# Self-consistent-field– $\Xi a$ method: The atomic properties of several atoms using theoretical a parameters derived from the Fermi hole

T. J. Tseng\* and M. A. Whitehead

Chemistry Department, McGill University, Montreal H3A 2K6, Canada

(Received 1 May 1980)

Theoretical parameters  $a_i$  for the self-consistent-field- $\Xi a$  (SCF- $\Xi a$ ) method are derived by considering the Fermi hole, modified from the form used to generate the theoretical  $\alpha$  parameters in the  $X\alpha$  method, because of including explicit self-interaction in the Hamiltonian, which scales the exchange potential. The  $a_i$  for all elements in the Periodic Table are given, to compare with previous compilations. For Z > 30 they are in error due to relativistic effects becoming important. The results from the SCF- $\Xi a$  method with  $a_i$  have been compared with those previously calculated for Cu<sup>+</sup>, Mn<sup>2+</sup>, Ne, and Ar for the one-electron energies  $-\epsilon_i$ , the total energies E, the Fermi contact terms  $\chi$ , and the core-spin densities.

### I. INTRODUCTION

Gopinathan<sup>1</sup> improved the approximate representation of the atomic Hartree-Fock (HF) potentials, by calculating the self-interaction term explicitly and scaling the remaining exchange potential to the charge density  $\rho$  as in the  $X\alpha$  method.<sup>2</sup>

This new method, named the self-consistentfield- $\Xi a$  (SCF- $\Xi a$ ) hereafter the  $\Xi a$  method, has been applied to Cu<sup>+</sup> and Mn<sup>2+</sup> by Gopinathan<sup>1</sup> using parameters  $\alpha_{ta}$  derived<sup>3</sup> theoretically within the  $X\alpha$  scheme. The  $\Xi a$  one-electron energies  $-\epsilon i$ and other properties such as the Fermi contact term  $\chi$  of Mn<sup>2+</sup> were closer to the HF results than those of the  $X\alpha$  method using  $\alpha_{ta}$ . However, the  $\Xi a$  total energies<sup>4</sup> E from Ne to Ar of the even-Z atoms were all lower than the corresponding exact nonrelativistic energies<sup>5</sup> when  $\alpha_{ta}$  was used, suggesting that the  $\alpha_{ta}$ , derived within the  $X\alpha$ scheme, are unsuitable for use in the  $\Xi a$  method.

When the total energy of Eq. (1),  $\langle E_{za} \rangle$ , is set equal to the atomic energy of the HF limit,  $E_{1imit}^{HF}$ , a corresponding parameter,  $a_{HF}$  is obtained. This follows closely the derivation of  $\alpha_{HF}$  by Schwarz<sup>6</sup> for the  $X\alpha$  method. The numerical values of  $a_{HF}$  were distinctly less than  $\alpha_{HF}$ , e.g.,<sup>7</sup> for Li:  $a_{\rm HF} = 0.32237$  and  $\alpha_{\rm HF} = 0.78147$ ; for Ar:  $a_{\rm HF} = 0.47916$  and  $\alpha_{\rm HF} = 0.72177$ . However, since  $\alpha_{ta} \simeq \alpha_{\rm HF}$ , it would be expected that  $a_{ta} \simeq a_{\rm HF}$ . Therefore, it is obvious that the  $\alpha_{ta}$ 's are too large to be used in the  $\Xi a$  scheme, and consequently it is necessary to reformulate the parameter,  $a_{ta}$ , if theoretical parameters are to be used in calculations.

While the  $\Xi a$  one-electron energies with  $a_{ta}$  are expected to be much better than the  $X\alpha$  values, from previous experience,<sup>8,9</sup> it should not be expected that a drastic change will occur from the values from  $\Xi a$  when  $\alpha_{t_a}$  is used, because the quality of the wave function and the related physical properties depend very much on the method and less on the parameter. Nevertheless largevalue parameters such as  $\alpha_{ta}$  when used in the  $\Xi a$  scheme will be not only energetically unfavorable for atoms but also for molecules. For example, since the total atomic energy is linearly dependent on the parameter, large-value parameters lower the dissociation limit. If the energy lowering is not retained for all internuclear distances, not only is the potential curve affected, but in the worst case a bound state may turn out to be unbound.10

#### **II. TOTAL ENERGY AND EXCHANGE ENERGY**

The total energy in the  $\Xi a$  method<sup>1</sup> is (distances in a.u., energies in Ry)

$$\langle E_{za} \rangle = \sum_{i} n_{i} \int u_{i}^{*}(1) f_{1} u_{i}(1) d\tau_{1} + \frac{1}{2} \int \rho(1) \rho(2) g_{12} d\tau_{1} d\tau_{2} - \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} - \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} - \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(2) g_{12} d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(1) d\tau_{1} d\tau_{2} + \frac{1}{2} \int \sum_{i} \rho_{i}(1) \rho_{i}(1) \rho_{i}(1) d\tau_{2} d\tau_{2$$

where (+) represents terms with down spins. The  $u_i$ 's are the spin orbitals with orbital occupancy  $n_i$ ,  $f_1 = -\nabla^2 - 2Z/r$ ,  $g_{12} = 2/r_{12}$ , and  $C = (3/4\pi)^{1/3}$ .  $\rho_1(1)$  is the total charge density,  $\rho_{i1}(1)$  is the charge density of the electron in spin orbital  $u_{i1}$ .

and 
$$\rho'_{i\dagger}$$
 is the difference between  $\rho_{\dagger}(1)$  and  $\rho_{i\dagger}(1)$ ,  
 $\rho_{i\dagger}(1) = n_{i\dagger} u^{*}_{i\dagger}(1) u_{i\dagger}(1), \quad \rho_{\dagger}(1) = \sum_{i\dagger} n_{i} u^{*}_{i}(1) u_{i}(1),$ 
(2)  
 $p'_{i\dagger}(1) = \rho_{1}(1) - \rho_{i\dagger}(1) = \sum_{j\neq i\dagger} n_{j} u^{*}_{j}(1) u_{j}(1).$ 

24

21

(1)

In Eq. (1),  $a_{\dagger}$  could be determined empirically for each atomic system, but will be derived theoretically. Integrals 2 to 6 on the right-hand side of Eq. (1), account for the electron-electron interaction energies. The third integral is the selfinteraction integral which is wrongly included in the second integral, the Coulomb interaction energy, in the  $X\alpha$  scheme, but is evaluated exactly in the  $\Xi a$  scheme. The negative sign means that this term is subtracted from the second term. The algebraic sum of the second and the third terms plus the necessary contribution from the down-spin terms will be the usual Coulomb interaction energy in the HF method. Therefore, the fourth term, which is  $a_1$  dependent, must be equivalent to the exchange energy when the self-interaction term is excluded. This is the fundamental difference from the  $X\alpha$  method where the third and fourth terms are combined to give the exchangecorrelation integral which depends on the parameter,  $\alpha$ .

Minimizing the total energy [Eq. (1)] variationally with respect to  $u_i$ 's, gives a set of one-electron Schrödinger equations to be solved<sup>1</sup> in the  $\Xi a$  scheme,

$$[f_1 + V_c(1) + V_{i\dagger}^s(1) + V_{i\dagger}^{ex}(1)]u_{i\dagger}(1) = \epsilon_{i\dagger}u_{i\dagger}(1), \qquad (3)$$

where  $V_c$  is the Coulomb potential;  $V_{it}^s$  is the self-interaction potential for the *i*th spin orbital, and  $V_{it}^{ex}$  is the exchange potential.

By defining<sup>1</sup>

١

,

$$U_{\dagger}^{\text{ex}}(1) = \left(-9Ca_{\dagger}\sum_{i} \rho_{i}'(1)\rho_{\dagger}^{\frac{1}{2}/3}(1)\rho_{i\dagger}(1)\right) / \rho_{\dagger}(1), \quad (4)$$

the  $\Xi a$  electron-electron interaction terms in Eq. (1) can be written as

$$\left\langle \sum_{i < j} g_{12} \right\rangle^{=\frac{1}{2}} \int \rho(1)\rho(2)g_{12} d\tau_1 d\tau_2$$
$$-\frac{1}{2} \int \sum_i \rho_{i\dagger}(1)\rho_{i\dagger}(2)g_{12} d\tau_1 d\tau_2$$
$$+\frac{1}{2} \int \rho_{\dagger}(1)U_{\dagger}^{ex}(1)d\tau_1 + (\dagger) . \tag{5}$$

The exchange potential of Eq. (4) can also be reformulated by means of definitions given in Eq. (2), i.e.,

$$U_{\dagger}^{\text{ex}}(1) = -9Ca_{\dagger}\left(\rho_{\dagger}^{1/3}(1) - \rho_{\dagger}^{5/3}(1)\sum_{i}\rho_{i\dagger}^{2}(1)\right).$$
 (6)

Clearly, the first term on the right-hand side of Eq. (6) has exactly the same form as the exchangecorrelation potential  $U_{\uparrow}^{xxc}(1)$  in the  $X\alpha$  theory. The second term is the self-interaction energy in the  $\Xi a$  theory. It is removed from  $U_{\uparrow}^{xc}(1)$  because the self-interaction energy, the second term of Eq. (5), is now evaluated exactly.

# **III. ONE- AND TWO-PARTICLE DENSITY MATRICES**

The electron-electron interaction energy can also be written in terms of the one- and two-particle density matrices defined  $as^{11-13}$ 

$$\rho(1) = n \int |\psi(1, 2, \dots, n)|^2 d\tau_2 \cdots d\tau_n ds_1 \cdots ds_n,$$
(7)

$$\pi(1,2)=n(n-1)\int |\psi(1,2,\ldots,n)|^2 d\tau_3\cdots d\tau_n ds_1\cdots ds_n,$$
(8)

and

$$\left\langle \sum_{i>j} r_{12}^{-1} \right\rangle = \frac{1}{2} \int r_{12}^{-1} \pi(1,2) d\tau_1 d\tau_2 .$$
(9)

For a system of definite spin,  $\rho(1)$  and  $\pi(1,2)$  can be written as<sup>11</sup>

 $\pi(1,2) = \pi_{\dagger\dagger}(1,2) + \pi_{\dagger\dagger}(1,2)$ 

$$\rho(1) = \rho_{\dagger}(1) + \rho_{\dagger}(1), \qquad (10)$$

+ 
$$\pi_{ii}(1, 2) + \pi_{ii}(1, 2)$$
, (11)

 $\rho_{1}(1)$ , the total charge density of up-spin electrons  $n_{1}$ , is the probability density of finding any of the  $n_{1}$  electrons at point 1. The pair density  $\pi_{11}(1,2)$  is the probability density of finding any of the  $n_{1}$  electrons at point 1 and simultaneously another up-spin electron at point 2. When two electrons are far apart, they can be treated as independent particles, and the pair density can be written as<sup>3,14</sup>

$$\pi_{\dagger}^{ind}(1,2) = \rho_{\dagger}(1)\rho_{\dagger}(2) - \rho_{\dagger}(1)\rho_{\dagger}(2)/n_{\dagger}, \qquad (12)$$

and similarly for  $\pi_{ii}^{ind}(1,2)$  for electrons with the same spins; or

$$\pi_{\dagger}^{\text{ind}}(1,2) = \rho_{\dagger}(1)\rho_{\dagger}(2), \qquad (13)$$

and similarly for  $\pi_{1,2}^{lad}(1,2)$  for electrons with the opposite spins. It was also suggested by Mc-Weeny<sup>11</sup> that when two electrons are correlated, the pair density may be written as

$$\pi_{\dagger\dagger}(1,2) = \rho_{\dagger}(1)\rho_{\dagger}(2) + \rho_{\dagger}(1)\rho_{\dagger}(2)f_{\dagger\dagger}(1,2), \qquad (14)$$

and similarly for  $\pi_{++}(1,2)$  for electrons with the parallel spins, and

$$\pi_{t,i}(1,2) = \rho_{t}(1)\rho_{i}(2), \qquad (15)$$

and similarly for  $\pi_{\dagger\dagger}(1,2)$  for electrons with the opposite spins. In Eq. (15),  $\rho_{\dagger}(1)\rho_{\dagger}(2)f_{\dagger\dagger}(1,2)$  is not included, because it accounts for the correlation between electrons of unlike spins. Such correlation is not considered in the HF theory nor in the  $\Xi a$  method.

# IV. EXCHANGE DENSITY AND THE THEORETICAL *a* PARAMETER

Assuming the particles are indistinguishable, then  $\rho_i(1)$ , the probability density of finding the *i*th particle at point 1, in Eq. (2) can be written<sup>14</sup> as  $\rho_i(1) = \rho(1)/n$ . The self-interaction term in Eq. (5) can then be written as

$$\frac{1}{2} \int \sum_{i} \rho_{i\dagger}(1) \rho_{i\dagger}(2) g_{12} d\tau_{1} d\tau_{2}$$
$$= \frac{1}{2n_{\dagger}} \int \rho_{\dagger}(1) \rho_{\dagger}(2) g_{12} d\tau_{1} d\tau_{2}.$$
(16)

The same result can be achieved if  $\sum_{i} \rho_{i\uparrow}(1)\rho_{i\uparrow}(2)$ is replaced by  $\rho_{\uparrow}(1)\rho_{\uparrow}(2) - 2\sum_{i<j} \pi_{i\uparrow_{j\uparrow}}^{ind}(1,2)$ , where  $\pi_{i\uparrow_{j\uparrow_{j\uparrow}}}^{ind}(1,2)$  is defined as<sup>11</sup> the product of  $\rho_{i\uparrow}(1)\rho_{j\uparrow}(2)$ ; and the relation  $\pi_{\uparrow\uparrow}^{ind}(1,2) = n_{\uparrow}(n_{\uparrow}-1)\pi_{i\uparrow_{j\uparrow}}^{ind}(1,2)$  is used.<sup>14</sup> Therefore Eq. (5) becomes

$$\left\langle \sum_{i < j} g_{12} \right\rangle = \frac{1}{2} \int \rho(1) \rho(2) g_{12} d\tau_1 d\tau_2$$
$$- \frac{1}{2n_1} \int \rho_1(1) \rho_1(2) g_{12} d\tau_1 d\tau_2$$
$$+ \frac{1}{2} \int \rho_1(1) U_1^{e_X}(1) d\tau_1 + (1) . \tag{17}$$

By comparing to Eq. (9), the exchange potential can be written as (in a.u.):

$$U_{\dagger}^{\text{ex}}(1) = \int r_{12}^{-1} \left( f_{\dagger\dagger}(1,2) + \frac{1}{n_{\dagger}} \right) \rho_{\dagger}(2) d\tau_{2} .$$
 (18)

This exchange potential is produced by an exchange-charge density at position 2:

$$\rho_{\dagger}^{\text{ex}}(2) = \left( f_{\dagger\dagger}(1,2) + \frac{1}{n_{\dagger}} \right) \rho_{\dagger}(2) , \qquad (19)$$

 $(f_{\dagger\dagger}(1,2)+1/n_{\dagger})$  is in fact the correlation factor<sup>3</sup> for like-spin electrons changing from the independent case,  $\pi_{\dagger\dagger}^{ind}(1,2)$  to the correlated density function  $\pi_{tt}(1,2)$ . Furthermore,  $f_{tt}(1,2)$  was shown<sup>3</sup> to be negative within the Fermi hole. In the case of the  $X\alpha$  theory, the exchange-correlation charge density  $\rho_1^{\text{ext}}(2)$  was shown to be  $f_{\dagger\dagger}(1,2)\rho_{\dagger}(2)$ . Consequently, Eq. (19) means that when the self-interaction is evaluated exactly and the corresponding portion is removed from the exchange-correlation potential, the exchangecharge density,  $\rho_1^{ex}(2)$ , at position 2 will be reduced by  $\rho_{\dagger}(2)/n_{\dagger}$  as compared to  $\rho_{\dagger}^{ex}(2)$ . Now, from Eq. (14) and the conditional probability of finding an  $\dagger$  spin electron at position 2 when  $\rho_{\dagger}(1)$ is known, one has  $f_{\dagger\dagger}(1,1)\rho_{\dagger}(1) = -\rho_{\dagger}(1)$ , so that the exchange-charge density at position 1 is

$$\rho_{i}^{ex}(1) = -\left(1 - \frac{1}{n_{i}}\right)\rho_{i}(1) = -\sum_{j \neq i} \rho_{ji}(1).$$
 (20)

Following the same argument, but with the two electrons far apart, it follows that

$$\rho_{\rm f}^{\rm ex}(2) = 0$$
 . (21)

The above two equations show that the exchange charge density around a reference electron is equal to the charge density due to other electrons at the reference point. When an up-spin electron is far from the distribution, the probability of finding a similar electron at that position is zero.

By assuming that the Fermi hole is spherical<sup>3</sup> and is centered at position 1, and that the density varies linearly within the hole, then from Eqs. (20) and (21) one can obtain

$$\rho_{\dagger}^{\text{ex}}(r) = -\left(1 - \frac{1}{n_{\dagger}}\right)\rho_{\dagger}(1)\left(1 - \frac{r}{r_{0}}\right), \qquad (22)$$

where r is the distance between positions 1 and 2, and  $r_0$  is the radius of the Fermi sphere.

Now, it is known<sup>3</sup> that the total amount of the exchange-correlation charge,

$$\int \rho_{\dagger}^{\text{exc}}(2) d\tau_{2} = \int \rho_{\dagger}(2) f_{\dagger\dagger}(1,2) d\tau_{2},$$

removed from the charge distribution is -1 when the reference electron at position 1 is considered. Therefore from Eq. (19) one can show that the amount of the exchange charge,  $\int \rho_1^{ex}(2)d\tau_2$ , is zero since  $\int (1/n_1)\rho_1(2)d\tau_2 = 1$ . It is then mathematically impossible to determine  $r_0$  from the condition  $\int \rho_1^{ex}(2)d\tau_2 = 0$  with  $\rho_1^{ex}$  defined by Eq. (22) unless a nonlinear relation between  $\rho_1^{ex}$  and r is assumed. However the Fermi hole radius,  $r_0$ , defined by  $\rho_1^{exc}$  in Ref. 3 is not altered in the present work provided the same definition is taken. The Fermi hole does not depend on whether or not the self-interaction exchange is considered explicitly, consequently  $r_0$  is determined by

$$\int_{0}^{r_{0}} \rho_{\uparrow}^{\text{exc}}(r) d\tau = -1 .$$
 (23)

It is obvious that according to the definition by Gopinathan, Whitehead, and Bogdanovic,<sup>3</sup> and Eq. (19), one can obtain

$$\rho_{1}^{\text{exc}}(r) = \rho_{1}^{\text{exc}}(r) - \frac{1}{n_{1}} \rho_{1}(1)$$

$$= -\left[\frac{1}{r_{0}} \rho_{1}(1)\left(\frac{1}{n_{1}} - 1\right)r + \rho_{1}(1)\right].$$
(24)

Equation (24) is based on a further assumption<sup>3</sup> that the electron density is slowly varying around the center, the point 1, so that  $\rho_{1}(2)/n_{1}$  in Eq. (19) may be replaced by  $\rho_{1}(1)/n_{1}$ .

Now Eqs. (23) and (24), give a result similar to that in Ref. 3:

$$r_{0} = \left[ \pi (1/n_{1} + 1/3) \rho_{1}(1) \right]^{-1/3}.$$
(25)



FIG. 1. (a) The schematic exchange-correlation charge distribution (taken from Ref. 3). (b) The schematic exchange-charge distribution (present work).

It is worth mentioning that since  $r_0$  is defined as in Eq. (25) in the present work, then dependence of  $\rho_1^{\text{exc}}$  on r, and  $\rho_1^{\text{exc}}$  on r are parallel. The difference between their density distribution function (Fig. 1) is only a constant shift,  $\rho_1(1)/n_1$ . The exchange-charge potential at the center of the sphere due to the exchange-charge density will be

$$U_{\dagger}^{\text{ex}}(1) = 4 \pi \int_{0}^{r_{0}} \rho_{\dagger}^{\text{ex}}(r) r dr.$$

The exchange potential in Ry units will be

$$U_{\dagger}^{\text{ex}}(1) = -\frac{4}{3} \pi^{1/3} \left(1 - \frac{1}{n_{\dagger}}\right) \left(\frac{1}{n_{\dagger}} + \frac{1}{3}\right)^{-2/3} \rho_{\dagger}^{1/3}(1) .$$
(26)

Consequently, to generate theoretical  $a_{t\dagger}$  similar to the  $\alpha_{t\dagger}$  it is necessary to replace  $\rho_{t\dagger}(1)$  by  $\rho_{\dagger}(1)/n_{\dagger}$  in Eq. (6), and compare with Eq. (26):

$$a_{t} = \frac{4}{27} \left(\frac{4\pi^2}{3}\right)^{1/3} \left(\frac{1}{n_t} + \frac{1}{3}\right)^{-2/3}, \quad (n_t \neq 1).$$
 (27)

When  $n_{\dagger}=1$ ,  $U_{\dagger}^{**}(1)=0$ , which means that there is no exchange term, and, therefore,  $a_{\dagger}$  is undefined. The average theoretical a value is defined as

$$a_{ta} = (n_{\dagger} a_{t\dagger} + n_{\dagger} a_{t\dagger}) / (n_{\dagger} + n_{\dagger}) .$$
(28)

The value  $a_{tt}$  is related to  $\alpha_{tt}$ , the theoretical  $\alpha$  value derived in the  $X\alpha$  theory by

$$a_{t\dagger} = [n_{t}/(n_{\dagger}+2)]\alpha_{t\dagger}.$$

For large  $n_{\dagger}$  values  $a_{t\dagger} \simeq \alpha_{t\dagger}$ . This can be justified by looking at Eq. (6) where the second term,  $\rho_{\dagger}(1)/n_{\dagger}$ , in the brackets is negligible compared to the first term for large  $n_{\dagger}$  values. On the other hand,  $a_{t\dagger}$  is significantly different from  $\alpha_{t\dagger}$  for small  $n_{\dagger}$ 's.

### V. RESULTS

The calculated values for  $a_{t^{\dagger}}$  and  $a_{t^{\dagger}}$  and the average values  $a_{ta}$  for atoms are given in Table I. The one-electron energies  $-\epsilon i$  and the total energy -E calculated for  $\mathrm{Mn}^{2^{+}}$  (Ar  $3d^{5}$ ) by the  $\Xi$ method are given in Table II. The corresponding core-spin density of  $\mathrm{Mn}^{2^{+}}$  with parameters  $a_{t}$  and  $\alpha_{t}$  are plotted in Fig. 4. Results of  $-\epsilon i$  and -Efor Ne, Ar, and Cu<sup>+</sup> are given in Table III.

# VI. DISCUSSION

From Table I, it is seen that values of  $a_t$  and  $a_{ta}$  within the  $\equiv a$  scheme increase with Z. The values are significantly smaller than  $\alpha_t$  and  $\alpha_{ta}$ , the theoretical parameters<sup>3</sup> derived within the  $\lambda \alpha$  theory. The values of  $a_{ta}$  are closer to the  $a_{\rm HF}$  values<sup>7</sup> (Fig. 2). Li:  $a_{ta} = 0.26331$ ,  $a_{\rm HF} = 0.32237$ , and  $\alpha_{\rm HF} = 0.78147$ ; Ar:  $a_{ta} = 0.60057$ ,  $a_{\rm HF} = 0.47916$ , and  $\alpha_{\rm HF} = 0.72177$ . The trend of  $a_{ta}$  follows essentially that of  $a_{\rm HF}$ ; the trend of  $\alpha_{ta}$  is similar to the trend of  $\alpha_{\rm HF}$ . The values of  $a_{ta}$  are also support the argument in Sec. IV that the difference between  $a_{ta}$  and  $\alpha_{ta}$  is more pronounced for light atoms, decreasing for heavier atoms.

A plot of  $a_{t\dagger}$  or  $a_{t\dagger}$  versus the number of electrons (Table I) clearly indicates its nonlinearity. The variation in  $a_{t}$ ,  $a_{t}$ , and  $a_{t}$  follows a similar pattern opposite to that in  $\alpha_{ti}$ ,  $\alpha_{ti}$ , and  $\alpha_{ta}$  observed in Ref. 3. The slope of  $\partial a_{ta}/\partial Z$  is discontinuous at the beginning of every subshell. The breaks are significant for small atoms where the change in  $a_{ta}$  is large. Following Hund's rule that determines the ground-state configuration of atoms, for the first half subshell  $a_{t\dagger}$  is increased nonlinearly as the number of up-spin electrons increases (Fig. 3), while  $a_{t+}$  is kept constant because the number of down-spin electrons remains constant. For the remaining half subshell,  $a_{tt}$ is a constant because of the constant  $n_i$ , but  $a_{ii}$ is increased nonlinearly as the number of downspin electrons increases. The value of  $a_{ta}$  within the subshell is therefore an appropriate average

TABLE I. Theoretical exchange parameter  $a_{t1}$  or  $a_{t1}$  and the average value  $a_{t2} = (n_1 a_{t1} + n_1 a_1)/(n_1 + n_1)$  as a function of the number of the electrons.

| n, or n, | a <sub>tt</sub> or a <sub>ti</sub> | Z          | Atom            | o configuration                          | <i>n</i> , | <i>n</i> , | a <sub>ta</sub> | Z    | Ato           | m configuration                                                                           | n,         | n,       | a <sub>ta</sub> |
|----------|------------------------------------|------------|-----------------|------------------------------------------|------------|------------|-----------------|------|---------------|-------------------------------------------------------------------------------------------|------------|----------|-----------------|
| 2        | 0.394969                           |            |                 |                                          |            |            |                 | 51   | Sb            | Kr $4d^{10}5s^25p^3$                                                                      | 27         | 24       | 0.675558        |
| 3        | 0.458321                           | 3          | Li              | He 2 <i>s</i> <sup>1</sup>               | 2          | 1          | 0.263 313       | 52   | Те            | $\mathrm{Kr}4d^{10}5s^25p^4$                                                              | 27         | 25       | 0.676463        |
| 4        | 0.500 992                          | 4          | Ве              | $He 2s^2$                                | 2          | 2          | 0.394 969       | 53   | I             | $\operatorname{Kr} 4d^{10}5s^25p^5$                                                       | 27         | 26       | 0.677340        |
| 5        | 0.531834                           | 5          | в               | $He 2s^2 2p^1$                           | 3          | 2          | 0.432 980       | 54   | Xe            | $\mathrm{Kr}4d^{10}5s^{2}5p^{6}$                                                          | 27         | 27       | 0.678190        |
| 6        | 0.555216                           | 6          | С               | He $2s^2 2p^2$                           | 4          | 2          | 0.465651        | 55   | Cs            | $Xe 6s^1$                                                                                 | 28         | 27       | 0.679015        |
| 7        | 0.573 573                          | 7          | N               | He $2s^2 2t^3$                           | 5          | 2          | 0.492 730       | 56   | Ba            | $Xe 6s^2$                                                                                 | 28         | 28       | 0.679810        |
| 8        | 0.588 376                          | 8          | 0               | He $2s^2 2p^4$                           | 5          | 3          | 0.504 267       | 57   | La            | $Xe 5d^{1}6s^{2}$                                                                         | 29         | 28       | 0.680581        |
| 9        | 0 600 570                          | ġ.         | F               | $He 2s^2 2t^5$                           | 5          | 4          | 0 518 127       | 58   | Ce            | $Xe 4f^26s^2$                                                                             | 30         | 28       | 0 681 330       |
| 10       | 0 610 793                          | 10         | Ne              | He $2s^2 2b^6$                           | 5          | 5          | 0 531 834       | 59   | Pr            | $Xe 4f^36s^2$                                                                             | 31         | 28       | 0 682 057       |
| 11       | 0.610/98                           | 11         | No              | No 3 c <sup>1</sup>                      | 6          | 5          | 0.544.588       | 60   | Nd            | $X = A f^4 6 c^2$                                                                         | 32         | 28       | 0.682763        |
| 12       | 0.626.974                          | 19         | Ma              | No 3 c <sup>2</sup>                      | 6          | 6          | 0.555.216       | 61   | Dm            | $Xe A f^5 6 c^2$                                                                          | 33         | 28       | 0.683449        |
| 12       | 0.020914                           | 12         | A1              | No 2 22 Al                               | 7          | c          | 0.555 210       | 60   | F m<br>Sm     | $Xe_4/0S$<br>$Xo_4f^6c_2^2$                                                               | 24         | 20       | 0.003443        |
| 10       | 0.033400                           | 10         | AI<br>Ci        | $N_{0} 2 a^{2} 2 a^{2}$                  | 0          | 6          | 0.565 101       | 04   | 5m<br>En      | X = 4/0S<br>$X = 4f^2 = 2$                                                                | 95<br>95   | 40<br>90 | 0.004113        |
| 14       | 0.639 208                          | 14         | 51              | Ne $3s^{-}3p^{-}$                        | 8          | 6          | 0.574 164       | 63   | Eu            | $X = 4/10S^{-1}$                                                                          | 30         | 28       | 0.084703        |
| 15       | 0.644 272                          | 15         | P               | Ne $3s^23p^2$                            | 9          | 6          | 0.582 429       | . 64 | Ga            | $Xe 4f^{5}d^{-}6s^{-}$                                                                    | 36         | 28       | 0.685392        |
| 16       | 0.648785                           | 16         | S               | Ne $3s^{2}3p^{2}$                        | 9          | 7          | 0.588759        | 65   | Tb            | $Xe 4f^{\circ}5d^{\circ}6s^{\circ}$                                                       | 36         | 29       | 0.685983        |
| 17       | 0.652833                           | 17         | CI              | Ne $3s^2 3p^2$                           | 9          | 8          | 0.594 832       | 66   | Dy            | $Xe 4f^{10}6s^{2}$                                                                        | 35         | 31       | 0.686547        |
| 18       | 0.656 486                          | 18         | Ar              | Ne3s'3p                                  | 9          | 9          | 0.600 570       | 67 \ | Но            | $Xe 4f^{11}6s^{2}$                                                                        | 35         | 32       | 0.687112        |
| 19       | 0.659797                           | 19         | К               | Ar 4s <sup>1</sup>                       | 10         | 9          | 0.605 951       | 68   | Er            | $Xe 4f^{12}6s^2$                                                                          | 35         | 33       | 0.687663        |
| 20       | 0.662813                           | <b>20</b>  | Ca              | $Ar 4s^2$                                | 10         | 10         | 0.610793        | 69   | Tm            | $Xe 4f^{13}6s^2$                                                                          | 35         | 34       | 0.688201        |
| 21       | 0.665572                           | 21         | $\mathbf{Sc}$   | $\operatorname{Ar} 3d^{1}4s^{2}$         | 11         | 10         | 0.615348        | 70   | Yb            | $Xe 4f^{14}6s^2$                                                                          | 35         | 35       | 0.688725        |
| 22       | 0.668105                           | 22         | Ti              | $\operatorname{Ar} 3d^2 4s^2$            | 12         | 10         | $0.619\ 619$    | 71   | Lu            | $Xe 4f^{14}5d^{1}6s^{2}$                                                                  | 36         | 35       | 0.689237        |
| 23       | 0.670439                           | 23         | v               | $Ar 3d^3 4s^2$                           | 13         | 10         | 0.623621        | 72   | Hf            | $Xe 4f^{14}5d^26s^2$                                                                      | 37         | 35       | 0.689736        |
| 24       | 0.672597                           | 24         | $\mathbf{Cr}$   | Ar 3d <sup>5</sup> 4s <sup>1</sup>       | 15         | 9          | 0.627884        | 73   | Та            | $Xe 4f^{14}5d^36s^2$                                                                      | 38         | 35       | 0.690223        |
| 25       | 0.674597                           | 25         | Mn              | $\operatorname{Ar} 3d^{5}4s^{2}$         | 15         | 10         | 0.630 880       | 74   | W             | $Xe 4f^{14}5d^46s^2$                                                                      | 39         | 35       | 0.690698        |
| 26       | 0.676457                           | 26         | Fe              | $\operatorname{Ar} 3d^{6}4s^{2}$         | 15         | 11         | 0.633 786       | 75   | Re            | $Xe 4f^{14}5d 56s^2$                                                                      | 40         | 35       | 0.691162        |
| 27       | 0.678 190                          | <b>27</b>  | Co              | $\operatorname{Ar} 3d^7 4s^2$            | 15         | 12         | 0.636 584       | 76   | Os            | $Xe 4f^{14}5d {}^66s^2$                                                                   | 40         | 36       | 0.691608        |
| 28       | 0.679810                           | <b>2</b> 8 | Ni              | $\operatorname{Ar} 3d^8 4s^2$            | 15         | 13         | 0.639 265       | 77   | Ir            | $Xe 4f^{14}5d^{7}6s^{2}$                                                                  | 40         | 37       | 0.692044        |
| 29       | 0.681 326                          | 29         | Cu              | $Ar 3d^{10}4s^{1}$                       | 15         | 14         | 0.641827        | 78   | Pt            | $Xe 4f^{14}5d 96s^1$                                                                      | 40         | 38       | 0.692470        |
| 30       | 0.682749                           | 30         | Zn              | $\operatorname{Ar} 3d^{10}4s^2$          | 15         | 15         | 0.644 272       | 79   | Au            | $Xe 4f^{14}5d^{10}6s^{1}$                                                                 | 40         | 39       | 0.692886        |
| 31       | 0.684 087                          | 31         | Ga <sup>a</sup> | $Ar 3d^{10}4s^24t^1$                     | 16         | 15         | 0.646 601       | 80   | Hg            | $Xe 4f^{14}5d^{10}6s^2$                                                                   | 40         | 40       | 0.693294        |
| 32       | 0.685348                           | 32         | Ge              | $Ar 3d^{10}4s^24b^2$                     | 17         | 15         | 0.648 820       | 81   | Tl            | $Xe 4f^{14}5d^{10}6s^26b^1$                                                               | 41         | 40       | 0.693693        |
| 33       | 0 686 537                          | 33         | As              | $Ar 3d^{10}4s^24b^3$                     | 18         | 15         | 0 650 934       | 82   | Ph            | $Xe 4f^{14}5d^{10}6s^26b^2$                                                               | 42         | 40       | 0 694 083       |
| 34       | 0.687.661                          | 34         | Se              | $Ar 3d^{10}4s^24b^4$                     | 18         | 16         | 0.652.862       | 83   | Bi            | $Xe 4f^{14}5d^{10}6s^26b^3$                                                               | 43         | 40       | 0 694 464       |
| 35       | 0.688 725                          | 35         | Br              | $Ar3d^{10}Ac^2Ab^5$                      | 18         | 17         | 0.654 712       | 84   | Po            | $Xe A f^{14} 5 d^{10} 6 c^2 6 b^4$                                                        | 43         | 41       | 0.694.835       |
| 36       | 0.680.734                          | 36         | Kr              | $\Delta n A d^{10} A c^{2} A b^{6}$      | 19         | 10         | 0.656.496       | 95   | Δ+            | $X_{0,4} f^{14} 5 d^{10} 6 a^{2} 6 b^{5}$                                                 | 43         | 49       | 0.695108        |
| 27       | 0.000.009                          | 97         | Dh              | Kn5.1                                    | 10         | 10         | 0.659 196       | 00   | Dn            | $X_0 4 f^{14} 5 d^{10} c_0^2 c_0^6$                                                       | 49         | 42       | 0.000100        |
| 00       | 0.090 092                          | 01<br>90   | no<br>Gm        | KI 55                                    | 19         | 10         | 0.050 100       | 00   | Tm            | $\operatorname{De} \frac{4}{2}$ $\operatorname{Ja}$ $\operatorname{OS} \operatorname{Op}$ | 40         | 40       | 0.095.001       |
| 38       | 0.691 602                          | 30         | 51              | Kr 55"                                   | 19         | 19         | 0.659797        | 81   | Fr<br>D-      | $\operatorname{Ru} 7s$                                                                    | 44         | 43       | 0.695901        |
| 39       | 0.692468                           | 38         | 1<br>T          | $Kr 4a^{-}5s^{-}$                        | 20         | 19         | 0.661 344       | 88   | ка            | $Rn 7s^{-}$                                                                               | 44         | 44       | 0.696241        |
| 40       | 0.693 294                          | 40         | Zr              | $Kr4d^{-}5s^{-}$                         | 21         | 19         | 0.662 829       | 89   | AC            | $\operatorname{Rn} 6a^{-7}s^{-7}$                                                         | 45         | 44       | 0.696574        |
| 41       | 0.694082                           | 41         | Nb              | $\operatorname{Kr} 4d^*5s^*$             | 23         | 18         | 0.664 313       | 90   | Th            | $\operatorname{Rn} 6d^{*7}s^{*}$                                                          | 46         | 44       | 0.696901        |
| 42       | 0.694834                           | 42         | Mo              | $\operatorname{Kr} 4d^{\circ}5s^{\circ}$ | 24         | 18         | 0.665 692       | 91   | Pa            | $\operatorname{Rn} 5f^{*}6d^{*}7s^{*}$                                                    | 47         | 44       | 0.697221        |
| 43       | 0.695 553                          | 43         | Tc              | $\operatorname{Kr} 4d^{\circ}5s^{2}$     | <b>24</b>  | 19         | 0.666941        | 92   | U             | $\operatorname{Rn} 5f^{\circ} 6d^{1} 7s^{2}$                                              | <b>4</b> 8 | 44       | 0.697535        |
| 44       | 0.696241                           | 44         | Ru              | $\operatorname{Kr} 4d^{7}5s^{1}$         | <b>24</b>  | <b>20</b>  | 0.668150        | • 93 | Np            | $\operatorname{Rn} 5f^{\mathfrak{d}}7s^2$                                                 | 49         | 44       | 0.697843        |
| 45       | 0.696 900                          | 45         | Rh              | $\operatorname{Kr} 4d^8 5s^1$            | <b>24</b>  | <b>21</b>  | 0.669 319       | 94   | Pu            | $\operatorname{Rn} 5f^67s^2$                                                              | 50         | 44       | 0 698 144       |
| 46       | 0.697 532                          | 46         | Pd              | $\operatorname{Kr} 4d^{10}$              | 23         | <b>23</b>  | $0\ 670\ 439$   | 95   | Am            | $\operatorname{Rn} 5f^77s^2$                                                              | 51         | 44       | 0.698440        |
| 47       | 0.698 139                          | 47         | Ag              | $Kr 4d^{10}5s^{1}$                       | <b>24</b>  | 23         | 0.671541        | 96   | $\mathtt{Cm}$ | $\operatorname{Rn} 5f^7 6d^1 7s^2$                                                        | 52         | 44       | 0.698730        |
| 48       | 0.698 721                          | 48         | Cd              | $\mathrm{Kr}4d^{10}5s^2$                 | 24         | 24         | 0.672597        | 97   | Bk            | $\operatorname{Rn} 5f^8 6d^{1}7s^2$                                                       | 52         | 45       | 0.699011        |
| 49       | 0.699281                           | 49         | In              | ${ m Kr}4d^{10}5s^25p^1$                 | <b>25</b>  | 24         | 0.673 617       | 98   | Cf            | $\operatorname{Rn} 5f^{10}7s^2$                                                           | 51         | 47       | 0.699283        |
| 50       | 0.699 819                          | 50         | Sn              | $\mathrm{Kr}4d^{10}5s^25p^2$             | 26         | 24         | 0.674604        | 99   | Es            | $\operatorname{Rn} 5f^{11}7s^2$                                                           | 51         | 48       | 0.699554        |
| 51       | 0.700 337                          |            |                 | -                                        |            |            |                 | 100  | $\mathbf{Fm}$ | $\operatorname{Rn} 5f^{12}7s^2$                                                           | 51         | 49       | 0.699820        |
| 52       | 0.700 837                          |            |                 |                                          |            |            |                 | 101  | Md            | $\operatorname{Rn} 5f^{13}7s^2$                                                           | 51         | 50       | 0.700081        |
| 53       | 0.701 318                          |            |                 |                                          |            |            |                 | 102  | No            | $\operatorname{Rn} 5f^{14}7s^2$                                                           | 51         | 51       | 0.700337        |
| 54       | 0.701 782                          |            |                 |                                          |            |            |                 | 103  | $\mathbf{Lr}$ | Rn $5f^{14}6d^{1}7s^{2}$                                                                  | 52         | 51       | 0.700590        |
| 55       | 0.702 230                          |            |                 |                                          |            |            |                 |      |               | · · -                                                                                     |            | -        |                 |

<sup>a</sup> The values of  $a_{i\alpha}$  for Z > 30 are in error because spin-orbit coupling invalidates the  $n_1$  and  $n_1$  separation. This failure is also true of the previously tabulated  $\alpha_{i\alpha}$  of the  $X\alpha$  theory (Ref. 3). The  $a_{\rm HF}$  (Ref. 6) and  $\alpha_{\rm HF}$  (Ref. 7) also suffer this inaccuracy since they are developed to make  $\langle E_{\mathbf{X}\alpha} \rangle$  or  $\langle E_{X\alpha} \rangle = E_{\lim}^{\rm HF}$ , and spin-orbit coupling is not present in the nonrelativistic Hartree-Fock Hamiltonian. This criticism is not true of parameterizations which equate a or  $\alpha$  to experimental energies (Ref. 9).

| te | of | Mn <sup>2+</sup> |  |
|----|----|------------------|--|

<u>24</u>

| Orbital      | SPFH (Ref. 12)        | $\Xi a (a_t)^a$ | Diff.° | $\Xi a (\alpha_t)^{b}$ | Diff.°  |
|--------------|-----------------------|-----------------|--------|------------------------|---------|
| 1s †         | 482.369               | 482,304         | 0.065  | 480.774                | 1.595   |
| 1s +         | 482.374               | 482.111         | 0.263  | 480.797                | 1.577   |
| 2s †         | 59.633                | 60.359          | -0.726 | 59.359                 | 0.274   |
| 2s +         | 59.363                | 59.798          | -0.435 | 59.094                 | 0.269   |
| 2 <i>p</i> † | 51.044                | 49.319          | 1.725  | 52.303                 | -1.259  |
| 2 <i>p</i> + | 50.781                | 48.907          | 1.874  | 52 <b>.1</b> 44        | -1.363  |
| 3 <i>s</i> † | 9,323                 | 9.425           | -0.102 | 8.991                  | 0.332   |
| 3s +         | 8.494                 | 8.708           | -0.214 | 8.320                  | 0.174   |
| 3 <i>p</i> † | 6.753                 | 6.395           | 0.358  | 6.749                  | 0.004   |
| 3 <i>p</i> + | 5.745                 | 5.373           | 0.372  | 6.099                  | -0.354  |
| 3d t         | 2,576                 | 2.276           | 0.300  | 3.093                  | -0.517  |
| $-E_{tot}$   | 2298.222 <sup>d</sup> | 2307.019        | -8.797 | 2313.891               | -15.669 |

TABLE II. One-electron energies  $-\epsilon_i$  and the total energy -E for the ground state (Ar  $3d^5$ ) by SPHF and  $\Xi a$  methods, in Ry.

<sup>a</sup> Calculated using Eq. (1) with  $a_{t_1} = 0.63921$  and  $a_{t_1} = 0.60057$  [Eq. (24)]. <sup>b</sup> Calculated using Eq. (1) with  $\alpha_{t_1} = 0.73052$  and  $\alpha_{t_1} = 0.73403$  by Gopinathan (Refs. 1 and 3).

<sup>c</sup> The difference between the SPHF and the energy given in the preceding column.

<sup>d</sup>Averaged total energy over the states with different possible magnetic quantum numbers.

| Orbital |            | HF <sup>a</sup> | $\Xi a (a_{ta})^{b}$ | Diff. <sup>d</sup> | $\Xi a (\alpha_{ta})^{c}$ | Diff. <sup>d</sup> |  |
|---------|------------|-----------------|----------------------|--------------------|---------------------------|--------------------|--|
| Ne      | 1s         | 65.5455         | 65,5456              | -0.0001            | 65.3954                   | 0.1501             |  |
|         | 2s         | 3.8610          | 4.0658               | -0.2048            | 4.5557                    | -0.6947            |  |
|         | <b>2</b> p | 1.7010          | 1.3574               | 0.3436             | 1.4054                    | 0.2956             |  |
| -E      | tot e      | 257.0942        | 257.7638             | -0.6696            | 259.8514                  | -2.7572            |  |
|         |            | (257.855)       |                      |                    |                           |                    |  |
| Ar      | 1 <i>s</i> | 237.2213        | 237.0765             | 0.1448             | 237.0887                  | 0.1326             |  |
|         | 25         | 24.6449         | 25.0113              | -0.3664            | 25.6437                   | -0.9988            |  |
|         | 2p         | 19.1435         | 17.9787              | 1.1648             | 18.0200                   | 1.1235             |  |
|         | 3 <i>s</i> | 2,5550          | 2.6992               | -0.1442            | 2.8904                    | -0.3354            |  |
|         | 3 <i>p</i> | 1.1823          | 0.9653               | 0.2170             | 0.9962                    | 0.1861             |  |
| -E      | tot e      | 1053.6350       | 1057.4771            | -3.8421            | 1061.7662                 | -8.1312            |  |
|         |            | (1055.098)      |                      |                    |                           |                    |  |
| Cu*     | 1 <i>s</i> | 658.22          | 658.09               | 0.13               | 656.18                    | 2.04               |  |
|         | 2s         | 82.26           | 83.12                | -0.86              | 81.66                     | 0.60               |  |
|         | 2 <i>p</i> | 71.86           | 69.78                | 2.08               | 73.08                     | -1.22              |  |
|         | 3 <i>s</i> | 10.65           | 10.86                | -0.21              | 10.07                     | 0.58               |  |
|         | 3 <i>p</i> | 7.28            | 6.94                 | 0.34               | 7.11                      | 0.17               |  |
|         | 3d         | 1.62            | 1.38                 | 0.24               | 2.06                      | -0.44              |  |
| _E      | tot e      | 3277.46         | 3289.91              | -12.45             | 3292.78                   | -15.32             |  |

TABLE III. One-electron energies  $-\epsilon_i$  and the total energy -E for the ground state of Ne, Ar, and  $Cu^+$  by HF and  $\Xi a$  methods, in Ry.

<sup>a</sup>E. Clementi, IBM J. Res. Dev. Suppl. <u>9</u>, 2 (1965).

<sup>b</sup>Calculated by Eq. (1) with  $a_1$  and  $a_1$  given by Eq. (24).

<sup>c</sup>Calculated by Eq. (1) with (Ref. 3)  $\alpha$ , and  $\alpha_{i}$ .

<sup>d</sup>The difference between the HF energy and the energy given in the preceding column.

<sup>e</sup>J. B. Mann, LASL Report No. LA-3690 (1967) (unpublished). Values in brackets are the nonrelativistic exact energy quoted by Keller and Gázquez, Phys. Rev. A 20, 1289 (1979).



FIG. 2. Comparison of  $a_{ta}$  and  $a_{HF}$  (Ref. 7) in the  $\Xi a$  method.

of a nonlinearly varying quantity and a constant, and is approximately linear.

Consequently, the modified model used to develop the  $a_t$  must be essentially correct, and should be valid in atoms, molecules, and solids.<sup>3</sup>

The  $\Xi a$  one-electron energies using  $a_t$  (Eq. 27) are much better than the  $X\alpha$  results,<sup>1</sup> for example, in the case of  $Mn^{2+}$  the  $X\alpha$  results are:  $1s_1$ =-469.59 Ry.,  $2s_1$ =-55.20 Ry.,  $3d_1$ =-1.93 Ry., etc, they are far away from the spin-polarized HF(SPHF) results,<sup>13</sup> whereas the  $\Xi a$  results (Table II) are very close to the SPHF,<sup>15</sup> ones. Within the  $\Xi a$  scheme, results using  $a_t$  do differ from those using  $\alpha_t$ , Table II, however, there is no significant improvement as compared to the SPHF results.<sup>16,17,18</sup> The total energy  $\langle E_{\Xi a} \rangle$  with  $a_t$  for



FIG. 3. Variation of  $a_{t\dagger}$ ,  $a_{t\dagger}$ , and  $a_{ta}$  in atomic subshells (purely schematic).

 ${\rm Mn^{2^*}}$  is lowered by -8.797 Ry from the SPHF  $\langle E \rangle$ , whereas  $\langle E_{za} \rangle$  with  $\alpha_t$  is lowered by -15.669 Ry. Thus  $\langle E_{za} \rangle$  with  $a_t$  is significantly closer to the corresponding HF results and closer to the nonrelativistic exact energy. These conclusions also apply to Ne, Ar, and Cu<sup>\*</sup> (Table III) for closed shell atoms.

The Ar core-spin densities (Fig. 4) in Mn<sup>2+</sup> calculated using  $a_t$  in the  $\Xi a$  method are closer to the SPHF results than those calculated using  $\alpha_t$ for r from 0.1 to 0.2 a.u. and from 1.4 to 2.1 a.u.; but between 0.4 and 0.8 a.u. and 0.95 to 1.3 a.u.,  $\alpha_t$  gives a closer fit, but both calculations are off from the SPHF results.

The polarization of the s-electronic charge density causes a nonvanishing spin density at the nucleus. It gives rise to a nonzero Fermi contact term for systems like  $Mn^{2+}$  (see Fig. 4). Results of the present work using  $\Xi a$  method with  $a_t$  for  $Mn^{2+}$  is compared to that<sup>1</sup> using  $\alpha_t$ . The quantity is defined as<sup>16</sup>

$$\chi = \frac{4}{n_1 - n_+} \sum_{n} \left[ \rho_{n_s \uparrow}(0) - \rho_{n_s \downarrow}(0) \right].$$
(30)

The calculated  $\chi$  in the present work,  $\Xi a(a_t)$ , is -2.31 a.u., and that<sup>1</sup> of  $\Xi a(\alpha_t)$  is -4.54 a.u. The experimental measurement by Abragam *et al.*<sup>18</sup> is -3.10 a.u. According to Watson and Freeman<sup>16</sup> the relativistic correction would increase the theoretical values by several percent, therefore the present result with  $a_t$  will be even closer to the experimental and that using  $\alpha_t$  will be further off from the experimental value after the correction.



FIG. 4. The Ar core spin-density distribution in  $Mn^{2+}$  by the  $\Xi a$  method with  $a_{t(1 \mod 1)}$  and  $a_{t(1 \mod 1)}$  values compared to the result with the SPHF calculations.

|                 | SPHF <sup>a</sup> (Ref. 13) | Xα (Ref. 12) | $X\alpha(\xi)$ (Ref. 12) | $\Xi a (\alpha_t)^1$ | $\Xi a(a_t)$ | Expt. (Ref. 15) |
|-----------------|-----------------------------|--------------|--------------------------|----------------------|--------------|-----------------|
| χ <sub>1s</sub> | -0.191                      | -0.158       | +6.527                   | +0.300               | -4.609       |                 |
| X25             | -7.154                      | -5,376       | -3.520                   | -8.046               | -1.582       |                 |
| X3.5            | +3.218                      | +2.004       | +2.758                   | +3.209               | +3.879       |                 |
| Xtotal          | -4.127                      | -3.530       | +5.765                   | -4.537               | -2.312       | -3.10           |

TABLE IV. Fermi contact term in Mn<sup>2+</sup>.

<sup>a</sup>Varies haphazardly with size of basis set (Ref. 13).

## CONCLUSION

The theoretical  $a_t$  for the  $\Xi a$  method have been established and calculated, from a Fermi hole formulation. The  $a_t$  have the opposite trend with Z to the  $\alpha_t$  of the  $X\alpha$  method, but a similar pattern of dependence on the  $n_1$  and  $n_4$ , including discontinuity at the beginning of every subshell and linearity of  $a_{ta}$  with Z within a subshell. The  $\Xi a$  one-electron energies using  $a_{ta}$  but much better than the  $X\alpha$  one electron energies using  $\alpha_{ta}$  or  $\alpha_{\rm HF}$ . The  $\langle E \Xi a \rangle$  is improved when  $a_{ta}$ . The Ar core spin densities in Mn<sup>2+</sup> have essentially the same shape as from SPHF. The Fermi contact total  $\chi(\Xi a)$  with  $a_t$  is significantly closer to experimental than the  $\chi(\Xi a)$  with  $\alpha_t$  (Table IV).

## ACKNOWLEDGMENT

This research was supported by the NSERC (Canada). The McGill Computing Centre provided facilities on their Amdahl/V7 computer.

- \*On leave from the Phys. Dept., Chung Yuan Christian University, Chung Li, Taiwan, Republic of China.
- <sup>1</sup>M. S. Gopinathan, Phys. Rev. A <u>15</u>, 2135 (1977).
- <sup>2</sup>J. C. Slater, Phys. Rev. 81, 385 (1951).
- <sup>3</sup>M. S. Gopinathan, M. A. Whitehead, and R. Bogdanović, Phys. Rev. A <u>14</u>, 1 (1976).
- <sup>4</sup>T. J. Tseng, S. H. Hong, and M. A. Whitehead, J. Phys. B 13, 4101 (1980).
- <sup>5</sup>For example, J. Keller and J. L. Gázquez, Phys. Rev. A 20, 1289 (1979).
- <sup>6</sup>K. Schwarz, Phys. Rev. B 5, 2466 (1972).
- <sup>7</sup>T. J. Tseng and M. A. Whitehead, Phys. Rev. A (in press, 1980).
- <sup>8</sup>B. Rooney, T. J. Tseng, and M. A. Whitehead, Phys. Rev. A <u>22</u>, 1375 (1980).
- <sup>9</sup>T. J. Tseng, S. H. Hong, and M. A. Whitehead, J. Comput. Chem. 1, 88 (1980).

- <sup>10</sup>J. B. Danese, J. Chem. Phys. <u>61</u>, 3071 (1977); J. Phys. B 12, 521 (1979).
- <sup>11</sup>R. McWeeny, Rev. Mod. Phys. <u>32</u>, 335 (1960).
- <sup>12</sup>P.-O. Löwdin, Phys. Rev. <u>97</u>, 1474 (1955).
- <sup>13</sup>W. Kutzelnigg, *Topics in Current Chemistry* (Springer, Berlin, 1973), Vol. 41, p. 31.
- <sup>14</sup>W. Kutzelnigg, G. Del Re, and G. Berthier, Phys. Rev. 172, 49 (1968).
- <sup>15</sup>T. M. Wilson, J. H. Wood, and J. C. Slater, Phys. Rev. A 2, 620 (1970).
- <sup>16</sup>R.E. Watson and A. J. Freeman, Phys. Rev. <u>123</u>, 2027 (1961).
- <sup>17</sup>G. Malli and S. Fraga, Theor. Chim. Acta, <u>6</u>, 278 (1966).
- <sup>18</sup>A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc.
- R. Soc. London Ser. A 230, 169 (1955).