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It is shown that if one considers the n—0 limit of a magnetic system consisting of # -component classical spins on a
lattice, one indeed obtains a correspondence with a system of self-avoiding random walks; that is, polymer chains
with excluded volume in a solution, but the correspondence is not isomorphic . It turns out that X and H do not serve
as the activities for the polymer system, which, in fact, are given by K/z and H/v/Z, where z = 1 + H*/2.
Moreover, the polymer free energy W is also different from the magnetic free energy W, in the limit n—0. Various
polymer correlationAfunctions are calculated and are found to be different from those proposed by other authors. It
is also shown that W satisfies the proper convexity properties, even though W, does not.

I. INTRODUCTION

In order to study excluded-volume effects, which
forbid the chains to overlap, one starts with a
simple model of polymer chains: The chains are
described by self-avoiding walks (SAW), If one is
interested in long-range properties of polymers,
then their chemical details are not expected to be
important, and the above model seems to be quite
appropriate. (The reader is referred to an ex-
cellent review article by Freed! for more de-
tails.) de Gennes? pointed out in 1972 an analogy
between a self-avoiding random walk, i.e., a
single polymer chain with excluded volume and
n =0 limit of an #-component ¢* field theory (de-
scribed by the Landau-Ginzburg-Wilson La-
grangian) in the absence of any external field.

It is possible to give a meaning to the ¢* theory
for nonintegral and also zero # (as a matter of
fact, any ») in the usual Wick perturbation ex-
pansion in powers of the interaction: Each term
in the expansion is a simple polynomial in » and
can be unambiguously continued for any value of
n. Later on, the above correspondence was es-
tablished using other means.>~” des Cloizeaux®
extended the approach of de Gennes and succeeded
in providing an analogy between a system of
polymer chains with excluded volume in a solution
and the ¢* theory in the presence of an external
magnetic field as n~0.°'° Moreover, he also
noted that, for example, the longitudinal correla-
tion function in the equivalent magnetic system
describes the correlation between any two end
points of polymer chains. Schifer and Witten'!
provided the scheme for calculating the correla-
tion between any two monomers of polymer
chains. Recently, Moore and Wilson'? have noted
that the longitudinal susceptibility x of the mag-
netic system becomes negative for T<T, as the
magnetic field H tends towards zero, i.e., as the
coexistence curve is approached in the limit
n—0, They argue that a negative susceptibility
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is impossible and provide an alternative means of
computing x which they observe to be positive.
Ballian and Toulouse'® have shown that the mag-
netic system in the absence of a magnetic field
has negative specific heat for n<1 in zero- and
one-dimensional cases,

Our aim in the present paper is to establish
correctly the above correspondence between
SAW’s, i.e., polymers and the # =0 limit of the
magnetic system. In order that the analysis can
be carried out explicitly, we have confined our-
selves to a magnetic system, and therefore &
polymer system, on a lattice. Moreover, the
length of each spin of the magnetic system is
constrained to be va: §2=n, Our final expression
differs from the one proposed by des Cloizeaux®
for the continuum case with unconstrained spins
and this distinction should be emphasized; It is -
conceivable that the lattice version and the con-
tinuum version are distinct. It is not clear at this
stage what is the connection, if any, between
the constrained lattice system considered here
and the continuum version considered by des
Cloizeaux® as n—~0, We will also establish that
the polymer-magnet analogy is not isomorphic
and point out its limitations. We express various
polymer correlation functions in terms of quanti-
ties describing the corresponding magnetic sys-
tem. These relations among various polymer
correlation functions and the magnetic correlation
functions are slightly different from those pro-
posed by other authors.®’'* We will also establish
that the “susceptibility” ¥ and the “specific heat”
C of the polymer system are always non-negative,
even if the magnetic susceptibility x and the mag-
netic specific heat C are negative. (The fact that
x and C may become negative is the subject
matter of a separate paper.'*) It should again be
emphasized that des Cloizeaux® and Schifer and
Witten'! have calculated various polymer correla-
tion functions in the continuum limit, with uncon-
strained spins.
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The layout of the paper is as follows., We de-
scribe in Sec. II how the »— 0 limit of the mag-
netic system on a lattice can be obtained. Section
IIT describes the correct correspondence between
the polymer system and the magnetic system,
This correspondence is different from the one
quoted in the literature and implies that the ac-
tivities of the polymer system are given by
k=K/zand n=H/Vz, z=1+H?/2. This is the
first of the two major modifications required for
a correct correspondence between the polymer
system and the #»— 0 limit of the magnetic sys-
tem., Section IV is the most important part of the
paper and describes the correct definitions of the
correlation functions for the polymer system in
terms of those of the magnetic system in the
n—0 limit, It is shown that the chemical poten-
tials for the polymer system are given by
A =Ink and ¢ =Inn, and this observation constitutes
the second major modification. It should be
emphasized that the two modifications are inde-
pendent of each other, and it is the second modi-
fication and not the first one that saves the con-
vexity properties of the polymer system. A brief
summary of these results has been reported
earlier.'’® The last section gives a summary of
our results.

II. THE n—0 LIMIT OF THE MAGNETIC SYSTEM

Even though there are several expositions
available in literature describing the analogy be-
tween polymers and the magnetic system, we will
briefly outline how this analogy is obtained since
the final result derived here is different from one
available in literature.,’'®~1° As was remarked
in the Introduction, we will consider the lattice
version of the magnetic system, There is an n-
component classical spin §; ={${*’, a=1,...,n}
at each site .. The length of each spin is con-
strained to be equal to Vu:

n
i= (S{9P =n. (1)
a=
The Hamiltonian of the constrained magnetic
system is given by

=2 K88+ HSY, @)
(i3) i

where K;; is the ferromagnetic coupling constant
between spins at sites ¢ and j, and H; is the mag-
netic field in the a =1 direction at site 7. The sum
over (ij) is over distinct nearest-neighbor pairs.
We have also absorbed a factor of —1/kT in the
definition of the Hamiltonian 3C.

Because of the constraint (1), the partition func-
tion Z,(K u}, {H ‘}) involves integration over angu-

lar variables d2; of each spin §;:

z, (&}, {5, =M ®)

f(free) -

Here N is the total number of sites, Let O; stand
for any product of the components S(i"",
@=1,...,n of any single spin S, and define its
angular average as follows:

0 = !dQI-Oi

faq, -
It can be shown®'' that

<1>9=1 ) (4)

(S§¥PYe=1, a=1,...,n

are the only nonvanishing angular averages in
the limit »—~ 0, All other moments O; have angu-
lar averages that vanish in the »~ 0 limit.

We are now in a position to calculate Z,, the
n—0 limit of Z,, For this purpose, we expand
the exponential in (3) in a power series to obtain

- K2, . -
Z,= (H (1 +K”S,-§,-+—2”-(Si-sj)2+- . )

(ii)

2
x T (1o, 50 0 B sy )
k Q
(5)

Every term in (5) can be represented as a dia-
gram on the lattice (Fig. 1). A term K,,S{*s!%
for nearest-neighbor sites 7 and j is represented
by a bond between ¢ and j, which carries a “color
index” a [Fig. 1@)]. A term $K2, (S{?s|*) is
represented as a “small” polygon made out of
two a-colored bonds between nearest-neighbor
sites i and j [Fig. 1(b)]. Each term H;S{" can be
represented by a cross [Fig. 1(c)]. Each term

3 H3(S{1) can be represented by a filled circle
[Fig. 1(d)]. It will be shown below that in the
n—0 limit, we need not consider terms with higher
powers of either K, or H;.

Because of (4), we find that the only nonvanishing
diagrams in the limit =0 are those in which at
each site ¢ there appears only a single component
@ of S, in the form (S{*®, Also, since a given
bond S{*S{* “transmits” the same index & from
i to the neighboring site j, the color index a must
be continuous along any connected piece of a dia-
gram, Thus, terms with powers of K;; or H,
higher than two can be omitted in the » =0 limit.
We now observe that Figs. 1(b) and 1(e) can occur
only as disconnected parts in a diagram. Each
polygon [Figs. 1(b) and 1(e)] carries a definite
color index a. When a varies from 1 to n, we
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FIG. 1. Graphical representation of various terms
inZ,. (b) and (e) represent closed loops with color in-
dex a. These loops vanish in the limit »—0.

get » polygons each with different color, but hav-
ing identical weight. When one sums over the
color index a, these n polygons give a contribution
proportional to », which vanishes in the limit
n=0, However, Fig. 1(d) contributes 3 H? in the
limit n—=0. Thus, it is only necessary to retain
linear terms in the expansion of exp(K;,S; " §,)

and quadratic terms in the expansion of exp(H;S5"),

when »=0, and for this case (5) becomes
- - 2 -
Z,= <H (1 +K,8,- s,)H(1+H,,sg1>+f’2—'~(s§1>)2)> ,
(i) k Q

As is evident, the only diagrams that contribute
to Z, are those that contain any number of non-
intersecting lines (consisting of bonds due to
K,;S{S4'?) such that each line terminates on two
magnetic crosses at the two ends, There can also
be any number of filled circles [Fig, 1(d)] at any
of the sites nof connected to these lines. One
such diagram is shown in Fig. 2. This diagram
contains six nonintersecting lines or self-
avoiding walks (SAW) along with eight filled cir-
cles. Each bond of the SAW’s gives a factor of
K,;, each SAW gives a factor H; H,, where i and j
are the two end points of the SAW with magnetic
crosses, and each filled circle gives a factor of
H%/2, 1t is tempting to consider a filled circle
[Fig. 1(d)] as a SAW of zero length and this seems
to have been the practice in the literature. How-

FIG. 2. Nonvanishing diagram appearing in Z, . There
are six SAW’s of total length I =22. There are eight
filled circles and six unfilled circles that are not con-
nected with the SAW’s.

ever, the weight of a SAW of zero length should
be HZ while the weight of the filled circle is
HZ%/2, Thus, a filled circle cannot be considered
a SAW of zero length. In the following, a SAW
is always assumed to be of nonzero length.

Let us now consider a diagram that has p SAW’s
and contains [ bonds. The number of sites covered
by these SAW’s is p+1. There are N—(p+1)
uncovered sites, Let us consider one such un-
covered site 2. This site may or may not be
covered by the filled circle. The generating func-
tion for this is given by

z,=2(H,) =1+H2/2. (6a)

The partition function Z,({X,,}, {#,}) can now be
written as follows:

z,(k, {1 =(kl-=NI1 zk) + % (), (7a)

where the first term is the contribution from con-
figurations with no SAW, and the sum over T is
over all possible distinct configurations I' of
SAW’s, and w(T') is the contribution of a configura-
tion I':

o)« (TLa)( T o) 1),
k (ij) u

Here I' represents some configuration of p =1
SAW’s of total length /, k represents one of the
2p end points of the SAW’s in I, (ij) represents
one of the / bonds in I', and « represents one of
the N - (p +1) sites of the lattice not covered by I.

We will now write down the form of Z, for the
case of a homogeneous system for which all K;;
and H; are constant and equal to K and H, re-
spectively., The weight w(T") takes a simple form:
w([') = H2?K'z¥=(#*1) Iy the usual derivation
available in the literature,® the last factor, i.e.,
z¥=(»*1) hag been overlooked in the calculation of
w(T"). Thus, the final form of the partition func-
tion Z,(K, H) given below is also different from
the expression given in the literature®:
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Zy(K, H)=2"+ Y, D H¥K'U, 2"~V (1b)
»=1 1=p

where
z=1+H?/2 (6b)

and U, is the number of ways of drawing p non-
intersecting SAW’s of total length ! on the lattice.
Each SAW contributes a factor of H? and each
bond gives a factor of K, We will show in Sec.
IO that the above correction somewhat restricts
the analogy between the polymer system and the
magnetic system in the limit n—=0. Itshould be
remarked at this point that it is not clear what
happens to the last factor of (IT,2,) in w(T') or
z¥=(»*1) in (Tb) if one considers a continuum
version of the magnetic system,

III. POLYMER ANALOGY

Let us now identify a SAW with a polymer chain
as was intended at the beginning of the Introduc-
tion. Let us also introduce the following two
activities: 7, is the activity for a chain end to be
located at site k and «;; is the activity for a bond
(ij) of a polymer chain. Let I" be some con-
figuration of p polymer chains of total length I,
We now introduce a grand canonical partition
function for the polymer chains (or SAW’s) as
follows:

Zqx, Y b =1+ (2;) &(r), (8a)
where
a@)=(TT n)( I <)

is the contribution of I, Here, k represents one
of the 2p end points and (ij) one of the ! bonds of
the chains. A comparison of (7a) and (8a) shows
that, in fact,

Zo({Ku}, {Ha}) =(‘I:1 34)2({"41}, {Th}) (9a)

provided we make the following identifications:

Ki; = KU ’
10a
_— o
i \/?;.

For a homogeneous system where all 1, and «;;
are constant and equal to n and k, respectively,
we define the grand canonical partition function by

> _ 1
Z(k,m) =1+ ; Z; 76U, ,, (8b).

where we have used the quantity U, ; introduced
in (7Tb). A comparison of (7b) and (8b) shows that

Zy(K, H)=2"Z(k, ) (9b)
provided we have
K K
“T2®) T 1+H 2
H H (10b)

=Tz~ W +H?/2)%*

A few remarks regarding the mappings (10a) or
(10b) are in order. For the sake of clarity, we
will consider the mappings given in (10b). We

" note that

VK<® k6 k=0 and n=Vv2 as H-=, (l1a)

However, in the case K—~« along with H~ =, the
limiting value of k can take any value between zero
and infinity depending on the trajectories (K =H?"¢,
any €) along which K and H tend to infinity. The
limit of  is always V2. Since n must never be
negative in the polymer case, the mapping be-
tween 1 and H is physically meaningful only when

* H=>0. Also, the correspondence between Z and

Z,, the polymer system and the magnetic system,
only works when 7 is small, i.e., n<V2. Final-
ly, when H is very small

k=K,
(11b)
n=H,

For the homogeneous system, an alternative
approach is to let

s=p+l, (12)

denote the number of monomers, i.e., the number
of sites covered by the SAW’s and to define

Ups =Up s (13)
as the number of configurations of p ;polymer

chains covering a total of s sites on the lattice.
The analog of (8b) is

Z(K’ﬁ)=1 + ; ; ﬁ”"sﬁp.s s ' (14)
$=2p

where 17 is the activity for the chain ends and «
is now the activity for a monomer, If

n=n/Vk (15)

we find that Z(k,7)=Z(k,n). Moreover, we note
that

Z (K, H) =2"Z(k, 7) (16)
provided we set )
1=H/VK, 17

and where « is related via (10b). The mapping
from (K, H) to (k,7) again has certain peculiari-
ties. For any finite value of K, «—0 and 1~
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as H—«, As K and H both tend to infinity simul-
taneously, the limiting values of « and 7 depend
upon the trajectories along which K and H go to
infinity. The same is true when K and H both tend
to zero.

Thus, because of the peculiarities of the map-
pings mentioned above, we conclude that the
correspondence between the polymer system and
the magnetic system in the limit » =0 is nof an
isomorphism.

In the remainder of this section, we will focus
our attention on the homogeneous system. Let
(p) denote the thermodynamic average of the num-
ber of chains:

) an 91InZ
31nn

Xp =

.

We find from, for example, (9b), that the fraction
of chains per site

9K 0 3H 9
¢»=<L>“—n—(ﬁa_x’ o aH)(mz -Nlnz)

=3 Hem +3H?*(Ke~1), (18a)

19)

Here m is the magnetization per particle and €
is the energy per particle of the magnetic system
(n—0). Incidentally, since ¢,= 0 by definition,
we have the following inequality satisfied by m:

m=H( - Ke)/z. (20)

For K =0, m is the magnetization of a single spin
in a magnetic field and it can be shown!* that it is
given by H/z. Also, we will see below that
Ke<1 [see (23)]. Thus, we prove the important
property of m (Ref. 14):

m=0, - (21)
Let {l) be the average number of bonds:
81nZ
= o Inx (22)

It is easily seen that the bond density ¢, = (I)/N
is related to € through

¢l =K€. (18b)

It should be obvious on physical grounds that ¢,
is bounded above by one and below by zero, Thus,

0<Kes1, 23)

which was used to prove (21). For the density
of monomers ¢, =¢,; +¢,, we have from (18a) and

[

(18b) that

Hz H HKe
¢s=Ke+ 2<m-z + P )

One can easily check that if one uses instead the
following definition of ¢,,

(18¢c)

bo = 1 8InZ(k, 1)

*°N 9k s

one obtains the same expression as (18¢) relating
¢s with magnetic quantities., Thus, we have ex-
pressed ¢;, ¢,, and ¢, in terms of m and ¢,
quantities characterizing the magnetic system.
This completes part of the polymer-magnet dic-
tionary. In Sec. IV we will relate the polymer
correlation functions with magnetic quantities,
That will complete our dictionary.

Before we leave this section, we would like to
point out that it is not clear what happens to (9)
and (10) in the continuum version of the problem.
If one is interested in the limit H~0,° i.e., 21,
the correction factors due to z in (9) and (10) are
unimportant and one gets back the old mapping '
k=K and n=>~H/>"® Thus, it is conceivable that the
constrained lattice version considered here and
the continuum-field-theory version are not very
different at least for the case H— 0,

IV. CORRELATION FUNCTIONS

des Cloizeaux® has remarked that there is a
correspondence between the longitudinal (trans-
verse) correlation function of the magnetic sys-
tem in the n—~ 0 limit and the end-to-end correla-
tion function between polymer ends belonging to
the same chain or different chains (belonging to
the same chain), and has been described in detail
by Schidfer and Witten,!* - The above corres-
pondence is presumably based on the comparison
of diagrams obtained in the high-temperature ex-
pansion of the magnetic correlation function in the
n =0 limit and the polymer diagrams in the grand
canonical ensemble. For example, consider the
connected part of the longitudinal correlation
function (the angular brackets without the sub-
script Q denote thermodynamic averages)

Xis = (S(‘)S(”)C,,,_
= (SIS, o= (ST, (S, (24a)

and the diagrams that appear in its high-tempera-
ture expansmn (Fig. 3). The spin components

S{* and S may now replace magnetic crosses

at sites ¢ and j [Fig. 1(c)]. Thus we get two kinds
of diagrams shown in Figs. 3(a) and 3(b). In Fig.
3(a), the two sites i and j are the end points of
the same chain, while in Fig. 3(b) they represent
the end points of different chains, Thus, it would
seem® that x;, describes the correlation between
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FIG. 3. Two kinds of diagrams that appear in

(S{9 S5V Yo p=0- The two sites ¢ and j belong to the same
chain in (a), while they belong to different chains in (b).

two chain ends located at sites ¢ and j and be-
longing to either the same chain [Fig. 3(a)] or
different chains [Fig. 3(b)]. Similarly, if we con-
sider the diagrams that appear in the high-tem-
perature series expansion of the connected trans-
verse correlation function, for example,
(S5, o we find that the diagrams are such
that the two sites ¢ and j are the chain ends of the
same chain (Fig. 4) with the color index a =2
running along this chain. Schifer and Witten'!
have argued that the correlation between any two
monomers of the polymer chains also has a mag-
netic analog. This correlation function analog
(for a magnetic system on a lattice) is given by
the correlation between 7,8, §, and 7, 5;-§,,
where kand [ are the nearest-neighbor sites of

i and j, respectively:

2
ci,=54—<2§i-§,2§,-§,> . (24b)
I3 [] c,n=0

However, we will see that one cannot justify that
Xi; (24a) and C,; (24b) describe the end-end and
monomer-monomer correlations, respectively.
First consider x;;. If x;; describes the end-end
correlation function as proposed by des Cloizeaux,?
then the total intensity of scattering in the forward
direction from various chain ends must be pro-
portional to the long-wavelength limit of x;;, i.e.,

(a=1)

(a=1)

FIG. 4. Diagram appearing in (S{¥8{?).,.¢. This can
also be thought of as a diagram with four red chains
(a=1) and one blue chain (¢ =2).
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the magnetic susceptibility x. This necessarily
implies that x must be non-negative. However,
we will establish elsewhere!* that x can indeed
become negative. This is also in contradiction
with the assertion of Moore and Wilson!? that x
must be non-negative, Therefore, x;; cannot
describe the correlation between two chain ends
located at ¢ and j. Moreover, it can also be es-
tablished!* that the magnetic specific heat

C =3¢/3K, where € is the energy per site [see
(20)], can also become negative for n=0. This
should also be evident from (18b) and (23): For
finite H, as K—~, the bond activity « (10b) also
tends to infinity, On physical grounds, we expect
that as k==, ¢,~1, This means that e~1/K ;
for large K, and therefore, 8¢/8K ~—1/K?, Thus,
the specific heat can indeed become negative.
Something must be wrong since if C;; were to
describe the polymer monomer-monomer correla-
tions, the intensity of scattering from various
monomers in the forward direction must be pro-
portional to C and could become negative. This is
obviously absurd, Therefore, C;; cannot be taken
to describe the monomer-monomer correlation
function as was proposed by Schifer and Witten,!

In the following we will calculate various poly-
mer correlation functions of interest, viz., the
end-end correlation function x ;;, the auto-end
correlation function x&, and the monomer-mono-
mer correlation function C;; (see below for their
exact definitions). Our calculation will show that
the above identifications ¥, =H?x;; and C;; =Cy,
need to be modified, These corrections are cru-
cial. For example, it will be established that
InZ satisfies the proper convexity property, even
though InZ, lacks this (i.e., the magnetic system
may have negative susceptibility or specific heat
in the n—~ 0 limit!*), We should point out that the
corrections obtained below are independent of the
corrections appearing in (9) and (10), and amount
to realizing that Inn, and Ink;; are the appropriate
chemical potentials for the polymer system,

We start our discussion by first considering the
correlation function between any two chain ends,
whether they belong to the same chain or dif-
ferent chains, For the sake of brevity, we will
call this simply end-to-end correlation function,
We introduce the following two variables X; and
Y

1, if site is a chain end

X;=
0, otherwise.
. (25)
1, if{¢j) is a bond belonging to some
Y= polymer chain

0, otherwise.
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Using these variables, we can rewrite
Z({k,;},{n,}) in the following form:

2({Ki1}9{ni})= Z eXP(Z X+ (Z” Ay Yu)a (26)

where
g =Inn,,
27) .
Ay =Ink;.

The first sum in (26) is over all possible con-
figurations of polymer chains, including one with
no chains. The sum over 7 in the exponent is over
all sites and over (ij) is over all distinct nearest-
neighbor pairs.

From the definitions of X, and Y, (25), it is
evident that

»=3(T x,),
(=3 (Z Yi,>, (28)

(i5)

Now we are in a position to calculate the end-to-
end correlation function (connected two-point
correlation function)

X=X Xp)o = (X X,)= (X XX, (29)
Let us introduce the polymer free energy w:

W=InZ. (30)
In terms of Pf’, )2” is given by

X = 8Z,0¢L,

~

oy *W
=M 377;“ TRIUT om,0n,

We can express ;(u in terms of magnetic quantities
by noting (A6) or (A7) (see Appendix A) and that

(31)

N
W=Wy,- 2 Inz,, (32)
i=1
where
W,=InZ, (33)

is the magnetic free energy. It is easily seen
(see Appendix A) that

~ H 9€;, 9€;
X5 =04y [H,z‘(l +%H§)(m‘ - _z:-> +Hiz ; Kueu] +%HiH/(H.~212.: K oH, +H;z, ; K,,,B—H':

o€
+1 H3 H?(Zl Ky €:0ip,10+ ;Kn K;lﬁ‘jf’) +H H;2,2;%,, (34)
Ry ’
LIS
where (26)] that .
awW ~ 1
"= o, =7 (T w-aa) ) »o.
- 2w (35) Thus, the free energy W satlisfies the proper con-
Y7 9H,0H, ’ vexity condition, even though the corresponding
magnetic system in the »—~0 limit need not satisfy
W, . R
€= K. the convexity property with respect to the mag-
ik

and 6,,,,; is one if the ({#) and (j!) pairs are
identical, and zero otherwise. The quantities
appearing in (35) and therefore, in the right-hand
side of (34), characterize the magnetic system.
Thus, (34) expresses the polymer correlation
function )2, ; in terms of quantities characterizing
the magnetic system.

Let us now consider the long-wavelength limit
of the polymer “susceptibility”

~ 1 o
X=ﬁzz Xis - (36)
i 7
For the homogeneous system, it is also given by

.1 W
X=N a2

(36")

It is easily seen from the form of W [see (30) and

netic field H.'* We have also shown that the end-
to-end correlation function ¥, = (X; X,), is not
identical with x;;, the magnetic longitudinal cor-
relation function, but is related to it in a more
complicated way than was previously assumed,®'1! %
These correction terms are very important and
ensure the positivity of ¥ even if the magnetic sus-
ceptibility x is not positive.* Using (34) in (36),
we obtain the following expression for X relating

it to x (see Appendix A) for the homogeneous
system:

2
i:Hz(l + %)(m - %) +2KH?(1 +H?)e
+22HK 25 ik2ge 2€ gy 37)
OH 3K ’

where m, €, and x are the magnetization, the
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energy, and the susceptibility of the magnetic
system, and z is given in (6b). One can also ob-
tain (37) by using (36’) directly.

We now turn our attention to the correlatlon
function between two ends of the same chain, For
the sake of brevity, we will call this auto-end
correlation function, and use a superscript a to
denote the quantity (X;X,)%. In order that we may
calculate (X, X,)%, we introduce two kinds of
chains, for example, ‘“red” chains and “blue”
chains. Later on we will associate red chains
with SAW’s with color index « =1 and blue chains
with SAW’s with, for example, color index a =2
that appear in the high-temperature expansion of
the magnetic system described by (40) in the
n—0 limit so that an analogy can be established
between the two systems, Correspondingly, we
define the following activities: 7, is the activity
of a red chain end at site ¢, n; is the activity of a
blue chain end, and «;; is the activity of a chain
bond between nearest-neighbor sites ¢ and j, re-
gardless of the color of the chain. We also define
the following chemical potentials: ¢;=Inn;,
¢;=Inn;, and A,; =Ink;;. The grand canonical
partition function is now given by

ATRUARUAEDY exp(z GXi+ Y 6 X,
+ “zl:) Ay Yu): (38)

where the sum is over all possible configurations
and X;, X,, and Y, are random variables defined
below:

1, if there is a blue chain end at ¢

Xi=
0, otherwise.
1, if there is a red chain end at ¢
X, =
0, otherwise.
1, if there is a bond of any colorbetween
Y. = nearest-neighbor sites ¢ and j
i

0, otherwise.

The form of (38) is self-explanatory [compare with
(26)]. A possible configuration I';; appearing in
(38) is shown in Fig. 4. (The subscripts ¢ and j
indicate that the blue chain ends on ¢ and j.) There
are four red chains (@ =1). The remaining chain
(the one ending on S{2’ and S{?’) should be thought
of as a blue chain (@ =2). Let &,;; be the weight

of this configuration. This weight includes 71;

and 7, only linearly (n; nj is the contribution to

& due to the blue chain). Thus, 3@,;/97;87) is

independent of 7; and n;. If I'j; is another con-
figuration with weight @;; so that there are more
than one blue chain (and two blue chain ends are
at ¢ and j), then awu/an 9n; depends on the ac-
tivities of the blue chain ends not located at ¢ and
j- If we now take the limit {n;}—~0, we notice
that

3%},
am;9m;

while 82&,,/97;37), being independent of {ni}, re-
mains finite, Thus, if one differentiates Z in
(38) with respect to n; and 7j, and then sets all

n; =0, all configurations I'{; with more than one
blue chain disappear. The only remaining con-
figurations are those I';; which have only one blue
chain with end points located at ¢ and j. However,
the weight of the blue chain ends {7} in these I';;
have been differentiated out. We also want to
change this blue chain into a red chain, There-
fore, we must multiply each configuration by
n;m;. Thus, we obtain for ¢ #j

-.0’

aan'
a
Xij—(X;Xj>c ntnj anlan {n }_.o
azﬁ,l
3702 |, - (39)
3L0L; ln 1 r—~o0,nj>nymi=n,

where W’ =InZ’({k;}, {n;}, {n}}) and {n}}’ means
all 7; except 7; and 7}, and &; =In7n; as usual, and
we have replaced (X; X)), by (X, X)%.

We next wish to derive the magnetic analog of
X% To do this, we introduce a transverse mag-
netic field, for example, in the 2 direction, so
that the Hamiltonian of the magnetic system is
now given by

EK”S; SI+Z(H(1)S(1) H(z)s(z))

(ii)
(40)

where we have introduced the superscripts one and
two on the magnetic fields to indicate their direc-
tions. It can easily be checked that Z;, the n—~0
limit of the partition function for 3¢’ given above,
is related to Z’ given in (38) via

zydx, L {E L {E®D
N A~

-(T1 =@, m®)2 e b lnd b, @)
where

2j=2'(HP, HP) =1 +3[(HP P +(HPP],

uh =H$1)/(z§)lh ,

m=H® /@),

Ky =K/ (2 Z;)m .

(42)
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A configuration appearing in Z; is shown in Fig.

4, where the chain (previously called a blue chain)

ending on Sﬁa) and SS"” should now be thought of as
a chain ending on two blue crosses due to
H{®S® and H®S{?, The other four chains in
Fig. 4 end on red crosses, Now, we identify a
SAW with @ =1 with a red chain and a SAW with
a =2 with a blue chain, as was previously men-
tioned. Also, z; is the contribution of the site i
uncovered by these SAW’s, Again, the mapping
in (42) is not a simple mapping (see comments
in Sec. II). :

The transverse correlation function
(S{2)s{2)y _ _, for the original system (2) is given
in terms of Z; (41) by

217/
/5(2) g(2) = oW
(S8 cmeo= ST T

43
{ng)}-w’ “3)
J

=Hz(1 +3H?/2)(m — H/z) +2KH?*(1 +3H?/4)¢

[

with

W=z (K, },{H "} {H?}).

Using the relation (B4), given in Appendix B, we
find that

i‘izl =H$I)H§l)(s§2)sga)>c,n=o’ i#j. (44)

Thus, the two correlations are proportional, It
is evident that (39) is not valid for ¢ =j, How-
ever, for i =j, one knows physically thaty ¢, is
nothing but ;; and can be obtained from (34).
One can now compute the long-wavelength limit
of the transverse polymer susceptibility x* (in
analogy with the magnetic terminology) which is
given by (for the homogeneous case)

+H32K(C(1)— C(Z))+(H“K2/4)(C(“) —Cf22) L9c(23) —2C(13))+sz 25(01) +Hzx(z) — HZSS.-Z), (45)

c,n=0

clw =Tlf E(s(ﬁ) ; SSa)S’(?cx)>
1
N

]
£

1
clo®) - N 'Z (S8, 5ESP) e

1 |
S = 3 SR e
o

Ko = (S 20 8]

<S§2)552)>

c,n=09

and where we have used the fact that
1 - -

1
N &

= Z (§i . §k *‘ . §'> P =Cca1) _ ¢l22) L9 (23) _ 2c(12) .

(iSSP 1o gBas = (S{VSL),. (SPSP),- o),

(45")

We also note that for n =0, ((SE”’)’),_O =((S®),_,. For the homogeneous system that we are considering,
the meaning of C(® and C'®® are as follows: C‘® is the correlation of S located at the, for example,
origin with any a-colored bond rooted at the origin. Similarly, C(*8) g the correlation of any a-colored
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bond and any 8-colored bond both rooted at a common point, for example, the origin. The quantity x?
is the transverse susceptibility of the magnetic system. We again observe that the transverse polymer
susceptibility x* is related to the transverse magnetic susceptibility x(” in a complicated way described
by (45) and is different from the relation given previously.®''!

Finally, we consider the monomer-monomer correlation function. From the last equation of (28) and
from the definitions (25), we note that the following operator

W, =%(Xi + 2 Yu) (46)
]
is the monomer operator:
1, if i is occupied by a monomer
W. =

t
0, otherwise. S

The monomer-monomer correlation function (W;W,) . is therefore given by

(WiW,.)c=%[<(X, + Zk: Y”)(X, + Z Y,,» —<X¢ + ; Yn><x,, + Z Y,,>]

- g((xixj>c+ PIRCRBIS JCRBIY 3 <X,-Y,,,>c) . (48)
[ 1 k
Let us calculate (Y, Y,;).: 7
o2
Tl de = 002
oW 92w

=K;, —— 0 +K Ky o A
ik 3K“ ik jl i il axua’c” ’

where 5,,,;; =1 if the (ik) pair is identical with (j1); otherwise it is zero. Using (A4), we find that

J€
(Yo Yji) o =Kia€5i0un, i + K Ky B—IZ:: . (49)
Using (A5) and (A7), we find that
H? d€ 9¢;,
X Yy)e= _2'L ; (Ku€n5u.n +K K, 'a‘;ﬁ') +H;z, Ky, oH, (50)

and a similar expression for (X,Y,,).. Using these expressions in (48), we finally obtain

H X3 9€;,
4(W,-W,)C=6”[H‘z,(l +%H§)<m‘ - Z‘) +H%Z‘Zu Kikeu] +2421(H;-2Ku -B—I;:- +H, Z:K,, ?E)
86“
+z‘z,§; (Kikeﬂaik.]l +K Ky aK”) +H, Hyzi2%;. (51)

This is the full form of the monomer-monomer correlation function and is different from the expression
(24b) (Ref. 11). We will complete our dictionary by giving the result for

=1 3H2)< L’.) 2 2 ie_ 2572 8_6_ 12,2
-4Hz(1+ A +z(1 +H )Ke+HzKaH +22K 3K +3 H?%z% (52)
|
for the homogeneous system. It should be obvious for the homogeneous system by noting the follow-
that ing identity which is evident from (48):
2 N “ -
P | A 1(1 82w W W
¢=5((3 wi-wm) )>o. 6= {5 57 + e + son) 63)

One can easily check that (52) can also be derived Thus, we have established that the polymer
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monomer-monomer correlation is given by
(W,W;). and is very different from (24b). More-
over, C=0even though the corresponding long-
‘wavelength limit C [see the paragraph after (24)]
of the magnetic system may not be positive.

As has been pointed out by des Cloizeaux,® one
is interested in the situation where H—~ 0. In this
limit, we observe that k~K and n=H, i.e., the
corrections due to z=~1 are not important. How-
ever, the right thing to do is to take the limits
of various expressions obtained above as H—0.
For example, we must look at the limit of (37)
as H—-0 in order to calculate ¥ as H—0. One
can appreciate the effect of the observation
that, for example, the chemical potential for
the chain end is given by ¢=Inn and which
ensures the non-negativity of x by neglecting the
difference between 1 and H, i.e., assuming n=H:

. 18w o [, oW
X= 19w _ —I-H-—(H——“->=mH+x"’H. (54)

N 8t?2 " N7 oH aH

This shows clearly that even if x becomes nega-
tive, the presence of the first term in (54) en-
sures that x> 0. However, since there are correc-
tions to n due to z, one must look at the full ex-
pression (37). It is conceivable that the correc-
tion due to z in k and 7 may not be important for
H— 0 even in the field-theory version of the prob-
lem. In that case, (54) [or (37)] shows clearly that
X will not be given merely by x*H, but by the full
expression (54) [or (37)] and will always remain
non-negative, Moreover, it is possible to calcu-
late m and x and other quantities of interest using
field-theoretical methods and calculate X using
(54), or to be more precise, using (37). But this
will be valid only if one can skow that the con-
strained-lattice model considered here is not
very different from the field-theory version,
However, it should again be emphasized that the
connection between the two versions is nof very
clear, and also lies beyond the scope of the
present work. It is certainly possib{e that one
can use field theory to calculate ¥, C, etc.,
without any noticeable effect by using (37), (52),
etc., respectively.

V. CONCLUSIONS

In order that the analysis can be carried out
explicitly, we have only considered the con-
strained version of the magnetic system by put-
ting an n-component classical spin of fixed length
Vrn at each site of a lattice. As has been ex-
pected, we find that as n—~0, there appears a
correspondence between the magnetic system in a
magnetic field in this limit and a grand canonical
ensemble of polymer chains (SAW’s) of varying

[

lengths., However, the correspondence is no?
isomorphic, as has been assumed previously.
We find that the activities «;; and 7; of the cor-
responding polymer system are not simply K;;
and H;, respectively, as has been reported by
other authors: These variables are related to
each other via (10). The peculiarities of these
mappings break down the isomorphism of the
correspondence between the magnetic system in
the presence of a magnetic field in the 0 limit
and the polymer chains in a solution. Moreover,
the polymer free energy W differs from the mag-
netic free energy W, in this limit by an amount
equal to the free energy of a system of inde-
pendent z-component classical spins (i.e.,

K,;=0 or K =0) in a magnetic field as n=0. This
is exhibited in (32). Here z; represents the par-
tition function in # =0 limit of the spin §; ina
magnetic field H; in the o =1 direction.

We have expressed the polymer variables ¢,,
¢;, and ¢; in terms of m, the magnetization per
particle and €, the energy per particle of the
magnetic system in the n—0 limit [see (18)]. We
have also calculated the polymer correlation func-
tions %;, X%, and C,; [see (34), (44), and (51)).

It is found that these quantities are nof the same
as x;;, xi2, and C,;, respectively, describing

the magnetic system as proposed by other
authors.®!' The relations expressing X;;, X &,

and C;; in terms of magnetic correlation functions
are highly involved and unfortunately do not make
transparent the analogy between the two systems.
It is hoped that the correct correspondence given
here might be eventually useful in the clarification
of the physics underlying this correspondence.

It will be established elsewhere!* that the sus-

ceptibility x and the specific heat C of the mag-
netic system can indeed become negative for n<1,
that is, the magnetic free energy W, does not
necessarily satisfy the convexity properties with
respect to H and K, However, as has been es-
tablished here, this disease does not afflict the
polymer system since the polymer free energy
W satisfies the proper convexity properties with
respect to the chemical potentials ¢ and A, i.e,,
X and C are non-negative. This is because the
roles of chemical potentials are played by ¢ and A
[see (27)] and not by K and H.

Before we end, we would like to emphasize the

- following two points: (i) We have considered the

lattice version of the magnetic system, It is
conceivable that there are some differences be-
tween this and its continuum version considered
by des Cloizeaux® and Schiifer and Witten,!* But,
it is also possible that one can use the continuum
version for H— 0 without any noticeable differ-
ence, (ii) The analogy between the polymer sys-
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tem and the magnetic system is shown only in the
high-temperature phase, where the series ex-
pansion makes sense. However, there are reas-
ons to believe that the analogy works even when
the temperature of the magnetic system is below
its critical value. This will be the subject matter
of a future publication. It would be shown there
that the magnetization m is not a monotonic func-
tion of the temperature for n<1. Moreover, the
susceptibility x seems to be a positive quantity
just below T, but becomes negative at lower tem-
peratures,

Note added in proof. Recently, Wheeler and
Pfeuty'® have also reported the correct form of
Z (K, H) [see ('Tb)]. However, their interpretation
of Zy(K, H) and its relation to the polymer problem
is very different from the one presented here: Ac-
cording to Wheeler and Pfeuty,'® the weight of any
SAW of length 1> 1 is H?K', while the weight of a
SAW of zero length (1=0) is H2/2 and not H2. They
have given some plausibility arguments to justify
this distinction between the two kinds of SAW’s.
We have insisted in the present work that the
weight of any SAW be given by n?«!. This has re-
quired us to focus on SAW’s of only nonzero
lengths. However, it is possible to define another
mapping between the magnetic variables K and H
and the polymer variables k and 7 [we have used
bars to denote a different mapping than the one
given in (10b)] that enables one to consider SAW’s
of all lengths including zero lengths with weight

Thus,
Hy=n;/(1 -n}/2}2,
: (A2)
Ky =ky,/ (L +n3/2)]4 (1 +n3/2)]%,
From this we note that
9H,/dn, =2}2,

9 0K, =
Hi/ Kij 01 (A3)

K, /om; =5 K;; HVz,
K,/ =V2:2;.

We will now express the differential operators
8/3k;; and 8/37; in terms of 3/8K,, and 3/3H;.
Since

9 9K;; @ 9
- =VZ;2; = A4
9Ky 9Ky 8Ky 2i%s 9Ky, ’ (A4)
we find that

9 9
Ki oK, =K, 3Ku_ . (A5)
For 3/97m; we have

o _yoK, o o
o, 7 91, 3K, am; 9H; ’

where the sum over k is over the ¢ nearest-
neighbor sites % of 2. Using (A3) we find that

2] ] 9
= =zHVz, 2 K”'_B—K—u +7'3k ’ (a6)

a1 9H,
7%k'(1=0), as has been reported elsewhere.!?
and
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APPENDIX A: SAW’S WITH COLOR INDEX a =1 9H; 9H,; z;’ ' (A8)
W oW
w te from (10a) that = —
eno ( ) 3K” aKH
z,=1+H%/2 = .__1_3___ (A1) Now, it is easily seen that
1-n3%/2
J

2 s (2m22 +iz,0+HDY K 2 )'+%H~/z_z’hZK 2z _ +§H,\/?2.§"ZK,,, =

an,om; =04y\2 H;Z5 3H, 2%y i - ik 0K, Lk Bt - ik 8H 8K, 9H,0K,,
3 92 92
+3HHVz 2, ;(Kuﬁu,n 3K, TKukn W;—) +2{42} SHH, (a9)

One obtains (34) by using (A7) and (A9) in (31). The following relations are easily proven for the

homogeneous system:



_1_ 9¢,, =l o€y, -2 o€

N Gx9H; N (5, 9H, oH ’

1 9 4

v K . =— K 0 =4Ke,
N & {k_ oK ik, jl N & & ik aK ik, jl

1 92 4 92

—_ K, K. =— K, K,y ———— =
N G T eK 0K N il T 8K 0K,

where 2 ., is a sum over distinct pairs (ik) of sites,

expression (37) for y.

APPENDIX B: SAW’S WITH COLOR INDEX
a=1AND 2

We notice from (42) that

1
—_ 2 I.2 = M
1-3+nd)/2 = e ey 2

(B1)

Using this relation to express H{), H{®, and K;
’ j
in terms of «;;, n;, and n;, we find that
oH YV /om; =3 HVHP @}*,
oH P fon; =2 /2,
9K;/om; =%Kij H§2)(2§)m.

(B2)

P. D. GUJRATI

IR

(A10)

, 9€
9K °*

Using these relations in (36), one obtains the final

Using these derivatives, we write 8/87; in the
following form:

oK 9
8 /o)=Y, —ik
[3

+aH§1’ 3 8H®
an; 9Ky, an§

oHW * Tan; aH

=1H z)(z )1/22 K,, BK +2H(1)H(2)(z/)1/25_w

1342

z )
MRk (83)
Thus for i #j
52 T 92
an,0m; | 52 .y 7 9H®8H ‘H§2)"o- (B4)
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