -e*T2)F, —a(e*T2 - ¢ 2T2)

X [—F1F2+ (1 - Ff))‘/z(l _Fg)ll 2] - e-lest ,
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B(x,y)=1=(1-e*T1)aF, —e™"1(2F}-1),
C(x,y)=(1-F)(1-e*T)

+aeT3[F,(1-F,) - (1-F)'*(1-F)"'?],
D(x,y)=1-e*Ts+ (e 3¢ *3)F,~aF,

+e-2'T3 a[F4F5 + (1 —F?!)l/z(l - F:)l/ 2] ,
E(x,y)=(1-e>T49)(1 -aF,). (1338)l

B. Bound states

The bound-states contribution to £*(z) may be
obtained by restricting the integration in Eq. (4.2)
to 4m (& .V)2<€. Only particles initially inside the
well can be bounded. Then, in terms of reduced
velocity and impact parameter:

© R 2\1/2 iy ve ot Vv VeV
Q:'(Z)='2f dyyﬁe%-[ dxxG[T—l,; _y2<1_%> ]8111*[(v v, ¥ Z') _(v ;h_"_%l:)ﬂ ]’ (B39)
ot ~

]

where the scattered velocity is given from Egs.
(3.7) and (4.9). For bound states the series in Eq.
(4.9) has an infinite number of terms. Each rela-
tive velocity V, can be expressed in terms of the
scattering angles at the inner and outer edge of
the well. From consideration of the conservation
laws and of the geometry of Fig. 3,

cosf,=1-2x%,

. (B40)
cosf,=1-2x%/R?%,

(r +6,) is the scattering angle for each partial col-
lision at the core and (7 — 6,) is the scattering
angle for each partial collision at the outer edge
of the well.

1. Particles starting at Ro™

Two types of orbits are possible, as indicated in
Fig. 3. For critical impact parameter x >1, the
trajectory of the bound pair does not hit the core
[see Figs. 3(a) and 3(b)]. The time T, between two
scattering events is given by

T4(x,y)=%(R2—x"‘)"2. (B41)

Indicating with Vv, the scattered relative velocity
during the time interval (p - 1)T,<¢t<pT,, the
scattering angle is

. . {v"’cos[(p -1)m -6,)], for (&°Vv)>0

%= v2cos[ plm -6,)], for (6*v)<0

v v

)

(‘%fi)m m= (1+cosb,)+ g (<1 e™7T4C,(x,y),
(B42)

with
C,(x,y)=2(1 +cosdy) cospf,. (B43)

Writing the cosine in exponential form the series
in Eq. (B42) can be summed and

- = -t
(v v’) _(1-e7y (1-+ cosb,) _ Hx,y),
v Ro-, 231 Dl(x,y,?-)
(B44)
where D ,(x, y;2) is defined by
D (x,y;2)=1+2eT4cosf,+e T4, (B45)

For critical impact parameter x <1 the trajectory
is shown in Figs. 3(c) and 3(d); for (G v)>0:

vzcos<%(1r+01)+p—;—2(1r —62)) , b even

<t
<

vzcos(p;1 (1r+91)+p;1(1r—02)> , p odd

and for (6 v)<O0:

54%,=
vzcos<i>;1 (1r+91)+p—;—1(17 -92)) , p odd.

Rearranging the summation in Eq. (B42), the scat-

vzcos(% - 02)+%(1r +91)> , p even

and . tering angle can be written
-,' > © ®
(—-—Z—) =(1+cos6,) +2 Z e2T3cos[p (6, - 6,)](1+cosb,) - Z e @ T3 A(0,.6,) (B46)
v Ro=, x<1 =1 p=1
with
A,(6,,6,)=cos[p(8, —6,)]+cos[(p+1)(6, - 6;)] +cos[p (6, —6,) +6,] +cos[p (6, - 6,) - 6,]. (B47)

The transit time T, is again calculated from the geometry of Fig. 3:

Ts(x,y)=§;— [(R? = x?)M2 = (1 —-x?)*2].

(B48)
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As before, the series in Eq. (B46) can be summed by writing the trigonometric functions in exponential

form, leading to

ve v _p-%T3
(v_vz_) = (1———-—-)-{(1 +e #T3)(1 +cosb,) —e*T3(1+e7*79)[cos (6, - 6,) +cosb, J}=G,(x,y), (B49)
V" / Ro-, x<1 Dy(x,y;2)
with and, for (5 ¥) <0,

Dy(x,y;2) =1 -2e2*T3cos (8, - 6,) +e™*Ts . (B50)

2. Particles starting at o*

It appears immediately from Fig. 3 that the orbit
of particles starting at »=0" is directly related to
the orbit of particles starting at » =Ro™ and impact
parameter x <1. The former can be obtained from
the latter by adding a time interval T, for (o* V)
>0 and subtracting the same time interval for
(6+v)<0. Then, for (6°v)>0,

v? cos(L_z—z-(n+61) +§(1r— 92)> , p even

-

Vev,= _ 1
V2 cos(p 3 1(1r+91) +EE—(1r —92)>, podd.
Then
vy
( " )’* =—(1+cosd,)

-2 2 e 273 cosp(8, — 6,)(1'+cosb,)
=1

2 p+1 0.) .2t 1, 6 ) -
s v cos( D) (m+ 1)+ 2 ( z) , b even +Ze-(2p+1)lT3A’(91,92) . (B51)
b p=1
2 p-1 p-1 . .
v®cos\ (m +91)+——2——(n -6,)), p odd Again, the series in Eq. (B50) can be summed and
]
vV = (1-e79) -2T -2T, -2T =
) Rkl ¥ P {(1+e=*7T3)(1 + cosh,) — e *Ts(1 +e7*T3)[cos(6, — 6,) +cos6,]} =G, (x,y) . (B52)
(4

Finally the integrals I, and I, defined in Eq. (4.8) are

1/VT¥ 2 [1 Ry 2 [t
I(z) =2f dyy’e™ f dxsz(x,y)+2f dyy°e™ f dx xGylx,y)
0 o 1/VT* Ra

RY s 2 R © 5 2 R
+2 dyy’e™ f dxxH(x,y)+2f dyy®e™ dx xH(x,y) , (B53)
(] 1 RY Ra
1V T* 1 Ry 1
Is(z)=2f dyyse"zf dxxGl(x,y)+2f dyyse"zf dx xGlx,y) , : (B54)
o (] 1YT* Ra

where the functions G,(x,y), G,(x,y) and H(x,y) have been defined in Egs. (B52), (B49), and (B44), respec-

tively.

At the low-density limit considered here, it is more convenient both for numerical calculations
and for the discussion of the existence of the bound-state part of the collision operator, to consider the

time representation of %,

d
22 ortQ¥(2) .

Qus(t) = 27

(B55)

Indicating with 2 ®(¢) the contribution from particles which do not hit the core (i.e., particles starting at
Ro~, with x >1), with §®(¢) the contribution from particles hitting the core (particles starting at ¢* and
particles starting at Ro~, with x <1), and performing the z integration in Eq. (B55):

QL) =0V o) +21), (B56)
Q1) =82 o(t) + Q1) , (B57)
with
— « R 2 pR . . R
o =2t [ ayye f dx x(1+cosf,) + 2¢*/T f dyy’e™ f dx (1 +cosf,), (B58)
] 1 Ry Ra

—¢ « [TF 2 [} « /R . !
Q2 =20Y/T f dyy®e™ f dx x(2 + cos@, + cosh,) + 2e*/T f dy y’e™ f dx x(2+cosf, +cosb,),
o o 1VT® R

(B59)
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and

0 RY R
Q8)t) =4er/T* Z(_n»( f dy y®e™? f dx x(t — pT,) cos( p8,)(1 +cosb,)
p=1 ()] 1

00

+ f dy yse"
R

dx x6(t - pT,) cos(ph,)(1 + cos%)) , (B60)

_ d 1/VT% 1
BE(1) = 4e1/T* E [jo' dyyse-yzjo' dx x0(t - pT,) cos(g(e1 - 92))3,(96)

Ry 1
+[/mdyyse-y2fliadxx5(t-st) cos(%(el-ez))s,(x)], (B61)

p=1
where
2+cosf, +cosb,, p even
S,(x) = 0
-4 cos—‘Lcos—2 p odd .

2 2’

(B62)

At this point it appears convenient to interchange the order of integration in Eqs. (B60) and (B61) and per-

form the y integration with the result

(1)(t) 4

where
b(x) =(R? - x%) 2,
a(x) =3[(R? = x®)1/2 — (1 - x?)}/2] ,
a'(x) =[1 =~ £2/p*T*b%x) /2,
a"(x) =[1-12/p*T*a*(x) /2.

APPENDIX C: COMPARISON WITH KIRKWOOD

The role of bound states and finite collision
times in the derivation of the Boltzmann equation
was first discussed by Kirkwood.” For complete-
ness and comparison, Kirkwood’s arguments are
indicated here, as applied to the velocity-auto-
correlation function. In contrast to the memory-
function formulation used in Appendix A, it is
more convenient to define the time-local equation
for the velocity-autocorrelation function,

9
5 PO =IO FD), (C1)
which defines I(f). The binary-collision approxi-

mation for I(¢) may be obtained from a corres-
ponding kinetic equation analogous to Eq. (A8). The

Z (-1)? fRdxx(l + cosf,) c:os(1>92)(p—b§x—))6 ex

« [ofer-222) o222

Q&1 = 4— Z[ dx xS,(x) cos(e(e -0 ))( a(x))

x [9 (‘\/‘711——;‘?“(’5)) +9(‘t2a(x) -

]

ox - Ra’(x))] (B63)

»)
o[-(540) ]

—\/T_—{) o (R'y - ‘?a(x)) 0(x - Ra"(x))] , (B64)

getails will not be given but the result is (for con-
tinuous potentials)

I(t) =—-[As (H+A (t)] (C2)

5/2
A (t) 24\/__(]2’”) d‘U vz -Bmv2 /4
()
X j-dre""’"’

XRsc(r V)V [W(D) -v] ,

(C3)
Wt =e tuney (C4)

The function A, (¢) is the same as (C3) with R,
replaced by R,,. The latter two functions identify
the scattering and bound-state contributions, re-
spectively, and are defined in Egs. (3.7) and (3.8).

Kirkwood’s analysis is somewhat different in
that he considers time-averaged functions. In the
present context, the time-averaged correlation
function is defined by

R0)=7 [ ds Fit+s), (c5)
(]

and the low-density equation corresponding to (C1)
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is

8F, . _— —

2 O =IO . (ce)
Here, 1(#) is the time average of Eq. (C2),

T = {[A, 1+ T) = 4,0]+ [Ay(t+T) - Ay (©)]}
(CT)
As indicated by Kirkwood, A,(#) grows asympto-
tically as A, (t) ~I.t, whereas A, (¢) remains
bounded for large ¢. Here I, denotes the Boltz-
mann limit for I(#). Consequently,

I(t) ~I,+0(1/t) (C8)

and the time-averaged correlation function is de-
termined from Boltzmann form, if the time inter-
val T of the averaging process is chosen suffi-
ciently large for terms of order 1/T to be negli-
gible.

It does not follow from Kirkwood’s result for

F(t) that the correlation function itself, F(t), has -
a Boltzmann limit. To illustrate this consider the
hypothetical case

A () ~1t,
A(t) -~ sinwt .

Then Kirkwood’s result, (C8), still holds and F(f)
has a Boltzmann limit, but

I(H) -1+ wcoswt

and the Boltzmann limit for F(#) would not result.
To establish the Boltzmann limit for F(¢) it is nec-
essary to prove a somewhat stronger property of
the bound-state contribution than its boundedness,
as used by Kirkwood; namely, that its amplitude is
sufficiently damped in time. The analysis of Sec.
III indicates this is true for a class of continuous
potentials, while that of Sec. IV confirms it in de-
tail for the square-well potential.
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