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We show that the most commonly used high-intensity approximations as applied to ionization by strong
electromagnetic fields are related. We also discuss the applicability of the steepest-descent method in these
approximations, and the relation between them and first-order perturbation theory.

I. INTRODUCTION

The advent of high-power lasers strongly stim-
ulated theoretical studies on multiphoton processes
and, in particular, multiphoton ionization. These
treatments can be roughly divided in two classes:
high-order perturbation theory, which is well
known to be poorly convergent for strong electro-
magnetic fields (EMF), and a class of treatments,
which we denominate generally by high-intensity
approximations, where one tries to incorporate
approximately the EMF to all orders.

Fifteen years ago Keldysh' pioneered the work
in the area of high-intensity approximations, pro-
posing a scheme based on perturbation theory
with a modified basis, which would include al-
ready part of the effect of the EMF. For direct
ionization, the final states are the exact solutions
of the Schrodinger equation of an electron in the
presence of y spatially homogeneous EMF (dipole
approximatioh). Two other approaches were sug-
gested one year later, the first by Perelomov et
al.' which was claimed to be more accurate than
Keldysh's approximation; the other by Nikishov
and Ritus' who studied the solutions of the Klein-
Gordon equation for a spin-zero particle in the
presence of a strong EMF. Recently Berson' and
Manakov and Hapoport' have proposed approxima-
tions that are similar to the one in Ref. 2. Henne-
berger' and Faisal' appl. ied Kramer's unitary
transformation' and, starting from the trans-
formed Hamiltonian, sought to build an approxi-
mate solution suitable for the case of intense
fields. An alternative treatment was proposed by
Gersten and Mittleman, ' who expressed the trans-
ition matrix in terms of an approximate Green's
function, constructed from the exact solutions of
the SchrMinger equation of an electron acted by
an EMF in the dipole approximation.

Recently, Brandi and Davidovich' have shown
that the approximations proposed in Refs. 1, 7,
and 9 correspond to the first term of the same
kind of expansion in the intra-atomic or intra-
molecular potential, and differ at most by unitary
tran sformations.

In the present paper, we use the Green's function
formalism to show the equivalence of the treat-
ments by Perelomov et al. ' and by Keldysh. ' To-
gether with the results of Ref. 10, the most fre-
quently used high-intensity approximations are thus
related. Using the gauge $=0, divX=O, instead
of the choice of Refs. 1 and 2 (p=-R ~ r, X=O),
we retrieve the result for the ionization problem
obtained by Faisal, ' which we denominate space-
translation approximation (STA), except for the
presence of surface terms, which, however, do
not contribute to the ionization rate.

Several criticisms have been presented against
the applicability of the STA to the ionization prob-
lem in the region of strong EMF (see, for instance,
Ref. 11, p. 1381). The retrieval of this approxi-
mation through the usual Green's function formal-
ism shows, however, that in the case of ioniza-
tion the STA should indeed be valid for fields suf-
ficiently intense such that the expansion in the
intraatomic or intramolecular potential is rapidly
convergent.

Vaidyanathan et al."have recently commented
on the agreement between Keldysh's approxima-
tion and first-order perturbation theory when ap-
plied to one-photon transitions in semiconductors.
They argued that the good agreement obtained
could be fortuitous due to eventual cancellation of
errors introduced by the use of the steepest-de-
scent method and of approximated Bloch's func-
tion.

In Ref. 10, however, it was formally shown that
the high- intensity approximations lead- exactly
to the first-order perturbation-theory results.
In the present work the simpl. ification introduced
by the choice of gauge allows the identification of
the approximations used in the application of the
steepest-descent method as the unique source of
the discrepancy between first-order perturbation
theory and the proper limit of the calculated high-
intensity approximation. We show explicitly that
there is good agreement between both theories
near the one-photon ionization threshold, which
is the region where the saddle-point method is 1.ess
accurate. This fact increases the confidence in
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II. RELATION AMONG HIGH-INTENSITY
APPROXIMATIONS

We consider for simplicity an electron bound by

a short-range potential V( lx l) in the presence of

a spatially homogeneous EMF. The corresponding
Hamiltonian is (in atomic units K= e =m = 1}:

H =Ho+ H(t),

where

g2
H = — 2+ V(lxl)

(2.1}

(2.2)

and, depending on the specific choice of gauge,

H(t) stands for either

the application of this method to evaluate multi-
photon absorption processes, except for the re-
strictions discussed in Sec. III and in the Appendix.

In Sec. II, we briefly review the Green's func-
tion approach, using it to establish the relation
between the treatment of Perelomov et al.' and

the other approaches, discussed in Ref. 10.
In Sec. III, we calculate the ionization rate using

the gauge p = 0, divX=O, as in the STA (Ref. 7),
and show in the appendix that the saddle-point
method cannot be applied to fields of arbitrary
intensity. We discuss the region of applicability
of this method.

In Sec. IV, we compare our results with those
predicted by first-order perturbation theory.

where we set x —= (x, t). We also introduce the fol-
lowing retarded Green's functions:

(2.8)

(. 8 V'
l
i +———H(t) G'(x, x'} = 6'(x —x') .(et 2 0 (2.8}

The functions G and G, are related by the inte-
gral equation:

G(x, x ) =G,(x,x')

+ d'x"Gx, x' Hx G, x,x' 2.10

G =Go+ GVG0. (2.11}

The high-intensity approximations discussed in

Ref. 10 are obtained considering G =Go on the rhs
of Eq. (2.10) and taking a plane wave for Q&(x, t).
This involves neglecting in Eq. (2.11) terms de-
pending on V, and should be appropriate for suf-
ficiently strong EMF.

Now we show the equivalence of the above treat-
ment with the one proposed in Ref. 2. Using the
approximation described above, G=G, +GOGO, we

can write

(symbolically G= Go+ GHGO}. An alternative repre-
sentation for G is

or

H, (t) =—A(t) ~ V+,A'(t)

H2(t) =-E x.

(2.3)

(2.4}

Mt(ttt=ttt, . t dt,'f d'*d'd'ttt(x, tt
to

x Go(x; x')H(x') P,(x', t') . .

(2.12}

In Refs. 1 and 2 the interaction given by Eq. (2.4}

is used, while H, (t) is assumed in Ref. 7. The

term A'(t) in Eq. (2.3) is eliminated by a contact
transformation in Ref. 9.

Let Q,.(x, t) and Q&(x, t) be eigenfunctions of H,
corresponding to the initial and final states of the

system, respectively. Let the interaction H(t) be

turned on and off adiabatically. The tran'sition

amplitude from Q, to Qf is given by

As finite limits of integration are used in Eq.
(2.12}, we may set the Heaviside step function in

Go equal to one. Then we may replace G,'H by
(-is/Bt'+ —,'V'2)GO in the integrand of Eq. (2.12), as
it is immediately seen in the case of H=H, . When
H =H, (t), it is necessary first to perform a partial
integration with respect to x'.

After partial integration with respect to x' and
t', one gets:

A&,
= lim M«(t, t,),

f Mme0

where

(2.5)
Mf) = 5f. +Mf . + Mf .(1) (2)

where

(2.13)

Mf ](t y tp) = i d'x d x'@f*(x,t) G(xt; x'tp) f g
x y tp) ~

(2.6}

The retarded Green's function G satisfies the

equation

Mf = —5f +i d xd x'Qf* x, t

(. a
l
t ——H G(x, x ) = 6qx —x ),

Bt
(2.7)

and

x Go(xt; x'to) 4t,.(x', to) (2.14)
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t
Mf]'= dt' d gd g'Qf* x, t Go g;g'

to

x (i—,+ (t) .(x', t') .(. a v"
~ Bt' 2

(2.15)

we may rewrite Eq. (2.15) as

Mf3 = dt' d z d z Q& x, t GD x,
t() x

x V( ix' i)(t),.(x', t') (2.17)

(
g2

i +——(())t(x, t) = V(~x ~)(t)t(x, t), (2.16)

The term Mf", comes from the surface contribu-
tions in the partial integration with respect to the
variable t'. The partial integration with respect to
the space variables leads to no surface contribu-
tion.

Since

which corresponds to the approximation used by
Perelomov et al. ' to calculate the transition rate.

We show below that the surface term Mf", does
not contribute to the transition rate, which estab-
lishes the equivalence between the scheme of
Perelomov et al. and the high-intensity approxi-
mations discussed in Ref. 10.

For definiteness let us choose the gauge P = 0,
divA =0. We then have

Let

d pG'tx, x')= e(i-I') -'.exef'e t*-*')Ie e -- e--"(x)) d' .
(2(/)' 2 „c

(t)t(x, t}= (t)((x)et pt,

ejga j
t) —

y (x)e lk t/2-- e-(2 t/2
f I f (2(/} 3/2

d, (2) = fx '"'d, (xld x, '

(2.18)

(2.19)

(2.20}

(2.21)

and

' (IA2(r) X(r} k
I( c c

(2.22}

Then

i(f (1) — 6 + ~(( } ei [a (2et)-a(fetp) l et(t) /2e/p)t()««(2v)3/2 (2.23)

Mft 2 3/2 Ip + 2 ~e
' ' a(t, tp k Ap Ip)

(2 l P((k} k (2.24)

where

1 ~ 1(tt„eA„I,) (=xdt e, xp +I I, +- e '——X(x) l dx),
Q

(2.25)

It is clear that, when t -+~ and to —-~, ~ be-
comes a singular function, while Mf",. ' remains
bounded. Therefore Mf',.' does not contribute to
the transition rate, and the scheme proposed in
Ref. 2 is indeed equivalent to the other approaches.
The different results obtained by Keldysh' and
Perelomov et al.' are due only to different choices
of the bound-state wave functions, and not to a
more exact formulation of Ref. 2, as claimed by
Perelomov et al. (cf. footnote on p. 931 of Ref. 2).

To show that Eq. (2.12) reduces to the usual

first-order perturbation theory it is necessary
to assume that Qf(x, t) is a plane wave. In fact, in
first order of II, Gp in Eq. (2.12) must be replaced
by the free propagator and, of course, after in-
tegration with respect to X, we obtain the usual
result.

III. THE IONIZATION RATE

We consider the case of linearly polarized light,
so that X=X cos(pt. From Eqs. (2.13), (2.23}, and
(2.24), we get for the transition probability, for
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finite times (t, tn), and f«i:

x [1+2(In+ kn/2)

x Re(nn e i &&n&ky n&) &ll /2+&'nl&n])

+(I, +An/2)'~ aj'] (3.1)

We may choose, as usual, t, = T/2-, t =T/2, and
take the limit T-~. Using in Eq. (2.25} the re-
lation:

e ia sinu& gJ (u)e ln'&ut

where JJ&i) are cylindrical Bessel functions, it is
easily shown that

(3.2)

lim 6 —,—2, k, A, I =2m J,„J„
x 5 —+~+I -N(d

(3.3)
Defining, as usual, the transition rate W&,. as

Although the transition amplitude obtained by
Faisal' differs from the present results, the tran-
sition rate given by Eq. (3.5) is exactly the same
as in the STA. This occurs because M&',.' -can be
discarded and M&",' differs from Faisal's transition
amplitude by a phase factor.

The total ionization rate is obtained from Eq.
(3.5) by summing over all final momenta. The
main difficulty is to evaluate the summation of the
Bessel functions, which can be done approximate-
ly by using the method of steepest descent as sug-
gested by Keldysh' and Perelomov et al.'

Using the integral representation
+00

i
Jg&&)J (5}— d8 ei N && bain~a-an&an&&) (3 8)

g 2 7T

I&~, I2
W~] = lim

g~ &o

(3.4) we may write the total ionization rate as

it is clear that the only contribution to W&,. comes
from the third term on the right-hand side of Eq.
(3.1), leading to where

Nky
(3.7}

k
W„=2m d'k 6 N~-I, ——E k (3.8}

(3.10)

&gk) = ' ' „, — d8 exp i~ ~1+,+—8 —— sin8+4+sin28 (3.9}

and E,=c A/&o, I,=I,[1+1/(2y')], y=&d&21, /E„v=I, /&o, and X, =A~. The quantity W„maybe interpreted
as the ionization rate associated to the absorption of N photons.

The integral in Eq. (3.9) is evaluated by the saddle-point method, as in Refs. 1 and 2, under the condition
I, /&u» 1, and as long as E, is much smaller than 9Es, where Es is the intraatomic field (see the Appendix).
This last condition has not been established in Refs. 1 and 2, and imposes a high-intensity limit on the re-
gion of applicability of Keldysh's formula. For E,«9E~, one has

21 1 k' & . , (1+y') )'tn yx exp —~ 1+ 2+—Zsinh ' —-=
2y' 21,] 2y 21, (1+y')'"

This result is identical to Eq. (53) of Ref. 2 for
the case of a bound wave function of the form e "/r.
For other wave functions the differences are due
to the choice of different gauges. In the case of
circularly polarized EMF it is also possible to
show that the results are equivalent to those of
Ref. 2 except for the choice of gauge.

Qne should note that the dependence of the trans-

ition rate on the bound-state wave function, as
given by Eq. (3.10), is much simpler than that of
Refs. 1 and 2 due to the choice of gauge /=0,
v A=O.

From Eqs. (3.8) and (3.10), we may proceed as
in Ref. 2 to obtain the total ionization rate. This
establishes the applicability of the STA to ioniza-
tion by strong EMF.
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IV. PERTURBATION THEORY
'

Ix exp ~ 1+~
N Io J

(4 1)

The relevant contribution comes from N=1. If
we assume (d-I, and, consequently, by energy
conservation, k'„«2IO, we must use the expression

(4 2)

in Eq. (3.8), and compare this result with the first-
order perturbation theory ionization rate

d'k IP, (k) t2
2

k'
1 0 l(2v)2 2y2 2 2 0 (4.3)

This yields

~=-= 0.865.W e
W~ m

It is clear then that the differences found by
Vaidyanathan et al."between Keldysh's method
and first-order perturbation theory are basically
due to the approximations involved in the use of
the saddle-point method. As we mentioned pre-
viously the choice of the gauge &j&= 0, V X =0
allows an immediate comparison with perturbation
theory. This is not the situation in Keldysh's re-
sult, since in this case the integral which is eval-
uated by the steepest-descent method depends on

the wave function.
APPENDIX

We show now that, for very intense fields, the
integral in Eq. (3.9) cannot be calculated by the

As mentioned previously, there exists some
interest" in the applicability of the high-intensity
approximations, in particular the Keldysh method,
to few photon processes. In the case N= 1 it is
easily shown from Eq. (3.5), that for y» 1 the
dominant contribution to the summation comes
from the Bessel function J,(A, k/ec) =J,(k„v 212 j
&uy). If one retains only the first term of its series
expansion the results of first-order perturbation
theory are exactly reproduced. ' Therefore, we
are able to estimate the errors in evaluating the
summation in Eq. (3.5) by the method of steepest
descent in its most disfavorable situation, that is,
near threshold ionization 12/&q- 1.

To do this we cannot proceed as in Ref. 2, neg-
lecting the term cos{(4I,/v) [(I+y2)'"/y](kgb'2I, }),
since in the case y» 1 this term contributes sig-
nificantly to the ionization rate. In fact from Eq.
(3.10) one easily gets in this limit

(N&u)' &u I Q,(%) I"
(2v)' I (4y')"

X 1+(-1)"1 —~2k2
~

usual saddle-point method, as applied by Keldysh,
due to the presence of coalescing saddle points.

Let

f(B) =~ 1+ +—8
(d 2y 2I()

&2 ~+k . 1~ sinB+ sin28
~f, y

(A1)

The saddle points will be the zeros of f'(8), and

are given by

yk.cosB, = —+2y~1+—'
s y 2IO ( 2I (A2)

The positions of the four corresponding sad-
dle points in the 8 plane are sketched in Fig. 1,
which also shows the paths followed by them as
a function of increasing y, for k, &0, k„=0, and

k„&0. As y-0, the four saddle points coalesce
in pairs around 8 = +v/2.

The integral (Eq. 3.9) can be evaluated by de-
forming the original contour of integration so that
it passes through the two saddle points above the
real axes.

In the usual procedure, the saddle-point contri-
bution is evaluated by approximating f(8} by

f(BJ+ 2f"(8$(8 —8,)', where 8, is the saddle point.
This cannot be done for arbitrarily high field in-

I
I
I

k 0 Ikr=o ~k
I

I I
I
I

I )
I I

&et I

k,+0 k,=0 k «0

g J'I& IT/P TT-a,

' e,
)

I

I I

k «0 k 0 k+0 I It +0 Ilt 0
I

k «0I
r r r r r I r

I
I

I

FIG. 1. Paths followed by the four saddle points e&,

82 83, and 84 ad y increases. The dashed and full lines
correspond to the plus and minus signs in Eq. (A2),
respectively, and
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tensities (when y-0), since the contribution of the
second- and third-order derivatives are compar-
able in this case.

Indeed, we have, for the saddle point denoted
by one in Fig. 1:

( 2 1/2.I

=
I, If-(8g I

(A8)

so that when y-0, the range of 8, would be given
by

(~y 1/2 ( 1 ) 1/4

I, 1+k'/2I, &l
~ (A9)

2iy k„~k

f"'(6 ) =~ 4+—+ '-~-3ikI 2 2k2~ k2
1 ~ y2 g g

x

When y-0, we have

(AS)

(A4}
(A10)

In this region, the magnitude of the contribution
of the next term in the expansion (AV} would be

' lf"(6)118—8 I'

y ((g 't~~2

yIO&l (1+km /2IO) s/~
'

2g (
0

fill�(8

} 0

(A5)

(A6}

So, this term is negligible if and only if

y(~
3(yr0 ~k2 '" (All}

and the higher-order derivatives are also pro-
portional to I, /&uy or I,/ey'. Similar results are
valid for 8,.

Expanding f(8) around the saddle point, we have

f(6) f(6g+ ,'f"(6)(6-6y'-

for all k„which means that u&/9yIO«1.
Using that y=&u~2IO/Eo, and defining the intra-

atomic field as Es = (2I,)'", we see that this con-
dition is equivalent to E«9E~, which defines the
region of applicability of Keldysh's approach. For
the hydrogen atom, Es= 5.18x 10' V/cm.

+ g f"'(6 )(8 —8)'+ ~ ~ ~ . (Av} ACKNOWLEDGMENT
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