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A quasi-two-level system is a generalization of a two-level system where each of the
single levels is replaced by a nearly degenerate multiplet. We develop the theory of the
photon echo, the stimulated echo, and fluorescence emission for such systems when they
are subjected to pulses of electromagnetic radiation that are short compared to the re-
ciprocal (in frequency units) of the widths of the multiplets. The observable in each of
these experiments is related to equilibrium time-correlation functions of the system in the
absence of the radiation field. The correlation functions associated with these experiments
involve more than two dynamical operators and more than two times, unlike the correla-
tion functions for such processes as low-power optical absorption and neutron scattering.
We introduce an exactly solvable factorization model for the transition moments, which in-
cludes as special cases the situation where either of the multiplets is a single state. We
also consider the unitary model, which was introduced by Mims, and which leads to con-
siderable simplification of the correlation functions. Several examples of these models are
discussed to investigate the features of time-dependent fluorescence experiments and
coherent optical transient experiments. In general, there is no simple connection between
the time dependence of the decay of a photon echo and the Fourier transform of the low-
power homogeneous absorption spectrum.

I. INTRODUCTION

Time-resolved fluorescence experiments and opti-
cal coherence experiments, especially two-pulse
photon echoes are extremely valuable probes of
spectral details that are obscured in normal absorp-
tion spectra by inhomogeneous broadening. '

Modulation of the photon echo or quantum beats
in the fluorescence emission provide one with infor-
mation about energy-level splittings. On the other
hand, monotonic decay of the photon echo is usu-
ally interpreted in terms of the homogeneous width
of a spectral line. Modulated photon echoes aris-
ing from hyperfine interactions have been observed
from ruby ' and Pr +/LaF3 crystals. ' In gas
phase NH2D, Shoemaker and Hopf have found
that rotational Stark splittings cause a modulation
of the echo. (Similar modulations have of course
been observed in the electron " and nuclear'
spin analogs. ) Several groups have seen quantum
beats in the time-resolved fluorescence signals from
both atomic and molecular systems. ' ' Other
groups have observed unmodulated photon-echo
decays from impurities in molecular crystals.

Performance of these experiments typically in-
volves subjecting the sample to an intense pulse of

electromagnetic radiation. The pulse is strong
enough to induce a nonlinear response of the sam-
ple to the pulse. For some experiments, such as
absorption of weak incident radiation and single
scattering of beams of radiation or neutrons, the
formalism of linear-response theory and equilibri-
um time-dependent correlation functions has
been especially useful. Coherent transient experi-
ments and time-dependent fluorescence intensity
measurements do not fall into the class of experi-
ments for which the time correlation function
analysis has been traditionally applied. It is there-
fore of interest to inquire to what extent these ex-
periments can be analyzed in terms of equilibrium
correlation functions.

As photon-echo experiments are designed to ex-
tract information about the absorption spectrum
that cannot be obtained directly because of inho-
mogeneous broadening, it is worthwhile to under-
stand the connection between the photon-echo sig-
nal and the homogeneous line shape. It is often as-
sumed that there is a direct relationship between
the photon-echo amplitude and the Fourier
transform of the homogeneous line shape. Such a
relationship would imply that the nonlinear
response of a system to the strong pulses of a
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photon-echo experiment can be related to thermal

fluctuations of the dipole moment in the absence of
radiation, which through the fluctuation-

dissipation theorem gives rise to the optical line

hape 24—26

Most of the experimental systems that were cited

in the opening paragraph fall into an important

class of systems that we call quasi-two-level sys-

tems. A quasi-two-level system (QTLS) is a gen-

eralization of a two-level system where each of the

single levels is replaced by a nearly degenerate mul-

tiplet. In this paper we investigate the theory of
the photon echo, stimulated echo, and fluorescence

experiments for QTLS's, with special attention to

the relationship between these experiments and

equilibrium correlation functions. One of our find-

ings is that the nonlinear response of a system to a

strong perturbation is in general different from

thermal fluctuations, and hence in general there is

no simple relationship between the photon-echo de-

cay and the homogeneous line shape.

Important theoretical work on the modulation of
coherent transient signals from QTLS's has been

performed by Lambert et al. and by Mims. '

These authors obtained quite general expressions

for the (two-pulse) photon-echo ' and (three-pulse)

stimulated-echo' intensities. Explicit results have

been calculated for the special cases of a few nearly

degenerate levels in each multiplet. ' ' The

theory of quantum beat fluorescence has been

presented for the case of weak excitation

pulses. ' ' ' In this paper we extend these

various results, show how the theoretical expres-

sions can be written in terms of correlation func-

tions, and discuss several examples.

We begin in Sec. II by considering a general

QTLS and calculating the photon echo, stimulated

echo, and fluorescence signals that occur as a result

of excitation by short pulses of arbitrary intensity.

In Sec. III we derive equilibrium time-correlation

function expressions for these observables. The

equilibrium time-correlation functions needed to
describe the photon echo, stimulated echo, and

fluorescence experiments are functions of 5, 7, and

4 dynamical variables, respectively, at 3, 4, and 2

times, respectively. Thus they are significantly

more complicated than the two-time correlation

functions that appear in experiments for which

linear-response theory is adequate.
In Sec. IV we consider a more restricted class of

QTLS's where the transition dipole matrix ele-

ments obey a certain factorization condition. For
this model, the correlation function expressions of

Sec. III are evaluated exactly. Important cases of

physical interest that are subsumed by this model

are those where either the ground or excited state

is a single level. In Sec. V we consider another

class of QTLS's, which has been discussed by

Mims, ' in which the number of states is the same

in the two multiplets and the transition dipole mo-

ment matrix contains off-diagonal blocks that are

unitary. For such systems the correlation function

expressions of Sec. III can be simplified. These

results are applicable to QTLS's that arise from the

interaction of a two-level system having a transi-

tion moment with a set of additional degrees of
freedom that do not have transition moments.

In Sec. VI we discuss special cases of our results

where the energy-level distribution is continuous.

In Sec. VIA we consider a system with a single

ground state and an excited-state continuum. Such

a system is very similar to the Bixon-Jortner '

model of radiationless transitions in isolated

molecules. In Sec. VI B we turn to a discussion of
the photon echo from dilute impurities in molecu-

lar crystals, and conclude that it may not be

correct to interpret these experiments ' using op-

tical line-shape theory.

II. GENERAL QUASI-TWO-LEVEL SYSTEM

In this section we calculate the photon echo,
stimulated echo, and fluorescence signals from an

inhomogeneous distribution of QTLS's. We con-

sider a general QTLS where both the ground and

excited states consist of multiplets, as studied by

Lambert et al. and shown in Fig. 1. The ground

and excited states are denoted by l l
a ) ) and

l l
b ) l, respectively.
Each QTLS represents the full (with the excep-

tion of the matter-radiation interaction) Hamiltoni-

an for a particular system in the inhomogeneous

distribution. That is, it includes the effect of any
local electric or magnetic fields and (for crystals)

the interaction between the impurity and host
atoms or molecules. Formally, we write the Ham-

iltonian for a particular QTLS in the eigenstate

I o&

FIG. 1. A quasi-two-1eve1 system.
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representation

Ho=+~ lu &&u
I +g~b I h&&61 .

where

i) =gx. Iu&&u I+g~xb+&}I&&&&
I

b

(2.1}

Without loss of generality we define an arbitrary
zero of energy in the ground-state multiplet and as-
sociate the inhomogeneity with the excited-state
frequencies ~b. Thus we write

(2.2)

X=Ep/A . (2.12)

In what follows we assume that the ith laser pulse
has an amplitude E for a duration r;, and further
that we may neglect 5 in Eq. (2.10) during each
pulse. Thus we require that

COb =0+Xb+5 s (2.3) ~oat ~~bb~i (( 1 (2.13a)

where x, is the deviation of level a from'the zero
of energy, 0 is the laser frequency, xb is the aver-
age deviation of cob from 0, and 5 is the inhomo-
geneous deviation (of rob from Q) with &5& =0.
Throughout this section & & refers to an aver-
age over the inhomogeneous distribution. In the
presence of a monochromatic laser field, the Ham-
iltonian is

H =Hp+HI,

H, = EP cos(Q—t kz}, —

P=X(p.b lu &&& I+i:b I
h &&&

I
)

ab

(2.4)

(2.5)

(2.6)

E is the magnitude of the electric field, polarized in
the x direction, of a wave propagating in the z
direction with wave vector k. p is the x com-
ponent of the transition dipole operator. We as-
sume that the above description of the laser field is
valid for each excitation pulse and (in subsequent
sections) that detectors measure light polarized in
the x direction. Generalization to cases in which
the excitation pulses have different directions or
polarizations or in which the detector is polarized
differently ' is straightforward.

The equation of motion for the density matrix is
the Liouville —von Neumann equation:

for all a, b; that is, the pulse durations are short
compared to the inverse frequency width of each
multiplet. We also require that in some sense

X»~. (2.13b)

p(r) = V(r)p(0) V( r), —

where

(2.14)

V(~) =exp(iver/2) . (2.15}

In the absence of the laser field the solution simi-
larly is

p(t) = U(r)p(0) U( —r); (2.16)

(It is difIicult to state a precise condition involving
the matrix elements of 7 without a detailed specifi-
cation of the energy-level and transition-moment
structures. } Although Eqs. (2.13a) and (2.13b) im-
pose stringent requirements on the properties of the
excitation pulses (which may in fact not be realized
in some experimental situations), theoretical pro-
gress is greatly facilitated by these assumptions and
hence we adopt them here. We also note that as
long as the pulses are short, nonideal (nonsquare)
pulses can be treated in a similar manner. '

Under these conditions, during a pulse Eq. (2.10)
can be formally solved to give

[H,p] . — (2.7) where

Transforming to a rotating frame by

p =exp[iS (Qt —kz)]p exp[ iS (Qt —kz)], —(2.8)

U(t) =exp( —iht) . (2.17)

s=g ~b&&b ~, (2.9)
A. Photon echo

and making the rotating wave approximation we
obtain

(2.10)

The photon-echo sequence consists of a laser
pulse of duration ~] followed at a time t] later by a
second pulse of duration rz. After the second
pulse, at time t +t], the density matrix is
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p(t+t, ) = U{t)V(r, ) U{t, ) V(r, )P(0)

X V( —ri)U( ti)—V( —r2)U( t—) .
(2.18)

[Because of Eq. (2.13) we are permitted to neglect

r& and r2 in the argument of p.] The x component
of the polarization of the medium, when averaged
over the inhomogeneous distribution, is

and P= 1/k&T. Inserting complete sets of states

Ic& and Ic'& in Eq. (2.18) and using Eq. (2.23)
and the fact that U(t) is diagonal, we obtain

Pba(t+t~)=g Ub(t)V~(r2)U(t&)
a'cc'

X ~„(r))P,V, , ( —r, )U, ( —t, )

p(t) = &Tr[PP(t)]& .

Writing

(2.19)
X V, , ( —72)U, ( —t) .

(2.25)

p(t) =p(t) exp[ i(Q—t —kz)]+c.c. ,

it is easy to see that

p(t) =Qp" &pea(t) & .

(2.20)

(2.21)

Furthermore, for an optically thin sample the sig-
nal intensity W(t) is

(In this equation and the ones that follow, a,a', a",
. . . refer to ground multiplet levels, b, b', b", . . . ,
refer to excited multiplet levels, and c,c',c", . . . ,
refer to both sets of levels. ) We are interested im

times such that 5t,5t»& 1, so in averaging over 5,
many terms vanish. Retaining only those terms
that contribute to the echo at time t =t1, we have

w(t) cr Ip(t) I
(2.22) p(2t~)= g p~bexp[ it&(xb——x, —xb+xa')1

aba'b'a"

so the calculation reduces to evaluating the matrix
elements of Eq. (2.18) and averaging over the inho-

mogeneous distribution.
We assume that initially the population of the

states in the ground manifold is described by a
Boltzmann distribution, so that

X V~(r2}V, ,-(r')

a"Va "b'( —71 ) Vg'a ( —72) ~

(2.26)

P(0)=g'. Ia&&a I,
a

—Pfix. —Pkr.
a e e

(2.23)

(2.24)

Recognizing that odd powers of 7 only connect the

Ia& and Ib& manifolds while even powers of I
only connect states within each manifold, we ob-
tain

p(2t&)= —i g p,,bexp[ iti(xb x—a xb'+—x')]—&b l»n(&&rz) l~'&&'Icos(2&ri) l~"&pa"
aha'b'a"

X &a"
I
sin( ,Xr~}

I
b'&&O—'Isin( —,Xr2}

I
a & . (2.27)

At suKciently high temperatures all the states in the ground manifold will be equally populated and hence
P,- =(No), where Ns is simply the number of states in the ground manifold. In this instance Eq. (2.27)
reduces to the results obtained by Lambert et al. :

2

p(2t~) = — g p,b exp[ it&(xb —x, —xb+x, )—]
2ND b 'b'

x &b
I
sin( —&re) lu'&&~'I sin(&ri) lb'&&b'1»n(-, &re)

I
& & (2.28)

B. Stimulated echo

At a time t after the third pulse of a stimulated-echo sequence the density matrix is given by

p(t +t2+ t1)= U(t) V(73)U(t2) V(72) U(t1) V(71)p(0)V( —71)U( —t1)V( —72) U( —t2) V( —73)U( —t),
(2.29)

where 71 72 alld 73 are the durations of the first, second, and third pulses, and t1 and t2 are the time inter-
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vals between the first and second, and second and third pulses, respectively. As in the calculation of the
photon echo we consider the general QTLS shown in Fig. 1, and as before, to find the signal we must evalu-
ate (pb, (t +t, +t2)). Retaining only the terms which lead to an echo when t =ti and using the properties
of 7' discussed above, we obtain

p(2ti+t2)= i g—p,b exp[ it—i(xb —x, —xb +x, )](a'
~
cos( ,X7i—)

~

a"")&~- (a""
~

sin( , X—ri)
(
b')

g exp[itq(x, -—x,- )](b
~
sin( , X73—)

~

a"')

cos( —,'X72)
f
a') (b'

I
s'"( i X72)

I
u") &u"

I
cos( —,'X73)

I
~ &

+ g exp[ it2(x—b- xb -)—](b
~
cos( —,X73)

~

b")
bllbtlt

X (b"
~

sin( iX72)
~

a')(b'
~
cos( , X72)—~b"')(b"'~ sin( —,X73) [a) . (2 30).

C. Fluorescence

The fluorescence signal is observed after a single
laser pulse. The calculation of this signal, howev-

er, is not directly analogous to the photon-echo
calculation. In our semiclassical treatment the
photon echo arises from an oscillating macroscopic
polarization. Fluorescence, on the other hand, is
an inherently quantum-mechanical spontaneous
emission event, and as the experiments by Gibbs
have shown, it is necessary to use a quantized
treatment of the radiation field. Here we are not
interested in calculating the radiative decay rate; in

fact, we assume its time scale is much longer than
the one we are considering, and hence the fluores-
cence signal directly probes the nonradiative
excited-state dynamics.

At a time t after the laser pulse the density ma-

trix is

P(t) = U(t) V(7)P(0) V( —7)U( t) . —(2.31)

fl(t)~g(a IyP(t)P I a ) (2.32)

QPabPab & b
I P(t)

~

b'
&

abb'
(2.33)

Taking matrix elements of Eq. (2.31) we obtain the

In the Apppendix we give a rigorous derivation of
the fluorescence signal using the quantum theory of
radiation. Here we argue more heuristically that
the intensity of fluorescence to a ground state

~

a )
is proportional to the population of the excited
state that can radiate to

~
a ), namely, P ~

a ), and
the total intensity is the sum of the intensities to
all the ground levels, hence

I

general result

Wfl(t) ~ g p,bp, q exp[ i (x—b xb )t]—
abu'b'

X (b
~

sin( —,X7)
~

a') p, ,

X (&'
~

»n( —,X7)
~

b') . (2.34)

In the limit of low power [for which sin( —,X7) can

be expanded in powers of X and only the first term
need be retained], at high temperatures we recover
the expression derived by previous authors, ' '

~fl(t) ~ g Pabi bu'Pa'b'P'b'a
aha'b'

Xexp[ i (xb ——xb' )t] . (2.35)

One immediately apparent feature of the general
result, Eq. (2.34), is that the time dependence of
the fluorescence intensity depends only on the
excited-state level structure. For a three-level sys-
tem this has been pointed out by Scully and Shea.
This observation is, however, at variance with cal-
culations by other authors ' based on the (in-
correct) semiclassical treatment of the matter-
radiation interaction.

D. The homogeneous absorption spectrum

Since we will be discussing the relationship
between the homogeneous absorption spectrum and
the various coherent transients, it is appropriate to
write down the expression for the line shape for a
general QTLS. Of course, the observed line shape
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will show the effects of inhomogeneous broadening.
By the homogeneous line shape, we mean the hy-
pothetical spectrum from a collection of systems
for which 5=0. Using the definitions of Eqs. (2.1)
and {2.23), and Fermi's golden rule, the spectrum is
simply

W(to) ~ gP, I y,,s I
5(to —(0+xs —x, )) .

ab
(2.36)

III. EQUILIBRIUM CORRELATION FUNCTIONS

Given the usefulness of the time correlation
function formalism for describing many processes
including light and neutron scattering and the
weak absorption of radiation in several branches of
spectroscopy, it is natural to ask to what extent the
nonlinear experiments that are of interest in this
paper can be described by correlation functions.
Surprisingly enough, we find that in all the cases
considered, the nonlinear response to one or more
strong radiation pulses can be described by equili-
brium time correlation functions for fluctuations
that occur in the absence of the radiation.

It is well known that the theoretical expression
for the homogeneous line shape can be written in
terms of the dipole-moment correlation function.
Here we sketch the derivation, since the ideas used
are identical to those we need to derive the more
complex expressions for the coherent transients and
fluorescence.

Starting with the general formula for the line
shape, Eq. (2.36},we use the integral representation
of the delta function to write W(co) in the sugges-
tive form

Using the definition of Ho, Eq. {2.1) (with 5=0,
since this is the homogeneous spectrum), this can
be written as

00

~(co)~ J' dte'"'g(a Ie 'e' '
ab

xpe ' Ib)(b IPIa) .

(3.2)
Since p has no matrix element between states in
the same manifold, the sum over b represents a
complete set, and since AQ && k~ T, the sum over
a is approximately a trace, so we obtain the usual
correlation-function result

W(co) ~ J dt e'"'( P(t)P( 0)) ,o

where

iHot /A~ —iHot /A
p(t) =e pe

{3.3)

{3.4)

—pHOTr{e ~ ~ )~ ~ ~

Tr(e )

(3.5)

Next we consider the general expression for the
photon-echo amplitude, Eq. (2.27). Upon rear-
rangement and with the definition

8;=Ex.
I /2A,

Eq. (2.27) becomes

(3.6}

Oo

Jr (oi) ~I dt e'"'g e
ab

&«aIP,
I
b&e

""+
&b IP Ia &.

(3.1)

p(2t, ) = i g P—,-e ' '(a"
I
sin(Bi j) I

b' )e
aba'b'a"

x(b'Isin(Bip) Ia)e ' '(a Ip Ib)e

X (b
I
sin(B2 p) I

a')e ' '(a'
I
cos(Bip)

I
a")e ' {3.7)

(a"
I
e sin[BiP( ti)] I

b')—
aba'b'a"

Using the definition of Ho (with 5=0) and Eq. (3.4), this can be rewritten as
—1

p(2ti) = i g(a"'—
I
e'o

I
a"')

x &
b'

I
sin[B2 P{0}1

I
a & & a

I
p(t i )

I
b )

x (b
I
sin[B, p(0)] I

a'& &a'
I
cos[Bip( ti )I I

a"
&

—8 g)
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Since sin[B|P( —ti )] has no matrix elements between states in the same manifold, the sum over b' can be re-
placed by the unit operator. Similarly since sin[B|P( t& )—] sin[Bz P(0)] has matrix elements only between
states in the same manifold, the sum over a can be replaced by the unit operator, and so on for b and a'.
Finally, since A'0 » ks T, the sums over a" and a"' are each replaced by traces, and with Eq. (3.5) we ob-
tain the correlation-function result

p(2t& )= —i & sin[8&P( —
t|)] sin[Bz P(0)]P(t, ) sin[Bz P(0)]cos[B|P( t

& )]&—0 . (3.9)

We note that as for the spectrum, this is an equilibrium time correlation function for the homogeneous sys-
tem in the absence of radiation.

Similarly, for the stimulated echo, Eq. (2.30) can be written as

p(2t, +t~) = i &
—sin[BtP( —(t|+tz))]
X j sin[Bq p( tz)] co—s[Bqp(0)]p(t~ ) sin[Bop(0)] cos[Bp p( —t~)]

+ cos[Bz p( —tz)] sin[8&p(0)]p(t |) cos[8&p(0)] sin[Be p( —4)]I

X cos[B|p(—(t, +rp))]&0. (3.10)

Finally for the fluorescence signal, Eq. (2.34) be-

comes

Ws(t) cc &sin[BP(0)]P(t)P(t) sin[BP(0)] &0 .

(3.11)

These correlation functions differ from the usual
ones [e.g., Eq. (3.3)] in that they contain nonlinear
functions of operators, and they involve more than
two operators and more than two times. Thus
comparing Eqs. (3.3) and (3.7) it is clear that in

general the photon-echo amplitude is not simply
related (e.g., via the Fourier transform) to the
homogeneous spectrum.

We conclude this section by commenting on the
general utility of correlation-function expressions.
In deriving the results of Sec. II we have expressed
the transition dipole operator in terms of the eigen-
states of the Hamiltonian. For a complex interact-
ing system (e.g., an impurity in a crystal) both the
eigenstates and the transition dipole matrix ele-
ments are very difficult to obtain. Therefore the
results of Sec. II may not be useful. However, it is
often true that the system is conveniently described
by a representation that does not diagonalize the
Hamiltonian. The correlation-function expressions
of the present section are well suited for this (or
any other) representation. It is, for example, in
this spirit that progress has been made in low-
power (linear) absorption-line-shape theory of im-
purities in crystals or molecules in liquids. ~

Thus we anticipate that the correlation-function ex-
pressions provided here will be useful in under-
standing nonlinear experiments from complex sys-
tems.

IV. THE FACTORIZATION MODEL

In Secs. II and III we derived general expres-
sions for the time dependence of the coherent tran-
sients and fluorescence. The evaluation of these ex-
pressions is dif5cult due to the presence of the trig-
onometric functions of the dipole operator. Below,
we consider a class of QTLS's that is exactly solv-
able for arbitrary numbers of levels in each multi-
plet. Important special cases in this class are sys-
tems in which either the ground or excited multi-
plet is a single level. The solvable nature of this
latter case was recognized by Yeh and Eberly.

The factorization model we consider in this sec-
tion is defined by the assumption that the transi-
tion dipole moments have the special form

Pgb =m kalb (4.1)

Defining the states
i (()0& and

~
P1& by

I ko& =g~ (4.2)

(4.3)

the dipole operator [Eq. (2.6)] can be written in the
form

(4.4)

where

D =DODi, (4.6)

The simplicity of the factorization model lies in the
property that

(4.5)
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Do =&Ao lko&=g im (4.7)

(4.8)

g(t): & I gp&&fp(t) I &p/& I fp& &Pp I &p (4.19)

=6 QP, im, I exp(itx, ), -

If we define the "area" of the ith laser pulse by
G~=QP,

I m,
I

~. (4.21)

A; =DErg /A,

then it is straightforward to show that

sin[BoP(t)] =sin( —,A;)P(t)/D

{4.9)

(4.10)

and

cos[B;P(t)]=1+[cos(, A;)—1]—[P(t)/D]i, (4.11)

where

P(t)= Iko( —t)&&Pi( —t)1

+ I gi( —t) & &Pp( —t) I, (4.12)

1$,(t) &
= (4.13)

fp(t )—:& 0o{ t ) I Po & /& do I 4p &

=Dp g I m, I
exp(itx, ),

(4.15)

(4.16)

f,{t)—= &4, 10,(t) &/&Pi I ki &

=D i g I ms I exp[ it (xs+ 0)],(4.18)—
b

for j=0,1. With these simplifications we can now
compute the various time-dependent signals from
the correlation-function expressions.

A. Photon echo

With Eqs. (4.10) and {4.11) the correlation-
function expression [Eq. (3.9}]for the photon-echo
signal amplitude can be written as

p(2t i )= iG D i D p
—sin ( z A~ ) sin( i A i )

x I fi('i) I fo(ti)

x Ig*(t, )+f '(t, )[cos ( —,A, ) —1]I, (4.14)

where

Although this expression is still somewhat in-

volved, the important point is that for any system,
given the ground- and excited-state level structures
and transition moments, it is very simple to evalu-
ate.

Two important cases occur when either the
ground or excited manifold is a single state. (The
factorization model is rigorously valid in each of
these cases. ) For a system with a single excited
state

I fi(t) I
=1, while for a system with a single

ground state
I fp(t)1 =fo(t)g~(t) =1. The

results of Eq. (4.14) simplify accordingly. When
both the ground and excited manifolds are single
states, we obtain the correct two-level result.

At high temperatures P, is constant and Eq.
(4.14) can be simplified to obtain

sin(A i }sin ( —,Aq)
iD

0

X ifo(ti }
I 'Ifi{ti)

I

'.
If we consider two systems, one with a single
ground state and an excited-state multiplet, and
another with the single level and the multiplet re-
versed, but with the same splittings and transition
moments and with the temperature high enough to
populate all the ground multiplet levels equally,
Eq. (4.22} shows that apart from an uninteresting
normalization factor the photon-echo signal will be
identical for the two systems. In particular, if the
multiplet is a doublet we recover the formulas of
Lambert et al. and Schenzle et al.

p(2ti ) =—

{4.22)

B. Stimulated echo

Substituting Eqs. (4.10) and (4.11) into Eq. (3.10)
we can express the stimulated echo amplitude in
terms of the same functions we defined for the pho-
ton echo. The result is

p(2ti+tq)= iG DiDp sin—( —,A, )sin{ —,Aq}sin( —,A3)

X[ I fi (ti )
I Ifp(ti +tp )+fp(ti )fp(tp)[cos( i Ai )—1]I

x(g'(t, +t, )+fp (t, +t, )[cos( —,A i)—1]+fo (t&)[cos( —,A, }—1]

X Ig ( ti )+fp ( t i )'[cos( —,A i ) —1]] )

+fp(ti)Ig (ti)+fp (ti)[cos( —,Ai) —1]]If,'(t, tz+)+f, (t )fi, (tz)[c ( o—,sAi) —1]]

X (fi'(t, +tz)+f i'(t, )fi'(tz)[cos( —,Aq) —1]J] . (4.23)
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At high temperatures P, is constant, and this simpli6es somewhat to
1 . 1

p(2ti+t2) = (iD—/2No) sin(A i ) sin( —,A2) sin( —,A3)

X(Ifi( i) I'Ifo(t, +t2)+fo(ti)fo(tz)[cos( —,Ai) —1]]

X Ifo (ti +t2)+fo (ti )fo (t2)[cos( —,A2 }—1]]

+ Ifo(ti) I
'Ifi{ti+t2)+f, {t,)f,{t2)[cos{—,'A, )—1]]

X If i (t, +t2)+f i'(ti)fi {t2}[cos(—,A2) —1]]) . (4.24)

which is the correct result.

C. Fluorescence

%ithin the factorization model the fluorescence

intensity becomes

8 fl(t) ~D,'G'sin'( —,A)
I fi {t) I

' (4.26)

In contrast to the coherent transient results for this
model, we see that the time dependence does not
depend upon the power, A. Again it is clear that
only the excited-state level structure determined the
fluorescence modulation. In addition we note that
the signal is maximized when a fl pulse (A =rt) is
applied and thus the system is fully excited. This
is in contrast to semiclassical calculations ' that
predicted the signal would be maximized by a m/2
pulse.

D. Relationship of the photon echo and fluorescence
to the homogeneous line shape

For the factorization model we have been con-
sidering in this section it is straightforward to
show that the homogeneous line shape, from Eq.

This equation displays the symmetry between

ground and excited multiplets that is evident in the

high-temperature photon-echo results. Another

feature of this result is that when t2 is varied, the

observed modulation will depend on t&, as well as

the pulse areas A2 and A3. In Sec. VI we will con-

sider the case where the multiplet is a continuum;

we will see that in special cases Eq. {4.24} simpli-

fies dramatically.
Finally, we note that for a two-level system it is

easy to verify that

p(2ti +tq) =( iDI4) s—in(A i }sin(A2}sin(A3),

{4.25)

l

(3.3},is given by

W(c0) ~ I dte'"'g(t)fi(t) . (4.27)

00 2

p(2ti ) a: I doi e 'W(co) {4.28)

and thus the photon-echo signal is directly related
to the Fourier transform of the homogeneous spec-
trum. This high-temperature result, however, ap-
pears to depend on the factorization assumption.

The total fluorescence intensity arises from in-
coherent spontaneous emission, and its time depen-
dence is caused only by the excited multiplet split-
tings. At T =0 K the line shape is also only af-
fected by the excited multiplet splittings. Thus we
find [from Eqs. (4.26) and (4.27)] that for the fac-
torization model at T =0 K, the fluorescence in-

tensity is proportional to the squared magnitude of

Comparing this equation with Eq. (4.14) for the

photon echo it is clear that in general there is no

simple relationship between the two.
To emphasize this point let us consider a QTLS

with a single excited state
~

b ); for simplicity we

take xb ——0. At very low temperatures only the

lowest level
~
0) in the ground-state multiplet is

initially populated so that P, =5,0. The spectrum

is simply a sharp line, as it depends only on g (t)
On the other hand, the photon echo depends on

both g (t) and fo(t), the latter of which is tempera-

ture independent. Therefore even at T =0 K the

photon echo is modulated by ground-state split-

tings. It is clear that this conclusion does not

depend on the exactly solvable model we have been

considering in this section. Physically the result

can be understood because a single coherent excita-
tion pulse can transfer population from the lowest

ground level, through the excited-state manifold, to
all the ground-state levels.

Alternatively we can consider the high-

temperature limit when P, is constant, and thus

fo(t) =g(t). Then from Eqs. (4.22) and (4.27) it
can be seen that
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the Fourier transform of the homogeneous line

shape.

V. THE UNITARY MODEL

The unitary model, which was introduced by

Mims, ' is another model for the dipole operator

that leads to considerable simplification of the gen-

eral results of Secs. II and III and that corresponds

to situations of physical interest. In this model the

number of states, N, in the ground and excited

multiplets must be the same. The model is defined

by

Ws(t) ~po sin ( —,A)(p(0}p(t}p(t)p(0) )0 . (5.g)

Each observable is related to a four p, correlation

function that involves 3, 4, and 2 times, respective-

ly.

VI. DISCUSSION

p(2t&+tz) = ( i—/Spo) sin(A ~ ) sin(Az) sin(A3}

X [ (p( —t~ —tq}p( —tq}p(t~)p(0))s

+ (p( t—
~
—tq)p(0)p(t~ )p( —tQ) )Oj

(5.7)

@as =It Orb (5.1) A. Bixon-Jortner model of radiationless transitions

~2 2
P =Pp s

and therefore

(5.2)

sin[Bop(t)] =sin(B;po}p(t)/po,

cos[B~p(t}]=cos(B pp) .

Defining pulse areas by

A;=p+r;/A

(5 3)

(5 4)

(5.5)

the correlation-function expressions for the photon

echo, stimulated echo, and fluorescence become,

respectively,

p(2t ) ) = ( —i/2pp) sin(A i ) sin ( —,A2)

X (p( —t~)p(0)p(t~)p(0})0, (5.6)

where M is an N by N unitary matrix and pp is a
constant that is determined by the overall dipole

strength. Such a structure of the transition dipole

matrix arises when the system of interest consists

of a two-level system coupled to another mechani-

cal system (a bath) and all the transition moment

arises from the transition moment in the two-level

system. In addition, this coupling must not con-

nect the two levels. The states of the combined

system can therefore be written as products of bath

states and two-level-system states. Furthermore

the transition moment operator is a product of an

off-diagonal operator for the two-level system and

the unit operator for the bath. Calculation of the

nonzero matrix elements of the transition moment

involves calculating matrix elements of the unit

operator between the bath states appropriate for

the lower and upper states of the two-level system,

and such a matrix is unitary.

The simplifications that follow from the unitary

model are due to the fact that

With this choice of line shape f&(t) is simply

f,(t) =exp( —I
~
t

~

—iQt} . (6.2}

For instance, then, the fluorescence decay is [from

Eq. (4.26}]

Jrq(t}a:exp( 2I t) . — (6.3)

This is precisely the result obtained by Bixon and

Jortner in their model of radiationless transitions in

isolated molecules. ' In their model the excited-

state manifold consists of a singlet electronic state

with a transition moment to the ground state, cou-

pled to a manifold of other excited states with no

transition moments. %hen the full excited-state

manifold is diagonalized they Gnd an approximate-

ly Lorentzian homogeneous line shape. The

fluorescence decay occurs because the fluorescing

singlet state is not an eigenstate of the Hamiltoni-

an. In the context of Mukamel's recent paper, it

is interesting that the time evolution of a superpo-

sition state looks like a T~ process. To make the

As a special case of the factorization model dis-

cussed in Sec. IV, let us consider a QTLS with a

single ground state,
~
a ), and an excited-state mul-

tiplet whose levels form a continuum. Taking

x, =0, then g (t} =fo(t}= 1, and from Eq. (4.27)

we see that W(t0} and f&
(t) are related by a Fourier

transform. Since the excited multiplet is a continu-

um, K(to) is a smooth function of t0. Reasonable

assumptions for K(co) of a Gaussian or a Lorentzi-

an lead to a Gaussian or exponential decay of

f, (t). Since many experimental decays are ex-

ponential, we focus on the Lorentzian assumption

here:

(6.1}
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correspondence with our model, we note that we
work in the eigenstate representation; therefore the
"singlet" state P ~

a ) is a superposition of eigen-
states.

Using the exponential form offi(t), Eq. (6.2), to
evaluate the photon and stimulated-echo decays
from Eqs. (4.22), (4.24), and (2.22), we find

and

W~(2ti ) ~ exp( 4—I'ti ) (6.4)

Jr„(2t,+ t2) cc exp( 41 ti —)[1+exp( 21'—t2)]

(6.5)

B. Photon echoes in molecular crystals

We conclude by speculating about the resolution
of a puzzling aspect of the experiments by Cooper
et al. and Morsink et al. on photon echoes and
fluorescence from impurity molecules in molecular
crystals. In these experiments, the laser pulse was
tuned to the zero-phonon absorption line of the
impurity molecules. Defining T2 and Ti by

W~(2ti ) ~ exp( —4t j /T2),

Wfl(t) ~x. exp( —t /T& )

(6 6)

(6.7)

It is interesting to recognize that Eqs. (6.3)—(6.5)
are precisely the forms of decay calculated from a
strictly two-level system where the excited-state po-
pulation is depleted with a rate 2I while the
ground-state level is not repopulated. ' Thus the
preceding calculation provides theoretical support
for the two-level phenomenology of radiationless
transitions. Invoking such a two-level model in-
cluding radiative decay, Wiersma et al. ' ' have
shown experimentally that one can find the radia-
tionless contribution to the lifetime from the
nonexponential decay of the stimulated echo.

We should also point out that Yeh and Eberly
have examined a model identical to the one dis-
cussed above. For a single system they found that
there was no echo signal for times long compared
to the inverse frequency width of the excited-state
band. However, for the inhomogeneous distribution
of systems that we have considered, we found that
fluorescence, photon echo, and stimulated-echo sig-
nals do occur for times long compared to the in-
verse of the inhomogeneous frequency width, but
short compared to the inverse of the single-system
frequency width.

1/T2 ——1/2T) + 1/T2, (6.8)

where 1/T2 is nonzero even in the limit of zero
concentration of impurities. Furthermore, recent
experiments by the Fayer group show that 1/T2
is independent of temperature at low temperatures
(below 1.8 K) and thus extrapolates to a nonzero
value at T=O K.

The usual way of interpreting photon-echo data
when the zero-phonon line is excited' is via the
theory of the homogeneous line shape. The homo-
geneous line shape is related to the equilibrium
dipole-moment autocorrelation function. By as-
suming that the long-time dependence of the echo
amplitude is governed by that of the autocorrela-
tion function, one concludes that the echo ampli-
tude is related to a Fourier transform of the homo-
geneous line shape

p(2ti) cc f defoe 'W(co) . (6.9)

For a Lorentzian zero-phonon line with linewidth
4v, this leads to

1/T2 ——a5v . (6.10)

The linewidth has lifetime (1/2~T& ) and nonlife-
time (hv') contributions:

n.hv=1/2T)+mdiv' . (6.11)

Theoretical models of nonlifetime line broadening
due to excitation-phonon coupling predict that hv'
is very strongly temperature dependent at low tem-
peratures and vanishes at T=0 K. ' 6 (A not-
able exception is the work ' based on Krivoglaz's
model of linear excitation coupling to anharmon-
ic phonons. However, in a later paper Krivoglaz
corrects an error in his original calculation and
thus brings his work into qualitative agreement
with other theoretical models. ) Therefore if Eq.
(6.10) is invoked there is a clear discrepancy
between line-shape theory and the echo experi-
ments.

The excitation-phonon model for impurities in a
crystal involves a two-level system (the bare excita-
tion) with a transition moment, coupled to bath de-
grees of freedom (the phonons) with no transition
moment. This is precisely the situation described
by the unitary model of Sec. V. Although the
excitation-phonon model is not strictly a QTLS
(because the phonon progression is of infinite ex-
tent), it is nevertheless tempting to apply our
results. We found that the photon-echo amplitude
is [Eq. (5.6)]

both groups found that p(2t, ) ~ (p( t, )p(0)p(r i )p(0) )0
—. (6.12)
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For times long compared to characteristic phonon

correlation times it might be reasonable to assume

that

(P( t—()P( 0)p(t) }p(0))p- (P( —t))P(0))p

X (P(ti)P(0))p,

(6.13}

thus implying that

equivalent to the usual quantum-mechanical theory

of spontaneous emission with the exception that we

consider the case in which the state of the matter

before the emission process is a superposition of
matter-energy eigenstates rather than a single

eigenstate.
At the end of the excitation pulse, which for the

purpose of this discussion we define to be t =0, the

matter state is

00 2

p(2t, ) a: J dip e '9'(tp) (6.14)
~/{0))=gd, ~a)+bodb ~b) .

a b

(Al)

which provides the connection between the photon

echo and the homogeneous absorption line shape.

We note that for a Lorentzian line shape this rela-

tion also leads to Eq. (6.10). The derivation of Eq.
(6.12), however, depended on the assumption that
the durations of the excitation pulses were short

compared to the frequency widths of the multi-

plets. In this case the relevant frequency is co~, the

Debye frequency. Thus we emphasize that the (ad-

mittedly tenuous) steps leading to the connection

Eq. (6.14}are only valid for non « 1, which are

very short pulses indeed. For the pulse durations

that are at present experimentally available

(7ND )Q 1) it is not yet clear how to proceed, but

it seems likely that even in this example the

photon-echo decay will not be simply related to the

homogeneous linewidth.
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APPENDIX: FULLY QUANTUM-MECHANICAL

RESULT FOR THE TIME DEPENDENCE
OF THE FLUORESCENCE INTENSITY

In this appendix, we derive Eq. (2.32) for the

time dependence of the fluorescence from a QTLS
after it has been subjected to a pulse of electromag-

netic radiation. Since fluorescence is a spontaneous

emission process, we use a quantum-mechanical

treatment of the radiation field to obtain a correct

description of the process. The method we use is

(A6)

This quantity is on the right-hand side of (2.32),

and we wish to show that it is proportional to the

time-dependent fluorescence intensity Wp(t).

To describe the effect of interaction of matter

with radiation, we use the usual Hamiltonian

H =Hp+H„+V, (A7)

where Hp is the matter Hamiltonian, with eigen-

values given in (2.1)—(2.3},H„is the radiation

Hamiltonian, and V is the interaction between radi-

ation and matter. The eigenfunctions of H, are the

familiar vacuum state, 1 photon state, 2 photon

states, etc. The interaction V is —pE, where p, is

the x component of the matter dipole-moment

operator and E is the x component of the electric

field operator. (We are interested in fluorescence

polarized in the x direction. ) The basis functions

we use are denoted
~

cr ), where c is a matter quan-

tum number, with the same meaning as in Sec. II,



JAMES L. SKINNER, HANS C. ANDERSEN, AND M. D. FAYER

and r is a radiation quantum number. We will be
concerned only with the vacuum (r =0) and one-
photon (r =q) radiation states, where q denotes the
wave vector of the photon. V has nonzero matrix
elements between the vacuum and one-photon
states:

&cq I
V Ic'0)= Eqp—p„. (As)

At time 0, the matter state is given by (A1) and
the radiation state is a vacuum. Therefore the full

state is

I
+(0)&=gd.

I a0&+bodb I50)
a b

(A9)

where d, and db have the same value as in (Al).
We want to calculate

I
%'(t) ) to first order in V.

To zeroth order, the state is

I
'Po(t) ) =gd, (t)

I
a 0) +gdb(t) I

b 0), (A10)
a b

where d, (t) and db(t) are given in (A3) and (A4).
To first order in V,

I
%(t) ) can contain contribu-

tions from one-photon basis functions of the form

I aq). We write the time-dependent state as

I
%(t) ) = gd, p(t) exp( ix, t) —

I
a 0)

+gdbo(t) exp[ —i (0+5+x» }t]
I
b 0)

b

+gd~(t) exp[ —i(x +tpq)t] I aq), (A11)
aq

where coq is the frequency of a photon with quan-
turn number q, and

The total probability that one photon exists at time
t is the sum of the probabilities of being in the
states Iaq) or

g I d,q(t) I

The rate of fluorescence emission is just the time
derivative of this, or

~(t)=—+Id (t)I'.dt, (A13)

We want to show that this is equal to the right-
hand side of (A6).

To evaluate d~{t},we note from (Al 1) that

d~(t) = &aq I
%(t)) exp[i (x, +tpq)t] . (A14)

It follows from Schrodinger's equation that

(t)=( i lit)&a—q I
V

I
%(t)) exp[i (x, +cpq)t],

(A15)

where we have used the fact that

& aq I
( Ho+ H )=@xo+tpq ) & aq I

To evaluate this to first order in V, we replace
I%'(t)) by

I
%o(t)) and obtain

d~(t) = QP,»Eq pd—» exP[ i (0+5+x»——x, toq)t]—.
A'

b

d, p(0) =d, ,

dbo(0) =db,

daq(0) =0 .

(A12)

(A16)

Integrating this with regard to t, squaring, and
substituting into {A13),we obtain

t

W„(t)= g—f—dt' dt "db'db p."bi,b exp[i (xb xb )t'] ex—p[i (0+5+x» x, )(t' ——t")]Q(t' —t"),
dt bb

(A17)

Q(tp) is a one-photon density of states, with the
states weighted by their value of

I Eqo I, which is
a measure of the ease with which the states can be
prepared from the vacuum by creation of one pho-
ton. The function Q(t) is highly peaked when its
argument is zero. Hence in (A17) we extend the. t"
integral, to —00 and + 00. It follows that

where

Q(t)=g IEqo I
exp( itpqt)— (A18)

The Fourier transform of Q(t) is

Q(tp) =f dt e'"'Q(t) =2qrg
I Eqp I

5(tp tpq). —
00

q
(A19)
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1 d
Wfl(t}=——g Q(Q+5+xb x—, }g dtebb

X dt db db'P~bPgb'
0

Xexp[i(xb —xb )t'] .

We assume that the one-photon density of states is

slowly varying over frequency ranges of the order
of 6 and Ebb, and so we obtain

Wfl(t) = g db db p,biseb elp[i (xb xb—)t]
Q(&) e a

ebb'

which is the same as the right-hand side of (A6)
Q.E.D.
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