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Nonclassical critical behavior of the square-well fluid. II.
The specific-heat function C„and its exponent a
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The Yvon-Born-Green {YBG)theory with Kirkwood superposition is used to determine
the critical exponent a for a square-well fluid, where C„—

i
T —T, i

and T & T, The.
value obtained, a=0.30+0.01, when taken in conjunction with the exponents y, P, and 5
determined previously by the authors, is found to be consistent with the two inequalities
that involve all four exponents. Finally, as was reported earlier by investigators using the
Percus-Yevick theory, extrema in C„are found in the stable fluid region using the YBG
theory.

In recent years, the authors have been involved
in a study of the critical exponents for the Yvon-
Born-Green (YBG}equation with the Kirkwood
superposition approximation for a system of
square-well molecules. ' In this paper we report a
calculation for the critical exponent a and show
evidence of specific heat extrema for this same sys-
tem.

The critical exponent a is defined along the criti-
cal isochore by

in Eq. (1) both numerically and graphically. The
difference between the two techniques was found to
be negligible. The exponent a was then determined
from a log-log plot of C„* and {8—8, )/88„using
the data of Table I, where 8„the reduced recipro-
cal critical temperature, was previously deter-
mined to be 0.37405+0.00005. A value of
a=0.30+0.01 was obtained, with the error in our

C„- iT T,i—
where the expression for C„ is obtained by differen-
tiating the energy equation of state. The reduced
specific heat for a square-well system C„' is ex-
pressed as

R
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where R =cr2/Oi Ap is the reduced density
( =4mpo &), and 8 is the reduced reciprocal tem-
perature ( =e/kT). Here, as in Ref. 2, a value of
4.55+0.05 was assigned to the reduced critical
density, A.p„ for a system of square-well molecules
with R =1.85. The YBG equation with the Kirk-
wood superposition approximation was solved for
the pair correlation function g' '(r) along the criti-
cal isochore using the same numerical techniques
and imposing the same criteria for accuracy as re-
ported in Refs. 1 and 2. Using these pair correla-
tion functions, the specific-heat data listed in Table
I were determined by performing the differentiation
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FIG. 1. C„as a function of the reduced density n.o

for the isotherms 8=0.36 (supercritica1) and 0=0.45
(subcritical).
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TABLE I. C„as a function of 8 at A,o, ——4.55.

0.310
0.320
0.330
0.340
0.350
0.360
0.366
0.368
0.369
0.370
0.371
0.3715

1.756
1.805
1.873
1.974
2.148
2.507
2.963
3.257
3.462
3.721
4.046
4.188

P(5+1)&2—a

when used in conjunction with the three exponents
(y, P, 5) determined previously by the authors. '
However, given the uncertainties of the YBG
square-well exponents stated in Table II, one finds
that only the second of the above two inequalities
could be an equality. A reason for this incon-
sistency is now proposed. We note that a was

estimate determined by taking into account the un-
certainty in the values of C„', A,o„and 8, and al-
lowing for error in the graphical techniques used.

In Table II we compare the critical exponents of
the YBG theory with those of experiment, the Is-
ing model, and the van der Waals (classical) model.
The value of a =0.30+0.01 reported herein,
although higher than one might expect, does not
violate the Griffiths inequalities,

y(5+1) & (2—a)(5—1)

and

computed using the statistical-mechanical energy
equation, while y, P, and 5 were all obtained using
statistical-mechanical compressibility equation
computations. ' In a rigorous statistical-
mechanical theory, the thermodynamics resulting
from the energy equation and from the compressi-
bility equation are equivalent. However, for an ap-
proximate theory, such as the YBG theory with su-
perposition approximation, the energy and
compressibility descriptions of the thermodynamics
may be different; the possible discrepancy is related
to the neglect of all except the 1,2-irreducible dia-
grams in the graph theoretical representation of the
Kirkwood closure. From a structural point of
view, the main difference between the energy equa-
tion and the compressibility equation is that the
energy equation uses short-range g' '(r) informa-
tion, while the compressibility equation is strongly
dependent on long-range g'2'(r) behavior. 9 To gen-
erate an a using methods consistent with our deter-
mination of the other three exponents y, P, and 5,
one would have to employ the compressibility
equation of state in concert with the thermodynam-
ic relationship

g p BC„

BT BV

where V is volume, an undertaking which requires
considerably more computational effort to deter-
mine a than was employed in this paper. One
might expect that such a computation would pro-
duce an a more consistent with scaling. However,
it is noteworthy that the use of only short-range
g' '(r) information, as in the energy equation, does
produce a nonclassical value of a. Alder, Young,
and Mark' used molecular dynamics (up to 500
particles) to study a square-well fluid; despite sam-
pling only short-range correlations (which pro-

TABLE II. Comparison of the critical exponents for the YBG theory, the Ising model, and the van der Waals (clas-
sical) model with experiment.

Experiment (Refs. 3, 4, and 5)

1.25 +0.03

0.325+0.004

4.5
0.2 +0.2

van der Waals (Ref. 6)

0.5

Ising (Ref. 4)

1.250+0.003'
1.241+0.002"
0.312+0.002'
0.325+0.002'
4.8
0.125+0.020'
0.110+0.005'

YBG (Refs. 1 and 2)

1.23 +0.02

0.330+0.008

4A +0.2
0.30+0.01

'Estimates from high-temperature series.
Estimates from renormalization-group methods.
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duced classical values of y, P, and 5), they deter-

mined a to have the nonclassical value of 0.2+0. 1

in their study. This suggests that the exponent a
may be insensitive to the representation used for its
calculation.

The singularity in the specific heat at the critical
point has associated with it extrema in C„ in the
stable fluid regime. For isotherms' just above the
critical isotherm, C„exhibits both a maximum and
a minimum. However, for isotherms below the
critical temperature, only a minimum C„value is
found, on the liquid side of the coexistence region.
This phenomenon is seen in experiment and is also
reported in the work of Bearman, Theeuwes, Bear-
man, Mandel, and Throop" on the Percus-Yevick
(PY) equation using a Lennard-Jones 12-6 poten-
tial. In order to determine if the YBG equation
with the Kirkwood superposition approximation
for square-well molecules also displays this
specific-heat extrema behavior, a study of two iso-
therms, 8=0.360 (supercritical) and 8=0.450 (sub-

critical) was carried out. A plot of C„versus Q
for these two isotherms is presented in Fig. 1. As
can be seen from the figure, the supercritical iso-

therm, 8=0.360, displays a maximum value for

C„' at Q 4.2 and a minimum value at A,o 8.5,
while the subcritical isotherm, 0=0.450, shows

only a minimum value at A.o 10.5. These minima

and maximum are in very good agreement both
with experiment and the work of Bearman,
Theeuwes, Bearman, Mandel, and Throop" on the
PY equation, previously cited. As both the YBG
and PY theories produce quite similar extrema in

C„, and the YBG theory exhibits nonclassical criti-
cal behavior, one might expect the PY theory to be
nonclassical as well. However, Rowlinson' has

carried out a study of the critical-point behavior of
the PY theory, and has found that the PY theory

yields classical critical exponents only (as does the
hypernetted chain theory).
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