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This paper presents a unified theory of nonequilibrium transitions which occur in radiation interacting via an n-
photon transition with atomic systems inside optical cavities. Incoherent pumping of the atoms and coherent driving
of the cavity are included. Examples of such systems are the n-photon laser, the n-photon laser with injected signal,
and n-photon optical bistability. The state equation and stability conditions for these phenomena are derived.
Fluctuations are included via a Fokker-Planck equation in the constant-diffusion approximaton for which potential
solutions may be obtained in the steady state. When these solutions are used, moments of the photon distribution
can be calculated for the above systems in the specific cases of one- and two-photon transitions.

I. INTRODUCTION

We wish to present a unified treatment of n-pho-
ton transitions which can occur in an optical ca-
vity filled with two-level atoms. These atoms are
assumed to interact with only a single-cavity
mode, which has no spatial variation. Our ana-
lysis thus describes interactions in a high-@
ring cavity. The cavity may be coherently driven
by an external field, and the atoms may also be
pumped incoherently. The evolution of the atomic
and light field variables is then described by the
Maxwell-Bloch equations with appropriate terms
for losses and external pumping. In a high-@ ca-
vity the atomic variables relax more rapidly than
the field variables, and can be eliminated adia-
batically from the Maxwell-Bloch equations, re-
sulting in an equation of motion for the cavity-field
mode only. The aim of this paper is to show how
a number of different systems may be treated using
the same formalism, and indeed, arise as differ-
ent limits of this single equation. This equation
contains parameters representing the external
driving field and the atomic pumping, and for the
appropriate values of these parameters, the equa-
tion describes the n-photon laser, the n-photon
laser with injected field, or n-photon optical bi-
stability.

Fluctuations are considered in a phenomenologi-
cal fashion by adding a thermal-type Langevin
force to the equation for the light field. This ran-
dom force will represent thermal noise in the
light due, for example, to spontaneous emission
of the atoms in lasing systems or to any thermal
noise component present in the driving field. In
general, quantum fluctuation terms, which depend

Pl

on the field variable should also be included, but
we shall assume that such terms are negligible
compared to the thermal noise term. In this paper
we shall study the Fokker-Planck equation corre-
sponding to this Langevin equation, and obtain the
steady-state probability distribution for the field
amplitude in potential-solution form. Moments

of this distribution such as the mean intensity and
variance of intensity fluctuations may be calcu-
lated exactly. Furthermore, the potential may be
used to investigate the stability of solutions in re-
gions where the distribution is multipeaked and the
deterministic equations have multiple steady
states.

II. GENERAL FORMULATION:
THE n-PHOTON TRANSITION

We shall consider an optical cavity filled with a
medium consisting of N two-level atoms that inter-
act with a resonant cavity-field mode, whose spa-
tial variation is neglected. The n-photon interac-
tion with the atoms can be represented by an ef-
fective Hamiltonian where a summation over in-
termediate states is implicit, and atomic and field
mode damping can be represented by interaction
with reservoirs. The full Hamiltonian, in the
electric dipole and rotating wave approximations,
is then

S
H=) H,,
i=1
N
Hy =fiwoa*a + %nﬁwoz O': .
w=1
N - -
H2 =iﬁ Z [ge-lk-f‘u (aY)"O’; - ge!k-ru ano,;] , (2.1)
=l
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N
Hs=21(<7; Ta+o,TY),
U s

H4 =a?rF + ar}'r N
Hs =il (a’ e 0t — g §*ei@0?) ,

Here, a,a' are the boson operators for the field
mode and o*, of are the Pauli atomic operator for
the uth atom. w, is the cavity resonance frequen-
cy, with nw, taken to be equal to the atomic reso-
nance frequency. The coherent external driving
field is taken to have the same frequency w,, and
its amplitude is §. T, I'| represent the reser-
voir for the atoms, describing both incoherent
pumping and radiative damping; I'z,T} represent
the reservoir describing damping of the cavity
mode. g is the n-photon matrix element for the
coupling between the field mode and the atoms.
We note here that because we have taken the field
to be in exact resonance for the n-photon atomic
transition, our analysis corresponds to the purely
absorptive situation. In the case of one-photon
transitions in this system, a more general analy-
sis allowing for off-resonance situations has re-
cently been given by Graham and Schenzle.!

The system can be described by the cavity mode
operator a,_ the total atomic polarization J*
=2 .a0se'™™  and the total atomic inversion J*
=42 10f. The problem may be analyzed fully
quantum mechanically using master equation and
Fokker-Planck techniques as described by Haken,?
Lax,® and Mandel.! In this paper we shall not at-
tempt this, but rather, we shall use a semiclassi-
cal approach with the classical variables a=(a),
a* =(a", v*=(J?), v=(J*), and D=(J,). Then,
in the limit of zero fluctuations, when all correla-
tion functions are assumed to factorize, the sys-
tem is described by the following Maxwell-Bloch
equations:

v==71v+2ga"D,
D=-v(D- Dy) - g[(a*)"v + a"p*] , (2.2)
a=-«(a-E) +ngv(a*)"?,

71 and 7u are the damping rates for the atomic
polarization and inversion, respectively, and «
is the damping rate for the cavity field. E= &/«
is proportional to the driving field amplitude. D,
is the inversion that would result due to the inco-
herent pumping of the atoms in the absence of any
interaction with the field.

By appropriate choice of the external driving E
and incoherent pumping these equations describe
the following situations: (i) the n-photon laser:
E=0, Dy>0 (Dy=N/2 for complete inversion);
(ii) the n-photon laser with injected signal: E#0,

D, > 0; (iii) n-photon optical bistability: E+0, D,
<0.

A. Adiabatic elimination of the atomic variables;
the steady-state solutions

In the high-@-cavity limit, we have k <y, u
and the atomic variables may be adiabatically
eliminated, that is, replaced by the values ob-
tained by setting ¢ and D equal to zero in Egs.
(2.2):

2\n)-1
D=D0[1+(———'°" )] ,
N

; (2.3)
n]-1
v=2g29[1 + (’Ll-) ] a",
Y ny
where
" _('Yu')’x)l/"
0 4g2 .

Substitution of these expressions in the equation
for a in Eqgs. (2.2) gives the following equation
for the field mode alone:

2\n]-1
3¢ _(a-E)- 2nC[1 +(&)] laf2 Dy, (2.4)
oT ()

where 7=t and C=g*(-Dy)/ky.. The steady-
state version of this equation can be written in
the following scaled form:

C.| x| 20D
y=x<1+mr), (2.5)
where
2\1/2n 2 \122n
w=G) "o v=(5) 7,
and

C, =2nC (n,)"*.

B. Stability of the steady states

For certain values of E and D,, Eq. (2.5) yields
multiple solutions, and it becomes necessary to
determine the stability of such solutions. If Eq.
(2.4) is written &=F(a, a*), standard lineariza-
tion procedure gives the following linear equation
for small perturbations 5@, 5a* about the steady-
state values oy, ag:

aF

) [ba] 300 &) Fox(00, o) | g,

> = | aF* IF* [ ]

3 (sa* ?a—(a“’ af) —a—&T(ao, af) | Lsa*
(2.6)

The condition for stability that the real parts of
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the eigenvalues of the matrix (called A for con-
venience) in Eq. (2.6) be negative requires Tr(A)
<0 and Det(4)> 0, i.e.,

o ReF " 81mF< 0,

du dv 2.7)
o ReF BImF_ o ReF oImF -0

du dv dv du ’

where u=Re(a), v =Im(a). Equation (2.4) may
be written &= kE - afI), where I=|a|? and f is
real, in which case the stability conditions (2.7)
become

4w
f+rI i >0,

f(1)<f(1) vl i’%’—’) 0,

where f is evaluated at the steady-state value for
I. In the following sections we will be consider-
ing photon distributions in terms of a potential,

(2.8)

so it is convenient here to use the stability condi-
tions (2.7) to introduce a potential ¢(u,v) by de-
fining
9
—w:— ReF(u, v),
(2.9)

M=_ ImF(x, ) .
ov
The steady-state solutions of Eq. (2.4) thus cor-

respond to the turning points of ¢(x, v). Interms
of ¢(u, v) the stability conditions (2.7) become

2 2
25+ g0,
wov (2.10)

a%)(az ) <az¢ )z

(EF E} ~Guae) ~ 0

which show that only those solutions of Eq. (2.4)
which correspond to a local minimum of ¢(u, v)
are stable. We shall examine the stability of so-

lutions for each of the physical situations discuss-
ed in the following sections.

C. Fluctuations

We shall introduce fluctuations in a phenomenological manner by simply adding a §-correlated fluctuat-
ing force to the equation of motion for @ [Eq. (2.4)], and treat « as a stochastic variable:

oT Ny

2 =-(a-E)- 2nC[1 + (ﬂy‘]-l |a|?@Pa + £(2),

(2.11)

with (£(#') £*(£)) = A8(¢ - t') and (&(#)£(#')) =0. In this paper we shall use the Fokker-Planck equation equi-
valent to Eq. (2.10), and consider the probability distribution P(a, a*,7) for a:

Wleot7) ai{- (- E) - 2nC [1 + (%)]l |a Iz‘""’a}p

oT a
d . [ (lozl2
-aa*{—(a —-E*) -22C|1+ T

n=A/2k represents thermal noise which may
arise from spontaneous emission by the atoms or
fluctuations in the driving field. As mentioned

in the introduction a full analysis shows the exis-
tence of nonthermal-type noise, which is a func-
tion of @, and which we call “quantum noise.”
Hence, our analysis applies to the situation where
thermal-type noise is the dominant noise. In the
case of the laser, the noise due to spontaneous
emission of the atom consists of a leading con-
stant term, followed by terms which are func-
tions of @, and standard treatments retain only
the constant term.’ Comparison with exact re-
sults has shown that this is a very good approxi-
mation.! In the case of optical bistability, how-
ever, the fully quantum-mechanical Fokker-Planck
equation has a noise function in which the leading
term is not a constant.®” Thus Eq. (2.12) will
very adequately describe lasers with #» represent-

dada*

nl-1 2
)] }alZ‘"'l’a}P +25£— . (2.12)

f
ing noise due to spontaneous emission. For opti-

cal bistability, Eq. (2.12) will give an adequate
description only when the thermal noise #» domi-
nates the quantum noise.

D. Steady-state solutions of the Fokker-Planck equation

Equation (2.12) can be readily shown to obey po-
tential conditions® and has the steady-state solu-
tion

P(a, a*) =Ne*@a® (2.13)

where N is a normalization constant, and the po-
tential ¢(a, a*) is given by

#(a, a*):;}l-_(IaP - E*a - Ea¥®)

-H m[l + (%)] , (2.14)
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where
H=v.Dy/A .

This is a general result, and by suitable choices
of the parameters, E and D, give the photon sta-
tistics of n-photon lasers with or without an injec-
ted signal and n-photon bistability. We shall con-
sider these systems in more detail for the special
cases of one- and two-photon transitions in the
following two sections.

III. ONE-PHOTON TRANSITIONS

A. The laser
1. Semiclassical analysis

The semiclassical equation for the usual one-
photon laser® is obtained from Eq. (2.4) by setting
E =0 (no external driving field) and taking D, posi-
tive (representing external incoherent pumping of
the atoms). The steady-state equation (2.5) in
scaled form is thus

x(l ——?7) 0, (3.1)

where C,=2g2D /kv, is redefined to be positive. ‘

Setting x =re‘°, we find the solutions
0, C>0
{(C - 1)1/2 , Cl> l (3.2)

with 8 arbitrary. The stability conditions (2.8)
for ;zhis case are (in terms of the scaled intensity
I=9%)

F+21+1-C>0,
(I+1-C)[?+I(C,+2)+1~-C]>0.

The solution »=0 is thus stable only for C,< 1; /
=C, -1 is the only stable solution for C,> 1. The
laser thus undergoes a far from equilibrium sec-
ond-order phase transition at the threshold C =1,
or Do= K’}‘L/Zgz.m'u

(3.3)

FIG. 1. Probability distribution for the one-photon
laser (a) 1.1 xthreshold; () 3 X threshold.

2. Fluctuations

A quantum theory of the laser in which a Fok-
ker-Planck equation of the form (2.12) with a con-
stant noise term was derived was first given by
Risken.” A commonly used approximation is to
expand the term (1+ |a|®/ng)™ to first order in

, giving a driven Van der Pol oscillator type
of equation. Here, we shall retain the full ex-
pression. The resulting potential (2.14) for the
one-photon laser is then
| a!

Hln(l + ':0' ) (3.4)

oo, a*) = —

The corresponding probability distribution P =Ne™
is shown in Fig. 1 for various values of D,.

As discussed in Sec. II, the maxima and mini-
ma of the potential ¢ [which is proportional to
- logP(a, a*)] correspond to the unstable and
stable solutions, respectively, of the semiclassi-
cal equations. Below threshold the potential is a
steeply sloped well with a minimum at =0, and
fluctuations away from this minimum are quickly
damped. As D, approaches its threshold value,
the potential becomes shallower, and fluctuations
away from » =0 take an increasingly longer time
to decay. This is the well-known phenomenon of
critical slowing down. Above threshold the origin
=0 becomes a maximum corresponding to the
semiclassical solution, =0 becoming unstable
and the potential has its minimum on the circle
7=(C, - 1)!”2 corresponding to the stable semi-
classical solution.

3. Photon statistics
The steady-state moments may be calculated using the solution given by Eqs. (2.13) and (2.14), with

n=1. The unnormalized intensity moments I are

I‘":fdza}a|2‘P(a, a*)

- [ anfo+

)R’ 'R"'f d9exp( m92§(—;:-€92). ’ (3.5)

Here we have set a=vEe® and E=E0e 0, The driving field E has been retained so that this general
result can be used in the following sections on the laser with injected signal and optical bistability. The
6 integral in Eq. (3.5) is the integral representation of the Bessel function Io(2E(VR /7).> Expanding I,
in a power series and carrying out the integration over R term by term we find

a ¥ [(By/7) Vil
412 SRl ol

(k'+i)w(k+i+1,k+H+i+2; %Q) (3.6)
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where I' is the gamma function and U is the second
confluent hypergeometric function.' Equation
(3.6) is a general expression for the unnormalized
intensity moments of one-photon transitions with
arbitrary inversion Dy and coherent driving field
E,. The normalized intensity moments are

(a'taly =1/1 (3.7

For the laser, E¢=0, and we obtain the following
expression for the mean {n) =(a’a):

U2, H + 3; ny/7)
UL, H+2;n/0) °

The normalized second-order correlation function
22(0) =(a"d®) /(a'a)® is

U(3, H+4;ny/n) UL, H+2;ny/7)
(U@, H+3, ny/n) ’

(3.9)

These expressions for {(»n) and ga’(O), together
with the semiclassical mean intensity given by
Eq. (3.2), are plotted as functions of the inco-
herent atomic pumping D in Fig. 2. Below the
threshold C,=1, we have g'®(0)=2, characteris-
tic of chaotic or thermal light. In this region the
light field is generated by spontaneous emission
of the atoms. Above threshold the atoms begin
emitting coherently and g®(0)—~1, characteristic
of coherent light. One finds that the smaller the
noise, 7, the sharper the transition from g®(0)
~2 to g¥(0)=1.

The photon number distribution P, may be readi-
ly calculated from P(a, a*). The P, are the di-
agonal elements of the light field-density operator
in the number (or Fock) state representation, and
we have

(3.8)

(m) =ny

ge)(o) -9

P,,:fdzaKnla)PP(a, a*)

=n{,’"U<n+1,H+n+2; %*’"0)- (3.10)

0 2 4 6 8 10 2 14 16 18 20
C, (PUMPING)

FIG. 2. Moments of the one-photon laser. Mean in-
tensity (ata) and second-order correlation function
£20) for (a) ng/n=20; () ny/n=100; semiclassical
mean ----.

Note that P, here are not normalized; normaliza-
tion is carried out by requiring 2=y P,=1.
Photon number distributions of this form have
been derived from a master equation by Scully
and Lamb™ and from a Fokker-Planck equation
by Lax and Louisell™ and were first verified ex-
perimentally by Arecchi ef al *®

Well below threshold the distribution becomes
the Bose-Einstein power law distribution of cha-
otic light, and well above threshold it tends to the
Poisson distribution of coherent light.

B. Laser with injected signal

We now allow an external coherent field to be
injected into the laser cavity. We may use the
analysis of the preceding section, with E the
driving field, nonzero.

1. Semiclassical results

The steady-state equation in scaled form [Eq.
(2.5)] for this situation is

(1 ————zc‘ (3.11)
V=X T+ )’ '
where C,=2g2D /kv, is redefined to be positive.

Setting y =y,e? and x =re*®, the real and imagin-
ary parts of Eq. (3.11) are

C
ypcosby =rcos9(1 - 1—+1’rz) ,

(3.12)
s s cl
Yo sinry=»sinf (1 - _1_:7) .
These give the in-phase solution
0=6
0 (3.13)
(1 ©s ) 1--%, .0
NWETNTTRA) TR
and the out-of-phase solution
6= 00+1T,
C, c, (3.14)
yo=—7(1—-f—_:-17), 1—'1—:_7 <0.
In both cases we have
ly|*= |x|2<1 o, )2 (3.15)
yi=: 1+1ix1/ ° :

The state equation, given by Egs. (3.13) and (3.14)
together, is plotted in Fig. 3, which shows x as a
function of y. For C,<1, x is a single-valued
function of y. For C, > 1, x becomes a multiple
valued function of y, and for y <y,, there are
three solutions for the cavity field x. However,
the stability conditions [Eq. (3.3)] show that

the out-of-phase solutions x; and x; are unstable;
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X
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+

-24
FIG. 3. One-photon laser with injected signal: output

field amplitude x versus input field amplitude y. (a)
C;=2; b) Cy=1; (c) Cy=0.5, — stable, 4444 unstable.

only the in-phase solution x; is stable. Thus,
although the semiclassical equations show that a
multiple solution regime exists, the laser with an
injected signal does not exhibit bistability, a fact
noted by Lugiato'® and by Drummond.” A study of
the potential, in the next section, shows more
clearly why in the multiple steady-state region
only one solution is stable.

2. Fluctuations

The Fokker-Planck equation for the laser with
an injected signal has a potential solution of the
form of Eq. (2.12) with the potential ¢ given by
Eq. (2.13), with n=1:

#(a, a*):%[ lal? Q (Ea* + E*a)]

2
_Hln(1+ﬂ-). (3.16)
no
Recalling from Sec. II, that provided the noise
term in the Fokker-Planck equation is independent
of a, the extrema of the potential correspond to
the steady-state semiclassical solutions, we ex-
amine the extrema of Eq, (3.16). Points on the
upper branch of the @ vs E curve (Fig. 3) corre-
spond to minima in ¢ and are thus stable. Points
on the middle branch correspond to local maxima
and are therefore unstable. Points on the lower

IR

FIG. 4. Probability distribution for the one-photon
laser with an injected signal (§,=0, E;=0.25, 1.6
x threshold).

branch correspond to saddle points of the poten-
tial. A one-dimensional analysis, in which phase
is ignored, gives a potential which is a planar
“slice” of the two-dimensional potential. Slicing
through the saddle point will then show a minimum
corresponding to a point on the lower branch,
leading to the wrong conclusion that the lower
branch is stable. The true picture is thus given
by the two-dimensional analysis which shows that
since points on the lower branch correspond to
saddle points in the potential, the lower branch is
unstable to phase fluctuations. In Fig. 4, the dis-
tribution function P(a, a*) [proportional to

- log ¢(a, a*)] shows clearly what is happening.
With zero driving field the laser distribution is
spherically symmetric, with a minimum at the
origin corresponding to the maximum in the poten-
tial, surrounded by a circular ridge peaked on the
circle r = (C, —1)*/2 corresponding to the minima
in ¢. When the external field E = E¢e¥0 is intro-
duced, a ridge builds up along the line 6 =6, a
valley developes along the line 8 =6, + 7, and the
minimum at the origin moves out towards the sad-
dle point formed where this valley cuts the origi-
nal circular ridge. As E; is further increased,
the valley along 6 =0, + 7 flattens out, removing
the original circular ridge until E, is such that

y >v,, when only a single isolated peak along the
line 6 =6, remains. This form of potential was
first found by Chow et al.'®

C. Optical bistability
1. Semiclassical results

Equation (2.4) may also be used to describe
optical bistability, which may occur when passive
atoms are placed in a coherently driven cavity.
Since the atoms are not externally pumped, D, is
now negative; in fact, Dy=-N/2. In the one-pho-
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ton atomic transition case the scaled steady-state
equation (2.5) becomes

2C
y_x<1+1+|x| )’

whereC=g2N/2ky,. This equation for absorptive bi-
stability was first derived by Bonifacio and Lugiato.?
Experimental observation of absorptive bistability
from a two-level system has recently been report-
ed by Sandle and Gallagher.? '

Substituting y =y,¢*? and x =7e® in Eq. (3.17)
we find

(3.17)

2C
i)

0=16,.

(3.18)

The output field x is thus always in phase with

the input field, and the analysis (at least when
there are no fluctuations) need only be one dimen-
sional. The analysis of the turning points of the
state equation (3.18) shows that for C <4 there is
only one turning point and the output is a single-
valued function of the input y. For C >4 there
are two turning points, giving a region where « is
multiple valued. The linearized stability analysis
shows that the upper and lower branches are stable
and the middle branch is unstable, so the system
is bistable in this region.

2. Fluctuations

If fluctuations are now included, the problem is
no longer one dimensional; there will now be a
distribution of phase about the most probable val-
ue 6;.. As mentioned in Sec. II, the Fokker-Planck
equation for optical bistability will only be of the
form [Eq. (2.12)] when the thermal noise # is much
greater than the quantum noise. This thermal
noise may be noise in the optical cavity and atomic
medium or may also be viewed as an approxima-
tion to the noise in the applied driving field. In
this high-thermal-noise limit then, the steady-
state distribution is of the form given by Eqgs.
(2.13) and (2.14), with Dy=~N/2. The potential
is thus

Ma, a*) = ‘h1=[| a|*-E*a-Ea*

YN ( ‘alz)]
+ 2 1+ —=)].
2A ()

This potential for absorptive bistability was first
derived by Bonifacio, Gronchi, and Lugia.to21 and
Schenzle and Brand.?® The form of the steady-
state distribution in the bistable region is shown
in Fig. 5 (see also Ref. 22). The effect of the

(3.19)

FIG. 5. Probability distribution for one-photon bi-
stability.

fluctuations is to give a probability spread about
the semiclassical solutions. The unnormalized
intensity moments for this distribution are given
by Eq. (3.6), with Dy=-N/2. We have plotted
the root-mean intensity ((a'a))'”? as a function of
input field in Fig. 6 together with the semiclassi-
cal result for x from Eq. (3.17). Also shown is
the second-order correlation function gm(O). As
expected, the root-mean intensity shows no bi-
stability; the inclusion of fluctuations makes the
upper and lower branches metastable rather than
absolutely stable. In order to observe bistability
(that is, hysteresis effects) the input field must be
ramped in time intervals which are short com-
pared to the lifetimes of the metastable branches.
The statistics of the output light on the lower and
upper branches may be deduced from g#(0). On
the lower branch, g%(0)~2, showing the trans-
mission of thermal noise, whereas on the upper

—
L

14

12+

10

x 8

6

4_

2_

(o) L ]

3 4 13

FIG. 6. Moments for one-photon bistability. Root-
mean intensity ({a'a))!’? and second-order correlation
function — compared to one-dimensional approximation
---, semiclassical amplitude .... Parameters C=10,
ng=1, n=1.
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branch, g?(0) ~1, implying that the device now
transmits only the coherent signal. In the thresh-
old region there is a marked increase in g2(0),
corresponding to an increase in the size of rela-
tive fluctuations. This increase in fluctuations is
due to there being appreciable probabilities of the
system being in either of two states, so that fluc-
tuations between the two states will be common.
For small values of the noise parameter 7, the
probability distribution is aligned fairly narrowly
along 6=6,, and as an approximation may be re-
garded as one dimensional, which was, in fact,
done by Schenzle and Brand® in their analysis.
We note that # cannot be made too small because
it is assumed that thermal noise must always be
much larger than the quantum noise. For com-
parison, we have also plotted in Fig. 6 the root-
mean intensity and g@(0) obtained from Eq. (3.6),
with the approximation 6 = 6,.

D. Saturable absorber with chaotic driving field

In the preceding section, the intracavity atoms
are passive and thus act as a saturable absorber.
The analysis used there can be used to describe
systems driven by chaotic rather than coherent
light. As mentioned previously, any chaotic com-
ponent in the input field can be included in the
noise term #z. If the coherent part E is zero, the
above analysis then describes a system driven
by entirely chaotic light. Such a system has been
"studied recently by Drummond e¢ al.2® whose po-
tential solution corresponds to Eq. (3.19), with
E =0, Inthat work it was found that over a cer-
tain critical region of chaotic input intensity, the
fluctuations in the output field markedly increas-
ed; that is, there was an enhanced-photon-bunch-
ing effect.

IV. TWO-PHOTON TRANSITIONS

A. The two-photon laser

A laser based on a two-photon atomic transition
was first proposed by McNeil and Walls,* al-
though this has not been realized in practice.
Further theoretical investigations have been pur-
sued by Gortz and Walls,”® Ito and Nakagomi,®
Bulsara and Schieve,’” and Nayak and Mohanty.?®
More recently a study of n-photon lasers along
lines similar to what we shall present here has
been done by Sczaniecki.?®

Two-photon transition systems will be described
by the state equation (2.5) and the potential (2.14),
with »=2. Inthe case of a two-photon lasing sys-
tem, there is of course no input field, so E=0,
and the atomic pumping D, is positive. The state
equation (2.5) is then

Cz|x|2)_
x(l— e =0, (4.1)

where C, = (2gD,/k) (v,/r,)'2. The solution for the
amplitude is x =0 for all C,,

lx|?= Cp/2: HCE -2, Cy>2 (4.2)

and the phase is arbitrary. The stability condi-
tions [Eq. (2.8)] are

P4+2P -2CI+1>0 (4.3a)
(P =Cl+1)(P +Co* +2IF = 3C,I +1) > 0. (4.3b)

It is easily seen that in contrast to the one-photon
laser the x =0 solution is stable for all values of
the pumping parameter C;. From Egs. (4.3) the
solution |x|?*=C,/2 +1(C% - 4)*? is found to be
stable, while the solution |x |*=C,/2 - 1(C} - 4)'7
is unstable. Thus for C; > 2 the two-photon laser
is bistable. The state equation (4.2) is plotted in
Fig. 7. This curve is slightly different from the
usual bistability curve because the middle branch
meets the lower branch only at C, =%, Thus, in
the absence of fluctuations, as the pumping pa-
rameter C, is increased the system will always
remain on the lower branch x =0, even when C,
>2, Inorder to make the transition to the upper
branch for C; > 2 and start lasing, fluctuations are
essential.
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FIG. 7. Moments of the two-photon laser. (a) Mean
intensity (a'a) versus atomic pumping C, for ny/n
equal to (I) 20, (II) 100, semiclassical intensity ---.
(b) Second-order correlation functions g'?’(0) vs C,
for ny/n equal to (I) 20, (II) 100.
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1. Fluctuations

Noise due to spontaneous emission of atoms, to-

gether with any thermal noise, can be taken into
account by using a Fokker-Planck equation of the
form of Eq. (2.12), with n=2 to describe the sys-
tem. The potential has the form of Eq. (2.14),
with =2 and the driving field E=0:

2 2\2

#la, a*) =12 —Hln[l +(‘L‘) ] (4.4)

n ny

The corresponding probability distribution
P(a, a*) =Ne™“** ig plotted in Fig. 8. Below
the threshold C; =2, or Dy = (k/g) (r./¥,)*”2, the
distribution is peaked at zero. Above threshold
this peak remains, since the zero solution is
stable even above threshold, and a new peak cor-
responding to the solution |x|2=C,/2 +1(C} - 4)'7

FIG. 8. Probability distribution for the two-photon
laser (a) 1.1 X threshold; (b) 2 X threshold.

develops. As C, is increased, the maximum at
zero becomes smaller, and for C; 24 it is insig-
nificant compared to the peak at |x|*=C,/2
+4(C}-4)'%, and the distribution resembles that
of the one-photon laser. We note that the distri-
bution is cylindrically symmetric, showing that
all phases are equally probable.

2. Photon statistics

The unnormalized intensity moments [cf. Eq. (3.5)] are

= fo ) dR[l +(§)2]”e'”'7R‘dR =I"(H).

0

(4.5)

Integration by parts yields a recursive relation for the moments which can then be expressed in terms of

the zeroth moment which is

o ) H+172
I (H)=JFI‘(H+1)<;> (Hynp(2) - Yhap2)],

(4.6)

where z =ny/n, H,(z) is a Struve function and Y, is a Bessel function. The mean photon number is then

I
(a'a) = T(O—, =

n%(-:_;l“”(li +1) - 1>
2(H+1)1%(H)

(4.7

and the second-order correlation function g@(0) =(a%d® /a'a)? is

1
g(Z)(O) —

(H+ 1)1‘°’(H)[m(%1‘°’(f1 +2)- 1) - %1‘0’(H + 1)]

(%1“’(11 +1) - 1);

(a'a) and g®(0) are plotted in Fig. 7 as functions
of the atomic pumping C,, together with the semi-
classical mean. For low noise (large z), g%(0)
has the asymptotic values of 1 below threshold
and 2 above threshold, similar to the one-photon
laser. In contrast to the one-photon laser, how-
ever, there is a large enhancement of fluctuations
in the threshold region, and g#(0) shows a pro-
nounced maximum in this region. For more dom-
inant noise this enhancement becomes less pro-
nounced and the maximum in g@(0) shifts to lower
C,. Infact, for z=~1, Fig. 7 shows there is
practically no enhancement of fluctuations.

. (4.8)

B. Two-photon laser with injected signal

Practical difficulties in realizing a two-photon
laser arise from the low initial gain of the de-
vice. For small photon numbers the gain term is
approximately C, rx |* compared with Cix for the
one-photon case. The nonlinear coupling C; is
generally much smaller than the coupling for the
one-photon case, and |x |2 is smaller than x when
x is small. In order to enhance the initial gain
then, an external signal may be injected.
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1. Semiclassical theory

From Eq. (2.5), the state equation for the two-
photon laser with an injected signal is

Czl'x|2)
y-x(l- TIPIE (4.9)
Setting y =y,¢”0 and x =re*’, we find
(e
yo=—r(1——L;1+r),
and
C 2
m, for 1- —-ﬂ—; >0
1+7
6= Cz’rz ! (4-10)
6y+7, for 1—-m<0.

Figure 9 shows the state equation for various val-
ues of the pumping parameter. Below the lasing
threshold C, =2, the cavity field x is always in
phase with the injected field y. For C, <1.14, x
is a monotonic function of y, but for 1.14 <C,<2,
x is a triple-valued function over a certain range
of y. The system thus exhibits bistability as a
function of the injected driving field for 1.14 <C,
<2. Above the lasing threshold C,=2, x is a
more complicated multiple valued function of y.
The stability of the various branches in the mul-
tiple valued regions can be deduced from the sta-
bility conditions (2.8), which in this case have the
same form as the stability equations (4.3) for the
two-photon laser without injected signal. The un-
stable branches are indicated on the diagrams in
Fig. 9.

2. Fluctuations

As with the other systems studied here, an ex-
amination of the potential gives perhaps a better
understanding of the stability of the two-photon
laser with an injected signal. The potential here
is given by Eq. (2.14), with D, positive and E#0.
Converting to polar coordinate a=v7Te* and E
=Ee*, we have

L
n

o,0) ==~ g—E—"‘/'I'cos(e- 6,) —Hln(l + §>,
n "

(4.11)

where 7 and H are as defined following Eq. (4.5).
The turning points of the potential are the solu-
tions of 3¢/3r=0=23¢/36 and correspond to the
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FIG. 9. Two-photon laser with an injected signal.
Semiclassical amplitude » versus injected field ampli-
tude E, for (a) C,=1, () C3=1.5, () C,=2, (d) C;=3,

(e) Cy=4, 4444 unstable, —— stable.

around and approaching E; from the negative side,
points in this region become maxima, then again
saddle points when Ey=0 is passed. At the next
turning point the saddle point becomes a maximum,
and the points on the curve from here on as E,
—0 from the positive side correspond to maxima
in ¢. The negative » behavior follows from the
odd symmetry. This behavior is shown in Fig.
10 where the probability distribution P is plotted.
Since minima in ¢ correspond to maxima in P, it
is readily apparent which of the turning points of
¢ correspond to stable steady states.

C. Two-photon optical bistability

As in the one-photon transition case, Eq. (2.4)
can be used to describe the optical bistability
which may occur when the passive atoms (D,
==~N/2) in the cavity are excited via a two-pho-
ton transition.

semiclassical solutions. The nature of these turn-
ing points is found by looking at the second deriva-
tives of ¢. Moving along the state equation curves
for C,>2 in Fig. 9, decreasing E,, we find the
following behavior: Points on the uppermost
branch correspond to local minima in ¢ until E,
=0, where they become saddle points. Moving

FIG. 10. Probability distribution for the two-photon
laser with an injected signal 1.1 X threshold, 6,=0:
(a) Eg=0.25, () E;,=0.5.
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1. Semiclassical analysis

Taking n=2 for the two-photon transition, the
state equation in the normalized variables x
= (4g2/7||71)1/4a and y = (4g2/7’1|')’L)1/4E is

y=x(1+—-=——;c “"2) (4.12)
1+1x1%)° '
where Cy = = (28D /k)(r, /v ) 2= (gN/k)(v, /7).
This equation describing two-photon optical bi-
stability was first derived by Arecchi and Politi®’
and further theoretical work has been done by
Agrawal and Flytzanis.*! The effect has been re-
cently observed experimentally by Grynberg
et al.’® A numerical analysis of Eq. (4.12) re-
veals that multiple value solutions only occur
when C; exceeds the threshold value C, =5.42.%°
The state equation is plotted in Fig. 11 for C,
greater than this threshold value. The linearized
stability analysis of Eq. (4.12) shows that the up-
per and lower branches are stable and the middle
branch is unstable, so that in the multiple-value-
solution region the system is bistable.

2. Fluctuations

When fluctuations are included, a Fokker-Planck
equation of the form of (2.12) for the photon distri-
bution can be derived. As with one-photon bista-
bility, the Fokker-Planck equation only takes this
form with a constant noise term 7 when the ther-
mal noise n is much greater than the quantum
noise. The steady-state solution for the proba-
bility distribution (Fig. 12) is given by Egs. (2.13)
and (2.14), with z=2 and Dy=-N/2:

E
8lr, ) =% -2 YT cos(6- 6;)
n o n
2
+ Mlﬂ[l +(-I-) ] (4.13)
A 7
12
1o}
8+
x 6
4
2l
o | | |

FIG. 11. Moments for two-photon bistability. Root-
mean-square intensity ({a'a) 1”2 and second-order
correlation function g®’(0) versus driving field ampli-
tude y; semiclassical root-mean intensity --~. Para-
meters C,=20, np=1, n=1.

FIG. 12. Probability distribution for two-photon bi-
stability.

where we have used the polar coordinates o
=+VTe” and E=Ee®!. The nonnormalized mo-
ments of this distribution are

I“’:fdzaialz’P(a, a*)

S [ (] e
’ (4.14)

In each case the integrals were evaluated numeri-
cally. The mean (a'a) =I"/I is plotted in Fig. 11
together with the semiclassical mean for compari-
son. Also plotted in Fig. 11 is the second-order
correlation function g®(0). The qualitative be-
havior is the same as for the one-photon case
(Fig. 5). An important quantitative difference is
that in the two-photon case fluctuations on the low-
er branch are less than in the one-photon case.

In the one-photon case gm(O) tends to the thermal
value of 2 whereas in the two-photon case g®(0)

is closer to 1. This is to be expected because

the two-photon absorption removes pairs of pho-
tons® thus decreasing g%(0), which is a measure
of the coincident pairs of photons. However, in
our analysis the fluctuations on the upper branch
cannot be reduced below the g%(0) =1 of the one-
photon case. The nonclassical region g@(0) <1
requires a nonpositive definite noise matrix in the
Fokker-Planck equation, which is not possible
when only thermal noise is considered.

D. Two-photon saturable absorber with chaotic
driving field

In this section we look at the two-photon version
of the saturable absorber driven by a completely
chaotic field. In this case E is zero, and the noise
term 7 is proportional to the intensity of the input
chaotic field. The passive atoms in the cavity
are now assumed to be excited via a two-photon
transition. We can use the analysis of the pre-
ceding section by setting the coherent input E
equal to zero. From Eq. (4.13), the steady-state
P function is thus

| al?

P(a, o™y =N[1 +(n—)2]-ﬂe"°"2"T . (4.15)

0
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The nonnormalized intensity moments are then
given by Eq. (4.14), with E;=0:

w© 2\-H -
= | dR[l +(—f—)] eRAR,
0 0

To obtain the moments used here, these integrals
were computed numerically. In Fig. 13(a), the
second-order correlation function g#(0) is plotted
as a function of the normalized intensity 2A/yuDy
of the chaotic driving field for various values of
the cooperativity parameter C,. These par-
ticular normalized variables were chosen in
order to make comparison with the one-pho-
ton results of Ref. 4. The two-photon results are
qualitatively similar to those of the one-photon
case. Although there is no bistability in the out-
put intensity, there is still a “threshold” region

(4.16)

30r
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centered around 2A/y.Dy=1, where the cavity-
field fluctuations are enhanced far above the ther-
mal value g?(0)=2. This occurs when the atoms
begin saturating. This region is followed by the
“saturation” region, where the input field is strong
enough to saturate the atoms and the input field
passes straight through without appreciable inter-
action with the atoms. g2Y(0) thus drops to the
value of 2, corresponding to the chaotic input field.
The main difference from the one-photon case is
the behavior for the low driving intensities of the
pretransition region, where the atoms are linear,
showing virtually no saturation effects at all. In
the one-photon case this linear interaction does
not change the statistics of the field and thus

£2%(0) ~2, the value for the chaotic input field.
However, in the two-photon case, the interaction
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FIG 13. (a) Two-photon saturable absorber with chaotic driving field. Second-order correlation function g(2) (0) versus
normalized driving-field intensity 2A/y,D). Curve a C;=40, curve b C,=100, and curve ¢ C,=160. (b) Two-photon

absorber with chaotic driving field. In{a'a) vs In(%/x) for nonsaturable (----) and saturable (
() Two-photon absorber with chaotic driving field. Second-order correlation function g‘Z)(O) vs In(7/x) for
) absorber; curve a, C,=40, and curve b, Cy=80, ny=1.

and no= 1.
nonsaturable (----) and saturable (

) absorber; C,=40
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with the atoms removes photons in pairs, so
22(0) is less than the chaotic value of 2.

The behavior of a two-photon saturable absorber
with a mixed coherent and Gaussian driving field
is described by the same equations as for two-
photon optical bistability, in Sec. IVC. In this
case, the amplitude of the coherent part of the
field is given by E,, and the intensity of the Gaus-
sian component is given by n. Thus, Fig. 11,
which shows the intensity and g@(0) for optical
bistability, also corresponds with the two-photon
saturable absorber with mixed driving field. How-
ever, in Fig. 11, the parameter values are such
that the thermal, or Gaussian component is too
small to cause any appreciable saturation when
the coherent component E is zero. As the ther-
mal component is increased, however, the atoms
begin saturating, and the rise in g®(0) occurs at
lower values of the coherent field. If the thermal
component is so large that saturation effects are
significant even when the coherent field Ej is
zero, g%(0) is already large at E)=0 and shows
no further increase when E; is increased. In this
situation the mean photon number does not follow
the lower branch of the semiclassical-state equa-
tion to any good approximation.

1. Nonsaturating two-photon absorber

It is of interest to compare the above results
with those for a two-photon absorber with no satu-
ration effects. A Hamiltonian describing such an
absorber is*

H=Ta" +T}a? +Tpa' +}a

+ifi(a’ee ™0t - ge*eivnt) (4.17)

As in Sec. I, Ty and I} are reservoir operators
for the damping of the field and € is proportional
to the coherent part of the driving field, which has
frequency w,. The two-photon interaction now oc-
curs via a reservoir of atoms, described by the
reservoir operators I, and I'}. Since the field
interacts with a reservoir of atoms, saturation
does not occur. Using standard techniques,® the
two reservoirs may be eliminated to get the fol-
lowing Fokker-Planck equation for the field quasi-
probability distribution:

o O SR R L
- s=l(a* - B9 - 2x|af*a*]
+25‘aa%z&7)1’(a, @), (.18

where X is proportional to the two-photon absorp-

tion rate, 7=%f, and kE=&. We have assumed
the thermal noise is dominant and have neglected
quantum noise terms which may be included using
a generalized P representation.*® The steady-
state solution for the P function when E=0 is

P(a):NeXp(—%(lalz+x|al“)>; (4.19)
the nonnorma\lized moments of the distribution
are

I“):f dR R'e-(1/M®RxR?) -
0

(4.20)

In@'a) and g‘®(0) for the nonsaturable absorber are
plotted in Figs. 13(b) and 13(c) for comparison with
the saturable absorber result. As expected, both
give the same result for small values of the inco-
herent driving intensity #. Since the reservoir
never saturates, g®’(0) for the nonsaturable ab-
sorber shows no peak, unlike the saturable ab-
sorber. In the saturable case, once the atoms
have saturated, the cavity field is just the chaotic
driving field which no longer interacts with the
atoms and g‘®(0) thus tends to two for large #. In
the nonsaturable case, the reservoir atoms continue
to absorb even for large #, giving a nonthermal
value g%(0) <2. We note that the P function [Eq.
(4.19)] is, in fact, a limiting case of the result
derived in Sec. II [Eqs. (2.13) and (2.14)]. If the
log term in Eq. (2.14) is expanded and only the
first term in the expansion retained, we obtain
Eq. (4.19) with the identification x =2C. Thus,

as expected, the saturable absorber follows the
behavior of the nonsaturable absorber for small
field intensities | a|? < n,.

V. DISCUSSION

We have given a unified description of light which
interacts resonantly with atoms in a cavity via an
n-photon transition. In the good (high-Q) cavity
limit a single equation describes the light field in
an n-photon laser, and n-photon laser with an in-
jected signal or n-photon optical bistability, de-
pending on the values of the parameters represent-
ing the external driving field and external inco-
herent pumping of the atoms.

In the limit where quantum noise can be neglec-
ted in comparison with thermal noise, fluctuations
may be taken into account simply, and a single
general Fokker-Planck equation governing the
statistical distribution of the light is derived.

The steady-state solution of this equation is read-
ily obtained, giving a general expression from
which any statistical properties for any situation
can be calculated. Although only thermal noise
is taken into account, this still allows considera-
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tion of effects due to noise from spontaneous
emission by the atoms or any chaotic component
(Gaussian fluctuations) superimposed on the co-
herent driving field; it even allows analysis of
situations where the driving field is completely
chaotic, with no coherent part at all.

Explicit calculations of semiclassical and sta-
tistical properties were done for the one-photon
and two-photon transition cases. In the one-pho-
ton laser case, the distribution retained the satu-
ration term accounted for only approximately in
earlier works. However, the recent work by Man-
del*® is even more accurate in that it also includes
some quantum noise, as well as the saturation
term. For one-photon optical bistability the sec-
ond-order correlation function g®(0) was calcu-
lated using the fully two-dimensional distribution,
that is, retaining both amplitude and phase.

While no different qualitatively from previous
works in which the phase was ignored, it was
nevertheless a more accurate expression.

Previous work on the photon statistics of the
two-photon laser has concentrated on the Scully
and Lamb'? birth-death-type master equation ap-
proach., Here we have approached the problem
using a Fokker-Planck equation and its corre-
sponding potential. This approach is particularly
useful for comparison with the semiclassical be-
havior, and making analogies between this non-
equilibrium steady-state behavior and the phase
transitions of equilibrium statistical mechanics.

Our analysis of two-photon optical bistability
includes for the first time an analysis of the pho-
ton statistics of the output light field; previous
workers have considered only the deterministic
aspects of the problem. Here we have shown that,
with a few obvious differences due to the two-pho-
ton atomic transition, in the thermal noise limit
the two-photon optical bistability behavior is quali-
tatively similar to that of the one-photon situation.
It should be noted that when the atomic transition

P

is a multiphoton one, there arise intensity depen-
dent Stark shift terms.>***! In general, these are
small and can be ignored, but if necessary they
can be readily included in our analysis. The final
problem considered in this work is the two-photon
saturable absorber driven by a completely chaotic
input, the same system that exhibits two-photon
optical bistability when driven by a coherent in-
put. This is a problem which up until now has
received no attention in the literature. Again,
apart from expected differences, the behavior is
similar to that in the one-photon case, with a
strong enhancement of the second-order correla-
tion function in the saturating region even though
the bistable behavior no longer exists.

As a final comment we note that in the multiple-
steady-state situations, it is straightforward to
calculate various macroscopic transition times
analogously to the one-photon cases. When fluc-
tuations are considered, the stable multiple
steady states determined by the semiclassical
equations become metastable; internal fluctuations
can cause the systems to shift from one steady
state to another, even though the external condi-
tions are unchanged. The time for such changes
to occur, the tunneling time, can be calculated
using the method derived by Kramers,*" as done,
for example, for one-photon optical bistability in
Ref. 23. Another time of interest, especially
when considering such systems as switching de-
vices, is the switching time. This is the time
taken, for example, by a system which exhibits
bistability to attain its new steady state when the
driving field is suddenly changed so that the cor-
responding steady state changes from the lower
to the upper branch or vice versa. This time may
be estimated by solving the semiclassical equa-
tions of motion to obtain the full time dependence
of the output field, as done for sub/second har-
monic generation®® and one-photon optical bistabi-

lity %

*Visitor at JILA, on leave from the Physics Depart-
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