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Self-consistent-field =a method: The atomic properties of several atoms using theoretical a
parameters derived from the Fermi hole
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Theoretical parameters a, for the self-consistent-field="a (SCF==a) method are derived by considering the Fermi
hole, modified from the form used to generate the theoretical a parameters in the Xa method, because of including
explicit self-interaction in the Hamiltonian, which scales the exchange potential. The a, for all elements in the
Periodic Table are given, to compare with previous compilations. For Z )30 they are in error due to relativistic
effects becoming important. The results from the SCF==a method with a, have been compared with those previously
calculated for Cu+, Mn'+, Ne, and Ar for the one-electron energies -e, , the total energies E, the Fermi contact
terms y, and the core-spin densities.

I. INTRODUCTION e.g. ,
' for Li: aKF = 0.322 37 and n„F = 0.781 47;

for Ar: a„F =0.47916 and n„F =0.72177. How-

ever, since o„=n„F, it would be expected that
a„=a». Therefore, it is obvious that the n „'s
are too large to be used in the " a scheme, and
consequently it is necessary to reformulate the
parameter, a„, if theoretical parameters are to
be used in calculations.

While the " a one-electron energies with a„are
expected to be much better than the Xn values,
from previous experience, "it should not be ex-
pected that a drastic change will occur from the
values from =a when a, is used, because the
quality of the wave function and the related phys-
ical properties depend very much on the method
and less on the parameter. Nevertheless large-
value parameters such as n„when used in the
:-a scheme will be not only energetically unfavor-
able for atoms but also for molecules. For exam-
ple, since the total atomic energy is linearly de-
pendent on the parameter, large- value parameters
lower the dissociation limit. If the energy lower-
ing is not retained for all internuclear distances,
not only is the potential curve affected, but in the
worst case a bound state may turn out to be un-
bound.

Gopinathan' improved the approximate represen-
tation of the atomic Hartree-Fock (HF) potentials,
by calculating the self-interaction term explicitly
and scaling the remaining exchange potential to the
charge density p as in the X~ method. '

This new method, named the self-consistent-
field-:" d (SCF-:-a) hereafter the " a method, has
been applied to Cu' and Mn" by Gopinathan' using
parameters n, derived' theoretically within the
Xn scheme. The = a one-electron energies -&i
and other properties such as the Fermi contact
term y of Mn" were closer to the HF results than
those of the Xn method using n, . However, the
:-a total energies4 E from Ne to Ar of the even-Z
atoms were all lower than the corresponding ex-
act nonrelativistic energies' when u„was used,
suggesting that the a„, derived within the Xn
scheme, are unsuitable for use in the a method.

When the total energy of Eq. (1), (E,-,}, is set
equal to the atomic energy of the HF limit,
E i l it a corresponding parameter, a» is ob-
tained. This follows closely the derivation of
a„F by Schwarz' for the Xn method. The numer-
ical values of a„F were distinctly less than n„F,

I

II. TOTAL ENERGY AND EXCHANGE ENERGY

The total energy in the "amethod is (distances in a.u. , energies in Ry)

(d+ = g fp, (1)f, , (1)d +-,' pp(1)p(2)d„d, d, ——,
' P p, (1)p, ,(2)d„d|;d,

J

—+ Cay g p',.i(1}pPf'(1)p,. &(1)dr, +(4)

where (t) represents terms with down spins. The
I,.'s are the spin orbitals with orbital occupancy
n „f, = —V~ —2Z/r, g» = 2/r», and C = (2/4m}' f 3.

pi(1) is the total charge density, p, i(1) is the
charge density of the electron in spin orbital u,.~,

I

and p',. &
is the difference between p~(1) and p, i(1),

p, i(1) =n&~u,*. |(l)u,. i(1), p~(1) = g n,.u~(1)u,.(1),
2( (2)

p',. ((1) = pq(1) —p,.((1)= g n,.u,*. (1)u,.(1) .
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In E(I. (1), (f t could be determined empirically for
each atomic system, but will be derived theoret-
ically. Integrals 2 to 6 on the right-hand side of
E(l. (1}, account for the electron-electron inter-
action energies. The third integral is the self-
interaction integral which is wrongly included in
the second integral, the Coulomb interaction en-
ergy, in the Xn scheme, but is evaluated exactly
in the =a scheme. The negative sign means that
this term is subtracted from the second term. The
algebraic sum of the second and the third terms
plus the necessary contribution from the down-spin
terms will be the usual Coulomb interaction ener-
gy in the HF method. Therefore, the fourth term,
which is a~ dependent, must be equivalent to the
exchange energy when the self-interaction term
is excluded. This is the fundamental differ-
ence from the Xu method where the third and
fourth terms are combined to give the exchange-
correlation integral which depends on the para-
meter, o..

Minimizing the total energy [E(I. (1)]variation-
ally with respect to u, 's, gives a set of one-elec-
tron SchrMinger equations to be solved' in the
:-a scheme,

[f,+ V,(1)+V*, f(1)+ V;$(1}f]u(t(1)=e(fu(f(1),
where V, is the Coulomb potential; V;~ is the
self-interaction potential for the ith spin orbital,
and V;) is the exchange potential.

By defining'

U f*(1)=~ -&«fQ P'(I)pt"(1)p, t(I)) &Pt(1) (4)

the = a electron-electron interaction terms in Eq.
(1}can be written as

I 2„)=—'
J( p(1)p(2)d„dr, dr

p(1) =n [$(1,2, . . . , n)
~

dT, ~ ~ dT„ds, ~ ~ ~ ds„,

1+

f((1, 2)=n(n-i) ~(J)(192, . . . , n)~'dT; dt's, ~ ds„,

(8)

and

E r;',)=-,'
Jf r, r(1, 2)dr, dr, .

f& j

For a system of definite spin, p(1) and f((1, 2) can
be written as"

P(1)=Pt(1)+Pt(1)

f((1, 2) = f(tt(1, 2) + f(t t(1, 2)

+ f(tt(1, 2)+f(«(1, 2),

(10)

pt(1), the total charge density of up-spin electrons
n~, is the probability density of finding any of the
nt electrons at point 1. The pair density f(tt(1, 2)
is the probability density of finding any of the n~
electrons at point 1 and simultaneously another
up-spin electron at point 2. When two electrons
are far apart, they can be treated as independent
particles, and the pair density can be written
as3, 14

f(A (112)= pt(1)pt(2) —pt(1)pt(2) jnf, (12)

and similarly for f(ft't~(1, 2) for electrons with the
same spins; or

III. ONE- AND TWO-PARTICLE DENSITY MATRICES

The electron-electron interaction energy can al-
so be written in terms of the one- and two-particle
density matrices defined as" "

-~
J ~ p (1()tp (2()fg, d 2dTT2 f(N'(I 2}= P t(1}Pt(2} (13)

+2 Pt 1 U't" 1 dT1+ (5)

The exchange potential of E(I. (4) can also be re-
formulated by means of definitions given in Eq.
(2), i.e., 17 f f{(1,2) = p f(1)p f(2) + p f(1)p f(2)f f f(1, 2) (14)

and similarly for f(ft)~(l, 2) for electrons with the
opposite spins. It was also suggested by Mc-
Weeny" that when two electrons are correlated,
the pair density may be written as

and similarly for f(tt(1, 2) for electrons with the
parallel spins, and

(15)f(t t(I 2) = P t(1)P t(2)

and similarly for f(tt(1, 2) for electrons with the
opposite spine. In E(l. (15), pf(1)pt(2$(t(1, 2) is
not included, because it accounts for the correl-
ation between electrons of unlike spins. Such cor-
relation is not considered in the HF theory nor
in the =a method.

U)'({)=—9C 1(p", '(1) —9)"'{1)E9', &(1) f. (6)

Clearly, the first term on the right-hand side of
E(l. (6) has exactly the same form as the exchange-
correlation potential U'f*'(1) in the Xa theory The.
second term is the self-interaction energy in the
:-a theory. It is removed from U $*'(I) because the
self-interaction energy, the second term of Eq.
(5), is now evaluated exactly.
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IV. EXCHANGE DENSITY AND THE
THEORETICAL a PARAMETER

Following the same argument, but with the two

electrons far apart, it follows that

Assuming the particles are indistinguishable,
then p,.(1), the probability density of finding the

ith particle at point 1, in Eq. (2) can be written'4

as p,.(1)= p(1)/n. The self-interaction term in Eq.
(5) can then be written as

~2 g P; i(1)P; i(2}g12drldr2

pi(1)pi(2)g»dr, dr2 .
2nt

(16)

g g» = z p(1)p(2)g»dt, dr&
~~4(f

The same result can be achieved if Q,p, t(1)p,.t(2)
is replaced by pi(1)pi(2) —2+,.(iit, t, t(1, 2), where
tt',."&~&t(1, 2) is defined as" the product of p, ,(1)p, i(2);
and the relation (it t (1, 2) = nt(nt —l))tp„.t(1, 2) is
used. " Therefore Eq. (5) becomes

(21)

The above two equations show that the exchange
charge density around a reference electron is
equal to the charge density due to other electrons
at the reference point. When an up-spin electron
is far from the distribution, the probability of
finding a similar electron at that position is zero.

By assuming that the Fermi hole is spherical'
and is centered at position 1, and that the density
varies linearly within the hole, then from Eqs.
(20) and (21) one can obtain

(22}

where r is the distance between positions 1 and 2,
and rp is the radius of the Fermi sphere.

Now, it is known' that the total amount of the
exchange- correl ati on char ge,

1
P t(1)Pi(2}g12«ld 22nt

+ 2 J I pi (1)U't(1)dri+(i ). (17)

By comparing to Eq. (9), the exchange potential
can be written as (in a.u. ):

U't*(1) = r, ', fii(1, 2)+ pi(2)dT, .1
(18)

This exchange potential is produced by an ex-
change-charge density at position 2:

p('(2)=(ftt() 2)t „ ttt(2)
1

nt
(19)

(f i i(1, 2) + 1/n i) is in fact the correlation factor'
for like-spin electrons changing from the indepen-
dent case, it it (1, 2) to the correlated density
function )itt(1, 2). Furthermore, fii(1, 2) was
shown' to be negative within the Fermi hole. In

the case of the Xz theory, the exchange-correl-
ation charge density p'Pt(2) was shown to be

fit(1, 2)pi(2). Consequently, Eq. (19}means that
when the self-interaction is evaluated exactly and

the corresponding portion is removed from the
exchange- correlation potential, the exchange-
charge density, p'P(2), at position 2 will be re-
duced by pt(2)/nt as compared to pi"(2). Now,
from Eq. (14) and the conditional probability of
finding an 0 spin electron at position 2 when pi(1)
is known, one has' fii(1, 1)pi(1) =-pi(1), so that
the exchange-charge density at position 1 is

removed from the charge distribution is -1 when

the reference electron at position 1 is considered.
Therefore from Eq. (19) one can show that the
amount of the exchange charge, fpi" (2)dr~, is
zero since f (I/nt)pt(2)dT, =1. It is then mathe-

matically impossible to determine r, from the
condition fp)"(2)d ,T=0 with p', * defined by Eq.
(22) unless a nonlinear relation between p'i* and

r is assumed. However the Fermi hole radius,
r» defined by pt"' in Ref. 3 is not altered in the
present work provided the same definition is tak-
en. The Fermi hole does not depend on whether

or not the self-interaction exchange is considered
explicitly, consequently rp is determined by

p

(23)

It is obvious that according to the definition by

Gopinathan, Whitehead, and Bogdanovic, ' and

Eq. (19), one can obtain

p~* (r) = p',"(r} pi(1}—
1

nt

1 1
pi(1) —1 r+p, (1) .

rp nt

(24)

Equation (24) is based on a further assumption'
that the electron density is slowly varying around
the center, the point 1, so that p (2)/tn in tEq. (19)
may be replaced by pt(1)/ni.

Now Eqs. (23) and (24), give a result similar to
that in Ref. 3:

(20)
ro = [tt (1/n i+ 1/3) p i(1)] "' . (25)
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peXC a„=(nba, ~+n&a, ~)/(ni+n~) . (28)

p, (&)

peX

(1- ~ )P)ll)

ro

The value a, ~ is related to n, ~, the theoretical &

value derived in the Xa theory by

s, ~=[nl(s~+2)]~, t

For large n~ values a, ~
—-&,~. This can be justi-

fied by looking at Eq. (6) where the second term,
pi(1)/ni, in the brackets is negligible compared to
the first term for large n~ values. On the other
hand, g, ~ is significantly different from u, ~ for
small n~'s.

V. RESULTS

The calculated values for g, ~ and a, ~ and the
average values a„ for atoms are given in Table
I. The one-electron energies -&i and the total
energy -E calculated for Mn" (Ar 3d') by the "
method are given in Table II. The corresponding
core-spin density of Mn

' with parameters g, and

n, are plotted in Fig. 4. Results of -zi and -E
for Ne, Ar, and Cu' are given in Table III.

VI. DISCUSSION

FIG. 1. (a) The schematic exchange-correlation charge
distribution (taken from Ref. 3). (b) The schematic ex-
change-charge distribution (present work).

It is worth mentioning that since ro is defined as
in Eq. (25) in the present work, then dependence
of p$* on r, and p'P' on r are parallel. The dif-
ference between their density distribution func-
tion (Fig. 1) is only a constant shift, p~(1)/n~.
T' he exchange-charge potential at the center of
the sphere due to the exchange-charge density
will be

U t"(1)=4v ' P't*(~)«~.
Q

The exchange potential in Hy units will be

+-I4~3(1) i 11)
3 I, Pl ~) (tl~ 3]

(26)

Consequently, to generate theoretical a, ~ similar
to the o.', &

it is necessary to replace p, q(1) by

p~(1)/n~ in Eq. (6), and compare with Eq. (26):

4 4+2 1/3 1 1 )-2/ 3

a, ~= + —~, (n~ e1) . (27)
n) 3)

When n~=1, U;*(1)=0, which means that there is
no exchange term, and, therefore, a, ~ is unde-
fined. The average theoretical a value is defined
as

From Table I, it is seen that values of a, and

a„within the =a scheme increase with Z. The
values are significantly smaller than a, and ~„,
the theoretical parameters' derived within the 2r. ~
theory. The values of a„are closer to the a»
values' (Fig. 2). Li: a„=0.263 31, as+ = 0.322 37,
and 0'„~=0.7814V; Ar: a„=0.60057, aH~
=0.47916, and 0.'H~ =0.7217V. The trend of a„
follows essentially that of a„~; the trend of a„ is
similar to the trend of n», but a„or a„~ has the
opposite trend to n„or n„~. The values of a,
also support the argument in Sec. IV that the dif-
ference between u„and a, is more pronounced
for light atoms, decreasing for heavier atoms.

A plot of a, ~ or a«versus the number of elec-
trons (Table 1) clearly indicates its nonlinearity.
The variation in a, &, a, ~, and a„ follows a similar
pattern opposite to that in n, &, cg«, and o „ob-
served in Ref. 3. The slope of Ba, /sZ is discon-
tinuous at the beginning of every subshell. The
breaks are significant for small atoms where the
change in a„ is large. Following Hund's rule
that determines the ground-state configuration of
atoms, for the first half subshell a, ~ is increased
nonlinearly as the number of up-spin electrons
increases (Fig. 3), while a« is kept constant be-
cause the number of down-spin electrons remains
constant. For the remaining half subshell, a, ~

is a constant because of the constant n~, but ad)
is increased nonlinearly as the number of down-

spin electrons increases. The value of a„within
the subshell is therefore an appropriate average
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TABLE I. Theoretical exchange parameter a
&,

or a «and the average value a += (n, a &, +n, a, )/(n, +n, ) as a function
of the number of the electrons.

n, orn, a&, or a&, Atom configuration Atom configuration nf

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
g1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
SS

0.394 969
0.458 321
0.500 992
0.531 834
0.555 216
0.573 573
0.588 376
0.600 570
0.610 793
0.619488
0.626 974
0.633 488
0.639 208
0.644 272
0.648 785
0.652 833
0.656 486
0.659 797
0.662 813
0.665 572
0.668 105
0.670 439
0.672 597
0.674 597
0.676 457
0.678 190
0.679 810
0.681 326
0.682 749
0.684 087
0 ~ 685 348
0.686 537
0.687 661
0.688 725
0.689 734
0.690 692
0.691 602
0.692 468
0.693 294
0.694 082
0.694 834
0.695 553
0.696 241
0.696 900
0.697 532
0.698 139
0.698.721
0.699 281
0.699 819
0.700 337
0.700 837
0.701 318
0.701 782
0.702 230

3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
38
40
41
42
43
44
45
46
47
48
49
50

Li
Be
B
C
N

0
F
Ne
Na

Mg
Al
Si
P
S
C1
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni

CU

Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb

Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn

He 2si
He2s
He 2st2pt
He2s 2p
He 2st2p
He 2s22p4

He 2s 2ps

He 2s22p6

Ne 3si
Ne 3s2
Ne3s 3p
Ne 3s23p2

Ne 3s23p3

Ne 3S23p4

Ne 3S23p5

Ne 3S23p6

Ar 4si
Ar 4s2
Ar 3d'4S'
AI 3d24s2
Ar 3d34s2

Ar3d 4s
Ar 3d'4s'
Ar 3d64s2
Ar 3d74s2
Ar3d 4s
Ar3d 4s
Ar 3di04s2
Ar 3d "4s'4P'
Ar3d 4s 4p
Ar 3di04s24p3

Ar3d 4s 4p4

Ar3d 4s 4p
Ar 4d104s 4p6

Kr5s
KrGS
Kr4d 5s
Kr4d Gs
Kr4d45si
Kr4d 5s
Kr 4d~GS

Kr 4d'Ssi
Kr4d 5s
Kr 4d
Kr4d Gs

Kr4d 5s
Kr4d 5s Sp
Kr 4di05s25p2

2
2
3
4
5
5
5
5
6
6
7
8
9
9
9
9

10
10
11
12
13
15
15
15
15
15
15
15
16
17
18
18
18
18
19
19
20
21
23
24
24
24
24
23
24
24
25
26

9
9

10
10
10
10
9

10
11
12
13
14
15
15
15
15

. 16
17
18
18
19

0.263 313
0.394 969
0.432 980
0.465 651
0.492 730
0.504 267
0.518 127
0.531 834
0.544 588
0.555 216
0.565 101
0.574 164
0.582 429
0.588 759
0.594 832
0.600 570
0.605 951
0.610 793
0.615 348
0.619 619
0.623 621
0.627 884
0.630 880
0.633 786
0.636 584
0,639 265
0.641 827
0.644 272
0.646 601
0.648 820
0.650 934
0.652 862
0.654 712
0.656 486
0.658 186
0.659 797

18
19
20
21
23
23
24
24
24

0.665 692
0.666 941
0.668 150
0.669 319
0 670439
0.671 541
0.672 597
0.673 617
0.674 604

19 0.661 344
19 0.662 829
18 0.664 313

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67'
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

Sb
Te
I
Xe
Cs
Ba
La
Ce
Pr
Nd

Pm
Sm
Eu
Gd
Tb
Dy
Ho

Er
Tm
Yb
Lu
Hf
Ta
W
Re
Os
Ir
Pt
Au

Hg
T1
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Th
Pa
U

Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr

KI.4d i05s 5p
Kr 4d i05s~Gp4

Kr 4d Gs'5 p
Kr 4dio

Xe 6s
Xe 6s2
Xe5d 6s
Xe 4f 6s
Xe 4f 6s
Xe 4f46s
Xe 4f56s
Xe 4f 6s
Xe4f 6s
Xe 4f75d i6s2

Xe 4f 5d 6s2
Xe 4fi06s2

Xe 4fii6S2
Xe 4f 6s
Xe 4f 6s
Xe4f 46s
Xe 4f ~Gd 6s
Xe 4fi45d26s
Xe4f 5d 6s
Xe 4fi45d46s2
Xe 4f"Gd'6s'
Xe 4f Gd 6s
Xe 4f 45d 6s2

Xe4f 5d 6s
Xe 4f 45d 6s
Xe 4f Sd 6s
Xe4f Gd 6s 6p
Xe 4f 45d 6s 6p
Xe 4f Gd ~6s 6p
Xe4f 45d 6s 6p'
Xe 4f 45d 6s 6p
Xe 4f 45d 6s26p
Rn Vs'

Rn 7s2

Rn6d Vs
Rn 6d27s2

5f26d iVst

Rn5f 6d 7s
Rn 5f57s2

Rn 5f 67S2

Rn 5f77S2
Rn 5f'6d 7s
Rn5f 6d 7s
Rn Sf 7s

fii7s
Rn Sfi27s2

Rn 5f Vs
Rn Sf Vs
Rn 5f 6d 7s

27
27
27
28
28
29
30
31
32
33

35
36
36

24
25
26
27
27
28
28
28
28
28
28
28
28
28
29

35
35
35

36
37
38
39
40
40
40
40
40
40
41
42
43
43
43
43
44
44
45
46
47
48

32
33
34
35

35
35
35
35
36
37
38
39
40
40
40
40
41
42
43
43
44
44
44

44

52
52
51
51
51
51
51
52

44
45
47
48
49
50
51
51

50 44
51 44

0.675 558
0.676 463
0.677 340
0.678 190
0.679 015
0.679 810
0.680 581
0.681330
0.682 057
0.682 763
0.683 449
0.684 115
0.684763
0.685 392
0.685983
0.686 547
0.687 112
0.687 663
0.688 201
0.688 725
0.689 237
0.689736
0.690 223
0.690 698
0.691 162
0.691608
0.692 044
0.692 470
0.692 886
0.693 294
0.693 693
0.694 083
0.694 464
0.694 835
0.695 198
0.695 553
0.695 901
0.696 241
0.696 574
0.696901
0.697 221
0.697 535
0.697 843
0 698144
0.698 440
0.698 730
0.699 011
0.699 283
0.699 554
0.699 820
0.700 081
0.700 337
0.700 590

~The values of a & for Z &30 are in error because spin-orbit coupling invalidates the n, and n, separation. This fail-
ure is also true of the previously tabulated 0. of the Xn theory (Ref. 3). The aHz (Ref. 6) and n„z (Ref. 7) also suffer
this inaccuracy since they are developed to make (Es g or (Ers) =Eum, and spin-orbit coupling is not present in the
nonre1ativistic Hartree-Fock Hamiltonian. This criticism is not true of parameterizations which equate a or n to ex-
perimental energies (Ref. 9).
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TABLE II. One-electron energies -e
&

and the total energy -E for the ground state of Mn2'

(Ar3ds) by SPHF and "a methods, in Ry.

Orbital

1s &

1s i

2s &

2s k

2p t

2pt
3s &

3s&
3pt
3pk
3d t

Etot

SPFH (Ref. 12)

482.369
482.374
59.633
59.363
51.044
50.781
9.323
8.494
6.753
5.745
2.576

2298.222 ~

=-a(a, )'

482.304
482.111
60.359
59.798
49.319
48.907
9.425
8.708
6.395
5.373
2.276

2307.019

Diff c

0.065
0.263

-0.726
-0.435
1.725
1.874

-0.102
-0.214
0.358
0.372
0.300

-8.797

"a(n )

480.774
480.797
59.359
59.094
52.303
52.144
8.991
8.320
6.749
6.099
3.093

2313.891

Diff c

1.595
1.577
0.274
0.269

-1359
-1.363
0.332
0.174
0.004

-0.354
-0.517

-15.669

Calculated using Eq. (1) with a&, =0.63921 and a&, =0.60057 [Eq. (24)).
Calculated using Eq. (1) with u„=0.730 52 and ut, =0.734 03 by Gopinathan (Refs. 1 and 3).

'The difference between the SPHF and the energy given in the preceding column.
Averaged total energy over the states with different possible magnetic quantum numbers.

TABLE III. One-electron energies -~& and the total energy -E for the ground state of Ne,
Ar, and Cu' by HF and "a methods, in Ry.

Orbital HF~ =-a(a„) b Diff. ' "a(uz)' Diff. d

Ne

Ar

Cu'

1s
2s
2p

e
Etot

1s
2s
2p
3s
3p

Etot

1s
2s
2p
3s
3p
3d

e
Etot

65.5455
3.8610
1.7010

257.0942
(257.855)
237.2213
24.6449
19.1435
2.5550
1.1823

1053.6350
(1055.098)

658.22
82.26
71.86
10.65
7.28
1.62

3277.46

65.5456
4.0658
1.3574

257.7638

237.0765
25.0113
17.9787
2.6992
0.9653

1057.4771

658.09
83.12
69.78
10.86
6.94
1.38

3289.91

-0.0001
-0.2048

0.3436
-0.6696

0.1448
-0.3664
1.1648

-0.1442
0.2170

-3.8421

0.13
-0.86

2.08
-0.21

0.34
0.24

-12.45

65.3954
4.5557
1.4054

259.8514

237.0887
25.6437
18.0200
2.8904
0.9962

1061.7662

656.18
81.66
73.08
10.07
7.11
2.06

3292.78

0.1501
-0.6947

0.2956
-2.7572

0.1326
-0.9988

1.1235
-0.3354

0.1861
-8.1312

2.04
0.60

-1.22
0.58
0.17

-0.44
-15.32

'E. Clementi, IBM J. Res. Dev. Suppl. 9, 2 (1965).
Calculated by Eq. (1) with a, and a, given by Eq. (24).

'Calculated by Eq. (1) with (Ref. 3) &, and ~, .
The difference between the HF energy and the energy given in the preceding column.' J. B.Mann, LASL Report No. LA-3690 (1967) (unpublished). Values in brackets are the

nonrelativistic exact energy quoted by Keller and .G5.zquez, Phys. Rev. A 20, 1289 (1979).
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FIG. 2. Comparison of a+ and a„F (Ref. 7) in the "a
method.

Mn" is lowered by -8.797 Ry from the SPHF (E),
whereas (E~,) with n, is lowered by -15.669 Ry.
Thus (E~,) with a, is significantly closer to the
corresponding HF results and closer to the non-
relativistic exact energy. These conclusions also
apply to Ne, Ar, and Cu' (Table III) for closed
shel. l atoms.

The Ar core-spin densities (Fig. 4) in Mn" cal-
culated using a, in the =a method are closer to
the SPHF results than those calculated using n,
for z from 0.1 to 0.2 a.u. and from 1.4 to 2.1 a.u. ;
but between 0.4 and 0.8 a.u. and 0.95 to 1.3 a.u. ,
a, gives a closer fit, but both calculations are off
from the SPHF results.

The polarization of the s-electronic charge den-
sity causes a nonvanishing spin density at the nu-
cleus. It gives rise to a nonzero Fermi contact
term for systems like Mn" (see Fig. 4~. Results
of the present work using = a method with a, for
Mn" is compared to that' using ~,. The quantity
is defined as"

(30}

of a nonlinearly varying quantity and a constant,
and is approximately linear.

Consequently, the modified model used to devel-
op the a, must be essentially correct, and should
be valid in atoms, molecules, and solids. '

The =a one-electron energies using a, (Eq. 27)
are much better than the Xn results, ' for exam-
ple, in the case of Mn' the Xn results are: 1st
=-469.59 Ry. , 2s&=-55.20 Ry. , 3d~=-1.93 Ry. ,
etc, they are far away from the spin-polarized
HF(SPHF) results, "whereas the =a results (Ta-
ble II) are very close to the SPHF,"ones. Within
the =a scheme, results using a, do differ from
those using u„Table II, however, there is no
significant improvement as compared to the SPHF
results. """ The total energy (E~,) with a, for

ata

O. I 2

cI0
c 0.08
CL

U

g 0.04-
P
I
0
V

0.00

/'

/

j ', — Ha(at)
j

The calculated y in the present work, :"a(g,), is
-2.31 a.u. , and that' of:"a',o. ,) is -4.54 a.u. The
experimental measurement by Abragam et al."
is -3.10 a.u. According to Watson and Freeman'
the relativistic correction would increase the theo-
retical values by several percent, therefore the
present result with a, will be even closer to the
experimental and that using Qt, will be further off
from the experimental value after the correction.

subshell ~ subshell (i+& )

-0.04-

—0.08

I
I
~ l
I ~
~ ~

~r

0.5 I.O

I (a.u.)

I.5

SPHF

2.0 2.5

FIG. 3. Variation of a,t, att, and a« in atomic sub-
shells (purely schematic).

FIG. 4. The Ar core spin-density distribution in Mn '
by the - a method with a, (, ~, &

and ag(f ~ f) values
compared to the result with the SPHF calculations.
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TABLE IV. Fermi. contact term in Mn~'.

SPHF I (Ref. 13) Xa( (R«. 12) &&($) (Ref. 12) "a(o, t) "a(a &) Expt, (Ref. 15)

Xgs

X~
Xlg

Xtot al

-0.191
-7.154
+3.218
-4.127

-0.158
-5.376
+2.004
-3.530

+6.527
-3.520
+2.758
+5.765

+0.300
-8.046
+3.209
-4.537

-4.609
-1.582
+3.879
-2.312 -3.10

'Varies haphazardly with size of basis set (Ref. 13).

CONCLUSION

The theoretical g, for the = a method have been
established and calculated, from a Fermi hole
formulation. The g, have the opposite trend with
Z to the a, of the Xo. method, but a similar pat-
tern of dependence on the nt and n&, including
discontinuity at the beginning of every subshell
and linearity of a„with Z within a subshell. The
:-a one-electron energies using g„but much bet-
ter than the Xa one electron energies using 0.,

or a„„.The(E:-a) is improved when a„. The Ar
core spin densities in Mn" have essentially the
same shape as from SPHF. The Fermi contact
total g(:-a) with a, is significantly closer to ex-
perimental than the )|(:"a)with o.', (Table IV).
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