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Heat conduction in a rotating disk via nonequilibrium molecular dynamics
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Nonequilibrium molecular dynamics is used to study the conduction of heat due to a

radial temperature gradient in a rotating two-dimensional disk of dense fluid. These cal-

culations show that Coriolis's force contributes to the heat flux.

I. INTRODUCTION

Transport simulations of linear phenomena, such

as Fick s-law diffusion, Newtonian viscosity, and

Fourier heat conduction, are in good agreement
with theoretical predictions based on the
Boltzmann equation and the Green-Kubo theory.
Less is known of the richer class of nonlinear prob-
lems. Recent work has shown that some nonlinear

problems, such as the propagation of strong shock
waves in dense fluids, can be treated successfully

using the linear transport theory. Because the non-

linear theory is still in the process of development,
microscopic computer simulations are particularly
valuable for testing theoretical models and suggest-

ing new approaches. See, for instance, the shock
wave and shear flow simulations described in Refs.
1 and 2.

Up to now rotating molecular systems have not
been simulated. But the attention of theorists has

already been attracted to the coupling of diffusive

processes with rotational accelerations in rotating
systems. For example, the Coriolis accelerations,
linear in the rotational frequency, and the centrifu-

gal accelerations, quadratic in frequency, can cou-

ple with gradients of momentum and temperature.
Here we explore the simplest problem involving
this coupling, the flow of heat in a rotating system.
The microscopic equations of motion, solved in the
"comoving" coordinate frame rotating with the
material, reveal the dependence of the heat-flux
vector and the density profile on the rotational

motion.
Several authors have considered heat conduction

in rotating disks from the two different theoretical
standpoints, microscopic and macroscopic. Those
favoring microscopic kinetic theory find that
Coriolis's force should lead to an angular heat-flux

vector component in the presence of a purely radial

temperature gradient. Those favoring the macro-

scopic continuum concept of "frame indifference"
believe instead that the heat-flux vector (in a
comoving frame) must be purely radial, as
Fourier's linear law q = —A,V T predicts. These
conflicting views have stimulated the present work.

An experimental test of the conflicting predic-
tions is made difficult by the extreme angular fre-

quencies required. Perhaps real tour de force ex-

periments could be carried out by using electric
and magnetic fields to suspend and spin conducting
microspheres.

Lacking experimental evidence, we sought to
satisfy the curiosity piqued by this apparent
theoretical disagreement by applying a much more
direct approach, solving the N-body problem nu-

merically. In this work we simulate a dense-fluid

system with a wholly radial temperature gradient
to find out which of the two theoretical views

agrees with that derived from Newton's equations
of motion.

We study a spinning disk, hot at the center and
cold on the outer boundary. Despite the large fluc-

tuations that characterize two-dimensional systems,
the results indicate that angular accelerations do
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influence the flow of heat so that the qualitative
predictions of low-density kinetic theory are justi-
fied in dense media. In the present paper we

describe first our understanding of the conflicting
theoretical predictions, next the numerical example
chosen to test the relative merits of the predictions,
and last the numerical results.

acceleration U, =2mvg. Thus, a particle now with

U, had, a time ~ previously, radial velocity com-

ponent U, —Mm~. To first order in u, U is un-

changed by Coriolis's forces so that the combined

effects of temperature gradient and rotation give

d lnT
dl'

II. THEORETICAL PREDICTIONS

The Boltzmann equation correctly describes the
transport of mass, momentum, and energy at low

density provided that the gradients are suf6ciently
small and that the system under consideration is

sufficiently large relative to the mean free path.
Not only does Boltzmann's derivation of his equa-

tion appear very plausible, but also the comparison
of its predictions with experimental data provides

strong independent evidence for the equations's

validity. Outside the regime of linear transport

theory, Boltzmann's equation is not to be trusted.

Kinetic theorists have recently shown that the Bur-

nett coefficients describing flux contributions qua-

dratic in the gradients are divergent, at least in

principle. For this reason we must view with

suspirion the application of Boltzmann's equation

to the nonlinear coupling of two different linear ef-

fects, a temperature gradient, and Coriolis's force.
The theoretical treatment of this coupling can be

based on the relaxation-time approximation to
Boltzmann's equation, as described in McQuarrie's

recent textbook. For a motionless (nonrotating)

but conducting disk composed of, mass m particles

at a temperature T with a radial temperature gra-

dient d T/dr, the relaxation-time Boltzmann equa-

tion

df (f' f)—
dt

The resulting 8 heat-flux component varies linearly

with ~:

Thus, the microscopic kinetic theory predicts a
heat flux lagging behind the disk's rotation.

The continuum view can lead to a different con-

clusion. Continuum mechanics appears to be based

upon a judicious mixture of mechanics, macroscop-

ic thermodynamics, and intuition. The principles

of the subject are that no material can violate

known thermodynamic laws and that, under

reasonable conditions, the results of experiments

should not depend upon the time of the experiment

or upon the coordinate frame from which that ex-

periment is observed. If a macroscopic body obey-

ing Fourier's law q = —A,VT is viewed in a comov-

ing coordinate system, rotating with the body, the
"principle of frame indifFerence" suggests that
Fourier's law is still obeyed, so that a radial tem-

perature gradient can exrite only radial heat flow.

On the other hand, microscopic Newtonian

mechanics implies that Coriolis's force causes
field-free particles to follow curved trajectories.
From the macroscopic standpoint of continuum

mechanics the microscopic motion is simply a part
of the internal energy. There is no macroscopic
motion in a comoving frame so that no Coriolis's

phenomena can occur.

NTV d lnT
kT

'
dr

III. MICROSCOPIC FORMULATION OF ROTATION
AND HEAT PLOW

This result is obtained by combining f' functions

corresponding to particles at local equilibrium a
time of order r in the past. f' is the equilibrium

one-particle distribution function and s is the col-
lisional relaxation time. For simplicity we ignore

any dependence of ~ on velocity. In a frame rotat-
ing counterclockwise at angular velocity ro, a parti-
cle moving in the 8 direction has a radial Coriolis

The mechanics of rotation was described by G.
G. Coriolis (1792—1843, a French mathematician
and professor of mechanical engineering). He was

the first to consider the effect of relative accelerat-
ed motions, such as rotations, on dynamical obser-

vations. If a system obeying Hamilton's equations
of motion in an inertial laboratory frame is viewed

from a Cartesian xy frame rotating at angular fre-
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quency co, a transformation of the coordinates to
the rotating frame gives the result

H =H,q g—co(xp„—yp )

= gg&,J+ g —(x +y a—)'x' ~—'y'),

where the single sum ranges over all N particles
and the double sum ranges over all N(N —1)/2
pairs of particles. The equations of motion in the
moving frame follow by differentiation:

x =(p„/m)+coy, p„=F„+~p

(6)

y = (pz /m )—cox, pz
——Fz —cop„,

and are well suited to numerical integration. Posi-
tive angular velocity corresponds to the counter-
clockwise motion of the xy frame relative to the la-

boratory frame. It should be noted that the mo-
menta in the (fixed) laboratory frame are identical
with the (comoving) rotating-frame momenta.

There is an apparent similarity between the
Hamiltonian (5) and the Doll's tensor Hamiltonian
used to describe adiabatic deformation. The latter
formulation would describe the equations of motion
in an inertial frame, viewed from a rotating labora-

tory frame, and therefore is not useful for the
present problem. In the Doll's tensor formulation

the momenta are products of moving-frame veloci-

ties and particle masses, while in the present

description of a rotating system the momenta are

products of laboratory-frame velocities and particle
masses.

Special boundary conditions must be added in

order to maintain a temperature gradient in the
rotating-frame heat-flow simulation based on the
microscopic Hamilton's equations (6). It is neces-

sary to provide a heat source and a heat sink. One

way to accomplish this' is to partition the system
into separate "reservoir" and "bulk" regions with

mathematical walls. The reservoir regions can
then be maintained at steady temperatures by, re-

scaling the moving-frame velocities at each time

step. We tried this method, using reservoirs of dif-

ferent sizes, but the reservoirs proved ineffective.
The centrifugal forces mco r inhibited thermal con-
tact between the two reservoirs and the bulk re-

gion. We therefore adopted a different method for
introducing and extracting heat, rescaling the radi-
al velocities of a fixed number of particles nearest
the inner boundary of the system to maintain a

12 r/0 28

FIG. 1. Geometrical configuration of the system
under study. The 30 slice between the inner and outer
radii contains 80 particles, all interacting with the soft-
disk potential, modified by adding a very small Hooke's
law attraction to make the force and energy vanish at
r =30.. The radial temperature in the inner region (de-

fined by the 20 particles closest to the center) is con-
strained to be 10'/k and the temperature in the outer
region (defined by the 20 particles closest to the outer
boundary) is 2e/k. The two particles i and j shown in
the figure lie at different angles 8; and 8J.. When the
potential contribution of this pair to the heat-flux vector
is computed, basis vectors lying at the point (r;+rj-)/2
are used. This ambiguity in the radial and theta com-
ponents of the potential contribution to q is negligible
for the short-range forces used here, but could not be ig-
nored with long-range interactions.

nearly-constant hot temperature, and rescaling the
radial velocities of the same number of particles
nearest the outer boundary to maintain a nearly-
constant cold temperature. This rescaling process
was carried out at time intervals of 0.1(mo /e)'
Except at the times of these heat transfers (which
affect no angular velocities) the ordinary equations
of motion were solved. The negative temperature
gradient dT/dr &0 inhibits convection by reinforc-

ing the positive density gradient due to centrifugal
forces.

In order to describe the heat transfer process in
terms of thermal conductivity, it is necessary that
the radial extent of the system be more than a few

mean free paths. The number of particles required
can be greatly reduced by using periodic boundary
conditions in plane polar coordinates as shown in

Fig. 1. The boundaries at r/o. =12 and 28 were

implemented with a wall potential of the form

P„,ii ——e(o /105r )
' . With this geometry the

periodic images required to compute the forces on

particles near the periodic "boundary" are rotated
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relative to the particles "inside" the system, so that

the sum of the forces on particle i due to j and par-

ticle j due to i is not necessarily zero. These forces

must be properly taken into account in computing

the potential contribution to the heat flux. Conser-

vation of energy (in any frame} and angular

momentum (in the inertial laboratory frame only}

serve as powerful checks of the numerical work.

To suppress fluctuations in angular velocity in the

comoving frame, the theta velocities were adjusted

(M; =A +Br; +Cr; ) at the rescaling intervals of
0.1(mo /e)' to constrain the three sums

g 8, +Or, +8r to vanish in the comoving frame.

To interpret the microscopic solution of the

equations of mation in terms of macroscopic quan-

tities, a heat-flux vector must be defined. The ac-

cepted definition results in a natural way if the mi-

croscopic flow of heat is treated in parallel with

the flow of momentum, as described by the virial

theorem. " It is not usually emphasized that these

momentum and heat theorems can be applied nat

only to equilibrium fluids or solids, but also to
fluids or solids in steady nonhydrostatic heat-

conducting nonequilibrium states. Both the
momentum-flux (pressure tensor} and the heat-flux

vector are always defined relative to the comoving

(rotating} frame.
The virial theorem derivation proceeds by com-

puting the time average of the tensor product of
the particle coordinates and the time rate of change

of particle momenta. By equating the external-

force contributions to the time rate of change, the

virial theorem is obtained. For the particular case
in which the interaction is pairwise additive, the

theorem has the farm

where the double sum includes all distinct pairs of
particles.

Heat flow pan be described in a similar way. %'e

follow Kirkwood and Irving' in associating half
the energy of each pair interaction with each of the
interacting particles. If we indicate the external

contribution to the time rate of change of particle
i's energy with a superscript e then

This form is well suited to numerical calculation.

The force terms linking particles i and j have been

combined, sa that the heat flux, like the momen-

tum flux, has both an individual-particle convective

part and a two-particle potential part.
Because we are interested in finding both the an-

gular and radial components of the heat flux, it is

essential to write the macroscopic vector qV in (9)

as a sum of microscopic short range, nearly local

vectors. In (9) this has been done; the contribution

to the heat flux of the force exerted by particle j on

particle i depends on the relative separation vector

r; —rJ. Unless the ij terms are combined in this

way, the division of the microscopic vectors into

radial and angular parts loses physical significance.

IV. NUMERICAL RESULTS

We decided to study a simple soft-disk fluid,

rather than a solid, in order to avoid long phonon
free paths and to enhance the expected contribution

of the Cariolis force to the heat-flux vector. The
soft-disk system, with particles interacting with an

inverse 12th-power potential P =a(o Ir}', has been

carefully investigated by Cape. ' His numerical

work located the freezing transition and showed

that a truncated virial expression provides a useful

analytic expression for the fluid-phase equation of
state:

PV/NkT = 1+1.773x +2.362x +1.484x

with

+9.477x —11.544x + 11.038x

which i interacts. Notice that the time rate of
change of particle i's energy depends explicitly on

particle j s momentum. If we next construct the

sum, over all particles in the volume V, of particle
i's position multiplied by E; from (8), and average

over time, replacing the external heat flow with the

product of the volume and the heat-flux vector q,

we get

q V = g r';E; + g g (r; rz }(F—
;&

).(r'; + r'& }/2 .

(9)

~ ~ 1
Eg ——E + 2p(F; —$(FJp;+Fj(p))

1Fl
x =—(No /V)(e/kT)' (10)

E;=E QFJ m

where the sum in (8) includes all particles j with

This equation of state allows us to estimate the
thermal conductivity for the soft disks from Gass's

two-dimensional Enskog theory. '" Gass's expres-

sion for the ratio of the dense-fluid thermal con-

ductivity to the low-density conductivity is
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/g, =bp[(1/bpX)+ 1.5+0.872bpX J, (11)

where bp and 7 follow from Cape's equation of
state, (10), for the soft disks:

80

bp= 1.478(Ncr /V){e/kT)' = 1.478x,

bpX = 1.478x + 1.575x

+0.742x +3.159x —1.924x

(12)

Gass quotes the low-density hard-disk conduc-

tivity, A,,(s) =(1.16/s)(k T/m)'~, in terms of the
hard-disk diameter s. We estimate the soft-disk

conductivity at low density by matching the second

virial coefficient contributions to the thermal pres-
sures:

1.571s =1.478a (e/kT)' (13)

The resulting soft-disk thermal conductivity at
T =6@/k and

is

Nn /V=80/[(n/12)(282 —12 )]=0.477

6.1k(e/mo )'i

in fairly good agreement with the value deduced
from our numerical radial-heat-flux data
4.4k (e/m cr )' discussed below.

Mechanical equilibrium requires that the centri-

fugal force on an element of mass at r and 8,
'(r dr d8)mph r, must balance the pressure-gradient
force —(r dr dO)dP/dr. An exact solution of the
corresponding mechanical equilibrium equation, in-

cluding heat flow, is tedious, and the resulting den-

sity profile differs only slightly from the simpler
isothermal profile, as shown in Fig. 2. Cape's
equation of state indicates that rotational frequen-

0
12 16

I

20

r/0

24 28

cies, up to the maximum we used, all correspond
to wholly fluid-phase states.

The numerical results given in Table I and illus-

FIG. 2. Density profile for a rotating two-
dimensional disk with co =0.25(e/m o )

' . Cape's equa-
tion of state for the soft-disk fluid, at a temperature of
6e/k, was used to solve the mechanical-equilibrium
equation for a system rotating at the highest angular fre-

quency shown in Table I, and with the same number of
particles. The profile has been integrated to display the
average number of particles N(r) lying within a circle of
radius r. The points shown along the curve correspond
to average locations of the 10th, 20th, 30th, . . . , parti-
cle, counting outward from the center, from the corre-
sponding molecular dynamics simulation. In the draw-

ing, the figure e, m, o, and k have all been set equal to
one. The arrows indicate the shifts required at zero fre-

quency to match the isothermal mechanical-equilibrium
calculation with the corresponding microscopic heat-
conducting simulation.

TABLE I. Numerical results for six rotational frequencies co. The time, radial, and angu-
lar heat fluxes in the volume V are tabulated. In the table the units correspond to setting e,
m, cr, and 'k all equal to one.

Frequency Time
Radial'

q V (potential) q V (kinetic)
Angular

q V (potential) q V (kinetic)

0.00
0.05
0.10
0.15
0.20
0.25

400
200
200

1400
400

322
328
308
350
379
389

241
215
214
233
250
237

4
—23
—25
—33
—22
—57

9
1

—4
—35
—24
—36

'Most of the increase in the radial heat flux with frequency corresponds to the decrease of ef-
fective system width with frequency. The centrifugal forces increase the efFective tempera-
ture gradient. We have not made a precise estimate because the accuracy of the results does
not warrant it. Energy was conserved to at least one part in 105 in integrating over the time
intervals between momentum rescalings.
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FIG. 3. Ratio of the angular to the radial heat flux
as a function of rotational frequency. Despite consider-
able fluctuations the data establish that the qualitative
predictions of kinetic theory are correct. The slope of
the line drawn through the data agrees well with the
collisional relaxation time estimated in the text.

The angular part of the heat flux found here
contains nearly equal potential and kinetic parts.
It fluctuates wildly with time and is considerably
smaller than the radial part. The angular flux is
equal to twice the product of minus the radial flux,
the angular frequency, and the relaxation time, ac-
cording to the approximate Boltzmann treatment
given in Sec. II. Our observed angular heat flux
confirms this order-of-magnitude estimate. The
data correspond to a relaxation time
x=0 30(.mtr /e)' A.n independent estimate for r
can be obtained from the exponential relaxation
theory (ERT). That theory predicts a thermal con-
ductivity A,q~T ——2pk Tv/m. Setting this equal to
the kinetic part of the conductivity estimated from
Table I and Fig. 2, 1 9k(e./mo )' gives

=r0.33( mr t/e)'
We conclude that the approximate kinetic theory

and Enskog's dense-fluid modification of
Boltzmann's equation correctly predict a violation
of Fourier's heat conduction law. In dense media a
radial temperature gradient induces an angular
heat flux in a comoving frame.
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