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A theory of stimulated Raman scattering (SRS) is presented which treats in a unified manner the buildup of SRS
from spontaneous Raman scattering and the spatial propagation which leads to gain. Maxwell-Bloch equations

describe the coupling between the Stokes field operator and the collective atomic operators, which are driven by a
classical laser field under low-signal-gain conditions, where the atomic ground states and laser field remain

undepleted. An analytic expression is derived for the forward-propagating Stokes field operator in a one-dimensional

spatial approximation when the Fresnel number of the excited medium is unity. Steady-state and transient Stokes

intensities are evaluated under low-gain (spontaneous) and high-gain (stimulated) conditions. The Stokes intensity is

found to be exactly independent of a laser bandwidth arising solely from phase fluctuations. The power spectrum of
steady-state SRS is evaluated, giving a gain-narrowed spectral profile when the laser is narrow band, and a spectrum

identical to the laser spectrum when the laser is bi'oad band, A strong analogy between SRS and two-level

superfluorescence is found; in both cases the macroscopic, collective dipole moment is initiated by quantum

fluctuations.

I. INTRODUCTION

The generation of intense, frequency-shifted
radiation by the nonlinear process of stimulated
Raman scattering (SRSj is a commonly used
technique in a number of fields, including tunable
laser development" and high-energy laser
pulse compression. ' In spite of extensive theo-
retical and experimental studies into many
important aspects of SRS, the details of the
origin of the process have not yet been fully un-
derstood. The nature of spontaneous Stokes
Raman scattering, which arises from atoms be-
having independently, is well understood, as is
the propagation and resulting amplification of an
externally applied, classical electromagnetic
wave, involving the collective behavior of many
atoms. These two problems have been treated
separately by suitably postulated semiclassical
theories. "However, no theory to date has given
an explicit quantum mechanical treatment of the
situation in which spontaneously scattered Stokes
photons are amplified via propagation through the
Raman medium, thus serving as the source for the
initiation of the SRS. Previous methods of treatir|0;
this situation, which will be referred to here as
the Raman "generator, " include photon rate equa-
tions, "single-mode models, ' and semiclassical
wave equations with phenomenological source
terms, ' and have yielded reasonable results for
relatively simple quantities, such as the steady-
state SRS output intensity. These methods are
nevertheless inadequate for treating more com-
plicated quantities such as the buildup of tran-

sient intensities, the dependence on laser band-
with, the spectrum of the SRS output, and higher
order statistical properties, including SRS photon
counting distributions. .

The purpose of this paper is to present a full
discussion of a previously reported" quantum-
mechanical theory of stimulated Raman scat-
tering which treats both the buildup of SRS from
spontaneous Raman scattering and the effects of
spatial propagation in a unified way. The problem
of SRS buildup is found to be mathematically
equivalent to the problem of superfluorescence in

an extended medium composed of inverted two-
level atoms. In each of these cases the macro-
scopic collective dipole moment, which is initi-
ally zero, grows from quantum fluctuations,
and the angular, temporal, and spectral proper-
ties of the radiated light depend on the geometry
of the excited medium in a complicated, and only
partially understood, way. To treat the SRS
buildup problem, we make use of techniques
which have been recently developed for treating
two-level superfluorescence, and which include
the effects of all of the frequency modes of the
radiation field, and one-dimensional spatial
propagation. "'"

The one-dimensional behavior of the propaga-
tion results from the simplifying assumption that
the medium is excited in a pencil-shaped region,
with Fresnel number of order unity. Such an
excited region will radiate predominantly out of
the two end faces of the pencil with diffraction-
limited angular patterns. This motivates the
averaging of the field in the two directions trans-
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verse to the pencil's axis. "'" This leaves only

the longitudinal spatial coordinate as a propagation
variable. In this way operator Maxwell-Bloch
equations are obtained which account for the col-
lective behavior of the radiators and the propaga-
tion of the radiated field. Homogenous (collisional)
broadening of the Raman line is accounted for by

the inclusion in the Bloch equation of a damping
constant and a fluctuating Langevin operator.
Inhomogeneous broadening, atomic and laser
saturation, and the effects of group-velocity dis-
persion are ignored. The operator equations
admit exact analytic solutions, from which inten-

sities, spectra, and higher order statistical
properties can be calculated.

A nonzero bandwidth of the driving laser may

be accounted for in an approximate way by use
of the phase-diffusion model, " in which the
laser's amplitude is taken to be constant while

its phase is assumed to fluctuate randomly. We

find the result, perhaps surprising, that within

this model the buildup of the SRS intensity is
factly independent of laser bandwidth. This re-
sult has been conjectured previously from qualit-
ative, semiclassical arguments, "'""and has
been partially confirmed experimentally""
although other measurements' seem to indicate
a slight dependence of Raman gain on laser band-

width. Further, we show that when the laser
bandwidth is much larger than the Raman line-
width the SRS is generated having the same spec-
tral width as the laser.

II. EQUATIONS OF MOTION

Here we will briefly discuss the physical model

and theoretical methods which lead to the equa-
tions of motion for the atomic system and the
Stokes field, including the effects of collisional
damping and fluctuations. The resulting form of
of the equations of motion is known from pre-
vious treatments which used either an equivalent
two-level representation, "or a formal operator
averaging technique with a multilevel atom. "'"

propagates through the volume in the z direction,
which is parallel to the pencil axis. As shown in

Fig. 1, an atom may absorb a laser photon at
frequency ei and scatter a photon at the Stokes
frequency +& = ei —+», ending up in the final
state i3). Two time orderings contribute to the

process, as shown. We will treat the laser field
mode(s) as a classical electromagnetic wave and

assume that it does not undergo depletion or any

other back reaction from the medium. On the
other hand, the remaining modes of the radiation
field will be treated quantum mechanically, to
allow for the spontaneous initiation of the Raman

scattering.
The behavior of a single atom is described in

terms of the atomic operators o, ~(t), which at

the initial time are given by

A—d(g =zidgp;g+t (de Ev(~ —dg(Ev~~),
dt

where d» =k '(kidil) is the atomic dipole matrix
element (divided by h) and E(r, t} is the total
electric field operator

E(r, t) = bi(z, t)+Is(r, t), (4)

hi(z, t) is the classical laser field given in Eq.
(1), and g (r, t) is the operator for the remaining

field modes, of special interest being those near
the Stokes frequency e&.

In the case that the laser frequency is far from
any intermediate resonances, the levels im) may

and at later times evolve according to the Heisen-
berg operator equation of motion (in the dipole
approximation)

A. Atomic dynamics

We consider a collection of identical atoms or
molecules initially in their ground states il),
contained in a pencil-shaped volume with length
L and cross-sectional

arear'.

The atomic posi-
tions are random, but fixed, and the average
number density (atoms cm a} is N. A laser with

(classical) electric field

(z f) = E (z f)ej (+ It kri)-
+Ef(z, t)e ""t' '&'

FIG. l. An atom initially in its ground state i 1) is
driven by a laser field with frequency ~z, which is not

necessarily in near resonance with any intermediate
state i m) . Remen scattering at frequency a&s (0J
may occur with either of two time orderings, as shown,

leaving the atom in the final state i 3) .
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be adiabatically eliminated from the equation of
motion for 8'„(t), which is the atomic operator
that couples to the Stokes field. Furthermore,
when the fields are weak such that the atom
remains essentially in its ground state, the equa-
tions may be linearized to yield the usual equa-
tion" "for the slowly varying atomic operator
(})(t) (see Appendix A)

—Q(t) = i)(~E-z(z, t)E(g')(r, t), (5)

where Q(t) is defined by

q(t) d (t) -((lal -kl +II(s -sg}$

and the coupling constant is

1 1
K~ d3 tftdtg~ I

+ ~

'( mg —4'Z, ~my+ +S

E(g')(r, t) is the positive frequency component of
the field, defined by

Sg(r, t) =E(g )(r t)e'("s '-&s'&

+E(+)(~ t)e-f(u&gt sgs)-
S

where 0 s = &s/c.
Homogeneous broadening of the Haman transi-

tion, which must be accounted for in a steady-
state theory, will be described by adding a term
in Eq. (5) which leads to damping of Q(t) at a
(collisional dephasing) rate F, and also a term
which leads to random fluctuations""

dt
t})(t)=-1"@(t)

i((,*Ez(z, t)E-(g )(r, t) +F(t) .
F(t) is the quantum statistical Langevin operator
describing the collision-induced fluctuations.
The Langevin force is taken to be delta corre-
lated, and obeys

(It(t ')P(t')) =2r()(t' t"),
(F(t')F (t )) =0,

(9)

(10a)

(lob)

j(z, t) = -' g 4 (t),
{a)»

where 4'(t) is the atomic operator for the atom
located at a position r, and obeys an equation

which guarantees consistency of the operator
properties of Q(t). 's

Equation (9) describes the response of a single
atom at position r to the electric fields and to
collisional fluctuations. To treat spatial propaga-
tion it is convenient to formulate the atomic
response in terms of collective atomic operators,
defined as"'~

of the form of Eq. (9). The sum in Eq. (11) is
over all atoms lying within a thin transverse
slice of the pencil-shaped medium, with thickness
M, centered at the longitudinal position z. The
average number of atoms in such a slice is n
= NAM. The thickness of a slice is assumed to
be much smaller than a Stokes wavelength (Az

«Xs), while the volume of a slice is much greater
than a cubic wavelength (AAz»)}sg). This justi-
fies the neglect of atomic dipole-dipole interac-
tions (NPz& 1), while allowing a continuum
description of the atomic medium (VAnz»1). ""
In the continuum limit the collective operator has
the property

(Q (z, 0)Q(z', 0)) =(1/P)5(z —z'), (12)

where p =HA is the linear density of atoms
(atoms/cm) along the pencil-shaped region.
Similarly the collective Langevin operator
F(z, t), defined analogously with Eq. (11), obeys

(F'(z, t)F(z', t')& =(21'/p)5(z —z')5(t- t') (1~)

B. Maxwell-Bloch equations

The Stokes field operator bg(r, t) obeys the
wave equation

(14)

where Pz(r, t) is the macroscopic polarization
operator.

The approximately one-dimensional character
of the pencil-shaped medium may now be in-
voked "'" Assume that L, »A' '»X~ and that
the Fresnel number F =A/XsL is of the order of
unity (P= 1). This means that the diffraction-
limited angular divergence (-)}.s/A' t') is of the

order of the geometrical angle subtended by the
pencil (-A' t'/L), and, therefore, only a single
transverse spatial mode contributes strongly to
emission along the pencil axis. This motivates
the averaging of the wave equation (14) over the
transverse slices defined in Eq. (11) for the

collective atomic operators. This procedure has
been used successfully in treating superfloures-
cence. "'" The slice-averaged polar ization opera-
tor becomes (see Appendix A)

Pg(z, t) =
& g g tf [d, o~™(t)+d~v~(t)J+H. a.

{aj ls

=Nk((+Es(z, t)Q (z, t)e''"s' g'+H. a,.
(15)

where 6 V=AEz = n/N is the volume of the trans-
verse slice centered at z. The wave equation be-
comes one-dimensional under this approximation,
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(16a)

—,', Q'(z, t) = -rQ'(z, t) +1K Ey(z, t)E& '(z, t )

+Fr(z, t), (16b)

where K, =2vNI ~ZK,*/c. The plus and minus
signs in Eq. (16a) refer to forward and backward
Stokes emission [obtained by replacing ke--ke
in Eq. (8)], respectively. In the perturbative and
slowly varying-envelope approximations these
oppositely propagating waves are decoupled from
one another. "'""

Equation (16) describes the coupling between
atomic medium and fields, and from its solutions
the spatial and temporal buildup of the Stokes
field will be obtained. Its form is identical to
that found in the semiclassical treatment"'" of
Raman amplification, with the exceptions of the
operator nature of the Stokes field Eiz «(z, t) and
the Baman variable Q(z, t), and the presence of
the collisional Langevin operator Fr(z, t)."

C. Solution of Maxwell-Bloch equations

The Maxwell-Bloch equations (16) can be solved
exactly in analytic form for arbitrary time
dependence of the laser field Ei(z, t) in the case

and, along with the equation for the collective
atomic operator Q(z, t), can be written in the
Maxwell-Bloch form by using the slowly varying-
envelope approximation. " This gives

]+-—E, (z, t) = iK-Q (z, t)E (z, t),

of forward Stokes emission in a dispersionless
medium. The solution, familiar from semi-
classical theory" is applicable here in the quan-
tum case because the Maxwell-Bloch equations
(16) are linear with respect to the operators.

The initial conditions for the solution are ob-
tained by noting that in a dispersionless medium
the laser field Ez(z, t) depends only on the local
time variable r = t —z/c, and thus a laser pulse
whose leading edge is at t=z/c leaves the atomic
operator Q(z, r) unperturbed for r(0. Thus Eq.
(12) should be extended to read

(Q r( z, r = 0)Q(z ', r = 0)) = (1/p) 6(z —z ') . (17)

The initial value for the Stokes field Etz «(0, r) is
given at the input face of the medium, z =0, for
all time t. This means that backward Stokes emis-
sion is explicitly ignored. Depending on the
initial state of the radiation field, this condition
describes either an externally incident Stokes
wave which can experience Raman amplification,
or the vacuum field from which Stokes emission
can build up.

With these initial conditions the Maxwell-Bloch
equations are solved, by a method discussed in
Appendix B, to give for the forward-propagating
Stokes field operator

Also, stationarity of the Langevin force implies,
from Eq. (13}, that

(F (z, r)F(z', r')) =(2r/p}5(z —z')6(r- T').

(18)

O4 )(z, ]=Of '(O, r) — ,(( (r]e ' f oz''4] (4', O]( ((44 4 (
—z')(4r)]'r'&.

0

I(4KK8 T — T+(K z)'"E (T) dr'e "' ' 'Eg(r')E' '(0 T') '

T g

—1 EK(2r)zdr' dz'e t' ' F (z T )Io((4KiK2(z —z') [p( r) —p( r')]}'I'),
0 0

(19)

where the I„(z) are modified Bessel functions"
and

I

the classical field amplitude of an input Stokes
wave.

(20)

is the power of the laser field integrated up to
time T.

It is interesting to note that if an expectation
value is taken of the solution in Eq. (19), then
the usual semiclassical result" is obtained for
the average Stokes field (E~~ «(z, r}) by noting that
(F (z, T')) =O, (Q'(z, O)) =O, and (Ez (0, r')& is

III. INTENSITY OF RAMAN SCATTERING

Iz(z, r) = (E~z «(z, r)Etz'«(z, r)) .
2gS (og

(21)

The buildup of the intensity of forward stimu-
lated Raman scattering from spontaneous Raman
scattering may be obtained from Eq. (19) by
calculating the normally ordered expectation
value
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Ie(z, 7) is the number of Stokes photons emitted
per second through the end face of the pencil-
shaped excited region, into the solid angle A/L'
defined by the geometry of the region. We will
consider only the case that no Stokes wave is
externally incident on the medium, and so we
have for the initial field

(Ee (0, r')E +z(0, r")) =0, (22)

that is, vacuum fluctuations are not detected with
a photodetector. Using Eq. (22), and the fact
that Ez (0, r), Q (z, 0), and F (z, r) are statisti-
cally independent and obey Eqs. (17}and (18), we
find

g

Iz(z, 7) = (Ac/2' ep) ~K,Ez(r) f
~

e~ dz'I', ([4K,K, (z —z')p(r) ]' ')
0

T g

+2F d7' dz'8 ' ' 'I' 4K,g z-z' r — 7'
0 0

(23)

with the first and second terms here arising, respectively, from the second and fourth terms in Eq. (19).
This result can be simplified further by performing the z' integrations, "yielding

Ie(z, r) = (Ac/2zff &ozp) (K,Ez(r) pz (
e~"'(Io([4K,Kmzp(r)]' ') - I', ([4K,K zp(r)]' )}2 &~r.

T

+2K dr'e ' [I'({4K,K,Z [p(r) -p(r')]j' ')
0

(24)—I ((4K,KIZ[p(r) -p(r')]p )] ~.

Equation (24) along with Eq. (20), gives a very general expression for the Stokes intensity for arbitrary
time, Raman gain, and laser pulse shape Ez(r). Its predictions will be studied in some detail below under
various limiting conditions.

(25)4K', zp(A «1"r,
for all r, the factor exp[-2F(r —r )]in the inte-
grand in Eq. (24} is sharply peaked compared to
the Bessel functions, allowing the latter to be
pulled out of the integral at r' = r, leading to

A. Spontaneous Raman scattering

An important and illustrative limit of Eq. (24)
occurs when the laser intensity is sufficiently lmv

that Raman gain is negligible, and the atoms
scatter light independently and spontaneously. In
this limit, which occurs if

As a check on the reliability on the present
method, it is interesting to compare the magni-
tude of the spontaneous scattering, given in Eq.
(27), with that predicted from the spontaneous
Raman scattering differential cross section ob-
tained from the conventional Kramers-Heisenberg
treatment'

(28)

I z(z, r) =(Ac/2ZII+zp) iK, EZ(r) pz

&& [1 +e ' (I', ([4K~K,zp(r)]'I')

-I',([4K K zp(r)]' )- lj] (26)

Using this formula, and defining the laser inten-
sity Iz, =(c/2' ruz) ~EZ~', in units of photons
cm ' s ', we can rewrite the present result [Eq.
(27)] in more familiar form as

where Io(x}~1 and I,(x}= x/2, for x«1, have
been used. It can further be shown that under the
condition (25) the term proportional to exp(-2I'r)
is small compared to unity for all times T aIld

thus the intensity is

Igz, r} =(Ac/2vk&ueP) ~K,Ez(r) )z. (27)

This result indicates that the intensity of spontan-
eous Raman scattering follows the laser intensity
adiabatically, a result which is known from con-
ventional treatments of Raman scattering from
single atoms. "

Iz(z, r) =5 2II dQ NV,
do'

dO
(29)

where 6:=A/X+ is the Fresnel number and dQ
=A/L' is the geometrical solid angle of the excited
region with volume V=Az. Thus when 8 =1, as
we have assumed from the start, the present
treatment Eq. (29) exactly reproduces the
known result for spontaneous scattering. While
this exact agreement is encouraging, it should be
considered at least partly fortuitous, since the
transverse aspects of the spatial propagation have
been treated fairly crudely.
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B. Effect of laser bandwidth

A very important general consequence of the full

solution given in Eqs. (24) and (20) is the fact that
the Stokes intensity is found to be exactly indepen-
dent of the phase of the laser field, as it depends
only on the square modulus )Ez(r) P of the field.
A similar result is found in the semiclassical
theory of the Raman amplifier, but o+&y in the
case that the laser bandwidth (arising from phase
fluctuations) is much smaller than the Raman
linewidth F, or in the limit of very high Raman

gain. " In the present treatment of the Raman
generator the independence from laser phase
fluctuations is upheld for arbitrary laser band-
widths and Raman gains. This result has been
conjectured previously on phenomenological
grounds, ""'"and will be discussed further in Sec.
V.

Let us therefore make a simplifying assumption:
In the remainder of the paper the laser intensity

~EI( r) ~' will be assumed to be constant, after being
switched on at r =0, while the phase of the field
EL(r) will be taken to be a fluctuating random
variable, with classical Gaussian statistics,
driven by delta-correlated fluctuations. This is
known is the phase-diffusion model for laser
bandwidth, " and leads to the following field auto-
correlation function:

(30)

+2r ~ dr'e '"' [I2((2gzrv')'I')

—I',((2gz»')'")]
I

where g is defined as

g =2z,z, (E P/r,

(31)

and mill be seek. below to be the steady-state
Raman gain coefficient which is familiar from
semiclassical theory. ""

In terms of this gain coefficient, the spontaneous
scattering intensity Eq. (2&) may be written more

where r~ is the bandwidth (half-width at half
maximum HWHM) of the laser, and the double
brackets (( )) indicate a classical average over the
ensemble of phases. Using this model me find
from Eq. (20} that P(r) = ~EJ'r, allowing Eq. (24)
to be written more simply as

Igz, T) =-,'1'gz (e ' [I',((2gzrr)'~')- I',((2gzrr)'~')]

(4—
a50

4
N

CA

O

2— IO

~Q. l

~o.ol

I

l I

-2 —I 0 2

lOgto~ "~ ~

FIG. 2. Instantaneous Stokes intensity as a function
of time, for a number of different values of gr (number
of steady-state gain lengths}. Solid curves are obtained

by numerical evaluation of Eq. (31). Broken curves
are analytic approximations given by Eq. (35}for sma11
times and Eq. (40} for long times. For very small gains
(gz «0.1}and/or very small times D,og&o(Fr} &-2J the
Stokes scattering is spontaneous and agrees with Eq.
(33}. For larger gains (gz ~ 1}the scattering is seen to
increase rapidly at a time r ~ (1/I'gz} and then reach a
steady-state stimulated intensity at a time v = (gz/I').

compactly as

Iz(z, v) =-,'1"gz. (33)

C. Buildup of stimulated scattering

Here the instantaneous Stokes intensity Iz(z, r)
mill be evaluated analytically and numerically,
and plotted as a function of r in order to study the
transition from spontaneous Raman scattering at
very small times to transient SRS at moderately
small times, and finally to steady-state SRS.

ln Fig. 2 we have plotted Igz, 7}, evaluated by
numerical integration of Eq. (31), for. a number of
different values of gs. It is seen that for very
small gain (gz =0.1, 0.01}the Stokes intensity is
a constant, given by the spontaneous scattering
result Eq. (29) or (33). For larger values of gz
a rapid gromth of the intensity is seen at times
of the order of I ', the molecular relaxation
time. At longer times (rr z gz) a steady-state
value is eventually attained.

Another important quantity in experiments on
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SRS is the Stokes pulse energy, or the total
number of Stokes photons emitted per pulse into
the solid angle A/L'. Assuming a (square} laser
pulse of duration 71., this total photon number is
given by the integral of the instantaneous Stokes
intensity

]4

l2

I0

7 I
Nz(z, rz} = Iz(z, r)dr,

0
(34}

I

8
zh

Z,'

where Iz(z, r) is obtained from Eq. (31). This
quantity is plotted in Fig. 3 as a function of laser
pulse length rz for a number of different values
of gz. As expected from Fig. 2, Ngz, rz) grows
linearly in rl for small gz, corresponding to pure
spontaneous scattering, while for large gz a
rapid growth is seen, leading eventually to another
region of linear growth, with a slope given by
the steady-state Stokes intensity shown in Fig. 2.

Also plotted. in Figs. 2 and 3, as broken curves,
are analytic approximations of the exact results
Eqs. (31}and (34) for Igz, r) and Njz, rz), ob-
tained as follows in the transient and steady-state
limits.

C
O

4
Q.

2O
V)

0 I

log (1 rL)

1. Trunsient Raman scattering

For times short compared to the molecular
relaxation time (I'r-0) only the first term in

Eq. (31) contributes, giving for the transient
Stokes scattering at arbitrary laser intensity

I (z, r) =-', I'gz[1', ((2gzi" r)'I')- I',((2gzi'r)'I')].

(35)

FIG. 3. Stokes photons emitted per laser pulse, of
duration 7z, for a number of different values of gr .
Solid curves are obtained by numerical evaluation of
Eq. (34). Broken curves are analytic approximations
given by Eq. (38) for small times and Eq. (42) for long
times. For high enough gains Qz ~ 1) the spontaneous
scattering seen at very small times grows rapidly to
steady-state stimulated scattering, where the total
number of Stokes photons emitted is proportional to the
pulse duration ~l, .

This result can be approximated in the high-gain
limit (gzi'r»1) using the asymptotic form of the
modified Bessel function"

I„(z)=,&, 1 — +'''
~, x»1 (36)

e' 4n' —1

i

which leads to

P (PggI T )i/a

Iz(z, r) =
SENT

(3V)

The dependence on the factor exp[2(2gzi'r)'~'] is
reminiscent of the semiclassical result for the
transient Raman amplifier. ""Note that the
results (35) and (3'I) do not depend on the mole-
cular relaxation rate I', since I' appears only
in the product gF, and g is inversely propor-
tional to F.

The total number of Stokes photons per pulse
Nz(z, rr) can be evaluated" from Eqs. (34) and

(35) to be, for arbitrary laser intensity and I'r&~1,

Ns(z, r~) =gzi'r [I',((2g I'r )'~') I',((2gzI r )'-~')

—(2gzI'r ) ' 'I ((2gzI'r )' ')I,((2gzI"r )' ')

2. Steady-state Raman scattering

For times long compared to the molecular re-
laxation time (I'r-~) only the second term in
Eq. (31) contributes, with the upper integration
limit taken to infinity

Iz(z, ~}=Igz dr' e '"' [I,'((2gzi'r')' ')
0

—I', (( 2lg'rz')'~'-')],

which may be integrated" to give"

(39)

(36)

The analytic expressions Eqs. (35) and (38) are
plotted in Figs. 2 and 3 and are seen to be good
approximations for small times [I'rs (gz) '].
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Iz(z, ) = —,'I'gz[I, (gz/2) —I,(gz/2)]e * '. (40)

In the low-gain limit (gz« 1) this result reduces

to the spontaneous scattering intensity in Eq.
(33), while in the high-gain limit (gz» 1) it be-
comes [using Eq. (36}]

r
Iz(z, ~}= .,~, e '.

2(zgz)' ' (41)

This result verifies that g, given by Eq. (32}, is
properly identified as the steady-state gain co-
efficient. The dependence on the factor (zgz) '~'

is reminiscent of the semiclassical result for
the steady-state Raman amplifier, in the case of

a broad-band laser. "
The total number of Stokes photons per pulse

Nz(z, T~) is given in steady-state simply by

8
hJ

H

cp 2
O

C

C

0

I/)

(a)

Ngz& T~) —7'~Iz(z, ~) . (42)

The analytic expressions [Eqs. (40) and (42)] are
plotted in Figs. 2 and 3 and are seen to be good

approximations for large times (I'r& gz).
In Fig. (4) the steady-state Stokes intensity

Iz(z, ~) given by Eq. (40), is plotted as a function

of gz, the number of gain lengths in the medium.

The transition from spontaneous (linear) growth

to stimulated (expontential-like) growth is clearly
demonstrated.

Igz) =I~ dO MA+gIz,d do'

dz
(43)

where the first term describes the spontaneous

scattering and the second term describes the

stimulated growth, with the steady-state gain
coefficient g given by Eq. (32). With the initial
condition Iz(z =0) =0, corresponding to no Stokes
photons at the input of the gain medium, the
solution of Eq. (43) is

1dz| =(I dll Nd/d)(zz —1). ' (44}

This solution may be rewritten, using Eqs. (26)

D. Phenomenological photon rate equations

It is instructive to compare the present result

Eq. (40) for the steady-state SRS intensity with that

resulting from the standard predictions of pheno-

menological photon rate equations, "in which

Stokes photons produced by spontaneous Raman

scattering act as a source for exponential-type
stimulated buildup. Consider a pencil- shaped

excitation region with area A and length L, with

A «J', but with an arbitrary Fresnel number

6:=A/XzL. The intensity Iz(z) of Stokes emis-
sion into the small forward solid angle dO

=A/L'« I obeys approximately the following

phenomenological rate equation:

0
log (gz)

FIG. 4. Steady-state Stokes intensity as a hction of

gr . Curve (a) is the QED result given by Eq. (40), while

curve (b) is the photon rate equation result given by Eq.
(46). The curves show the transition from linear, spon-

taneous growth to exponential (quasiexponential), stim-

ulated growth.

and (32) as

I,(z) = (A/X, L)'(r/2}(e" —1), (45)

showing that the "source term, " proportional to

(e ' —1), is independent of laser intensity Iz, and

spontaneous scattering cross section do/dD. In

fact, to within a factor of m, the source term just
corresponds to the number of field modes of a
single polarization contained within the volume

AL, solid angle A/L', and bandwidth 2I', multi-

plied by & photon.
When the Fresnel number is equal to one, Eq.

(45) reduces to

Igz) =-,'I'(e" —1), (46)

IV. SPECTRUM OF RAMAN SCATTERING
IN STEADY STATE

The power spectrum of Raman scattering is
an important physical quantity which depends

strongly on the quantum-statistical nature of the

generated radiation, as well as on the statistical
properties of the (classical) incident laser field.
The power spectrum Pz(u&) will be defined as

which is plotted in Fig. 4, and is seen to be in

fairly close agreement with the present result

Eq. (40). This qualitative agreement strengthens

our confidence in the results of the present theory.
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PJ~} = —Re e '"'(Ac/2zk(ds)
r

x(Es'(z, r+s)E&'~(z, q))ds, (47}

The power spectrum of the laser, as determined
by the phase-diffusion autocorrelation function in

Eq. (30), is

Jh

where (Es ~(z, 7+s)E~z'~(z, r)) is the stationary
autocorrelation function of the Stokes field, and
~ is the frequency as measured from the frequency
a&s of the carrier wave. The brackets () now in-
dicate both a quantum expectation value and a
classical average over the ensemble of laser
phases. The integral of the power spectrum over
all frequencies is normalized to yield the steady-
state Stokes intensity

(48}

Ac fE, P F,/v
2zlf(u~ (u'+ F2z ' (49)

where here e is the frequency as measured from
QPg,

In the steady-state limit (I'r» 1) only the term
proportional to F (z', r') in the expression (19)
for E's ~(z, r} contributes to the spectrum Ps((d),
since we are assuming that no Stokes radiation is
externally incident on the gain medium at z = 0.
Using Eqs. (19), (18), and (30) the Stokes spec-
trum is found to be

p, ( ) =(a('/2w}Re J dse
0

7 g

x dt dxe ' 'I,([ax(t+s)]' ')I,((axt)' '),
0 0

(50)

where a =4z, z, ps'= 2Fg, and we have used t= & —r' and x =z -z'. The integration in x may be carried
out -to yield

( /&(=(r/ &Re J use &" '""
0

CO

~, 1
dt e~r~ —([az(t+ s)] / I,([az(t+s)) )Io((azt)' 2)

0

—(azt}'~1,((azt)' ') I,([az(t+s)]' ')) . (51)

A. Spectrum of spontaneous Raman scattering

The spontaneous, or low-gain, limit occurs
when gz = az/2I'« l. In this case the exponential
functions e '"' and e "' in Eq. (51) are sharply
peaked at t =s =0, compared to the Bessel func-
tions which behave as

I,(x) ~1, I,(x) ~x/2 (52)

for x«1. Using these approximations in Eq. (51)
leads to

(F+F,}/zPs(e) = —,
' Fgz ++(F+F }, (53)

which shows the known result" that spontaneous
Raman scattering has a spectral width given by
the sum of the Raman linewidth F and the laser
bandwidth F~.

This expression will be used to evaluate the Stokes
spectrum in several limiting cases.

B. Spectrum of SRS with a narrow-band laser

When the laser bandwidth F~ is much smaller
than the Raman linewidth I; Eq. (53) indicates
that in the low-gain limit the spontaneous scat-
tering has a Lorentzian half width of I'. We show

here that when the gain becomes high, gain nar-
rowing distorts the Lorentzian line shape by

amplifying the center part of the Stokes line more
strongly than the line wings.

Consider the case that Fz «F and gz = az/2I'» l.
Using the first term in Eq. (36) for the Bessel
functions of large argument and the variable change
r = t+s, Eq. (51) is approximated as

Ps((d) = Re dr dte'"t' "~r
2g'

e OCrp~ -p& (4g+j)e
(rt)1/2(P/2 + gild)

(54)

where the integral xs meant to be carried out only
over the region near the point r=t=az/4t', where
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the integrand is sharply peaked. Since the factor
[(rt}& '(r' '+t' ')] ' is slowly varying in this re-
gion, it can be pulled out of the integral and re-
placed by its value at the peak, 2I /az. The
remaining integral can be performed by noting
that the integrand is invariant under interchange
of r and t, combined with complex conjugation,
allowing Pst, &u) to be written as

P ((o) = dre '"" e&"dr& -rRF3 " ]„' x/2

2m'az

pS

1 e"exp ]-gz2r (56)

where the last step follows because the halfwidth
[F2/gz]'I' of the exponential factor is much less
than F when gz is large. Using Eq. (41) for the

I

(55)

This integral may be evaluated approximately by
extending the lower limit to —~, to give

steady-state high-gain Stokes intensity Igz, ~),
this result is rewritten as

J'z(tz} =tz(z, ) ( .))ett)tl)- R. d'), (57)

C. Spectrum of SRS with broad-band laser

When the laser bandwidth j. ~ is much larger
than the Raman linewidth F, Eq. (53) indicates
that in the low-gain limit the spontaneous scat-
tering has a width of I'&. We show here that
this result holds also for high gains.

Consider the case that I'~»F, az. In this
case the integrand in Eq. (51) is significantly
different from zero only along the line s =0,
where the Bessel functions are slowly varying
in s compared to exp[ (i&a+-F~)s], allowing them
to be pulled out of the s integral at s =0. This
leads to

which obeys the normalization condition (48), and
which describes a gain-narrowed line profile.
This result is similar to that found in the semi-
classical treatment of a Raman amplifier with a
very broad-band input Stokes wave. "

pdtz')=(Rez/zz) Ref dec t' ' t fdtz ''t'(1'((ezt} t }—I', (('z'zt)'z)],
0 0

(58}

which is simple to evaluate by recognizing the t
integral as exactly the steady-state Stokes inten-
sity as given in Eq. (39). Hence,

I
the output Stokes intensity

Igz) = Is(0)e", (60)

(59)

This result shows that SRS has the same spectrum
as the laser [see Eq. (49)] when the spectrum of
the laser is broader than that of the molecular
transition.

V. DISCUSSION

where Is(0) is the intensity at the input of the
amplifying medium. The standard connection
between single-atom spontaneous scattering and
Raman amplification is made by comparing Eq.
(60) with the result (45) obtained from photon rate
equations. When the Fresnel number 9'&=A/XsL

is equal is unity, Eq. (46) indicates that one may
identify

(61)

In summary, we have presented a quantum-
mechanical theory of stimulated Raman scattering
which unifies the treatment of the spontaneous
initiation and the spatial propagation of SRS.
Using a collective atomic operator formalism and

a one-dimensional propagation approximation,
we have derived an expression, Eq. (19), for the
Stokes field operator E&s '(z, r}, and have obtained
from it Stokes intensities and power spectra for
various circumstances.

It is interesting to compare the present results
for Raman generation with earlier semiclassical
results for Raman amPltfication. The familiar
semiclassical theory" gives in steady state for

to be an effective source term for the initiation of
Raman scattering at high gains in the absence of
an input Stokes field. This source term should
be compared with the present result found from
Eq. (41):

Is(0) ——,
'

F(&&gz) 'i', (62)

which is seen to be a factor (&&gz)'~R less than the
standard result. Although this factor is relatively
unimportant when exp(gz) is very large, its form
is interesting since it is very similar to that ob-
tained in a semiclassical treatment of the amplifi-
cation of a broad-band input Stokes wave (with
bandwidth Fs» I') in the presence of a narrow-
band pump laser (F~ =0)"
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fg(z) =Is(0)(I'/I'z)(vgz) '~Z". (63)

One may thus conjecture that the factor (wgz) '~'

arises in the present treatment because the
spontaneous Stokes scattering, which acts as the
source term, has a nonzero bandwidth, equal
[as seen in Eq. (53)) to the Raman linewidth I'.
In fact, if Iz(0) is taken to be given by the
standard result (61) and I'z is taken to be equal
to F, then the semiclassical amplifier intensity
(63) agrees exactly with the generator intensity
(41}. A similar equivalence holds in the transient
case (I'T&=1)."

Another point, which has received a lot of at-
tention, "'""is the dependence of the Raman
gain on the bandwidth F~ of the laser. It was
shown in Ref. 13 that at low gains the amPlifier
gain is suppressed by a large phase-diffusion
laser bandwidth, while at high gains the effects
of the bandwidth are negligible. In contrast, it
has been found here (Sec. IIIB) that the generator'
gain is exactly independent of such a bandwidth
for arbitrary gains. One may rationalize this by
saying that the spontaneous noise which initiates
the process has all possible frequency components,
and so that part of the noise which has the proper
phase relationship with the broad-band laser is
"picked out" and amplified. ""'" The study of the
effects of laser bandwidth arising from amplitude
fluctuations is made difficult by the complex way
in which the amplitude ~E~(v) ( appears in Eqs.
(24) and (20).

Finally, the strong connection between the
present work and recent theoretical work" '" on
two-level superfluorescence will be discussed.
The operator Maxwell-Bloch equation (16) for
the Raman problem is identical in form to that
obtained in the superfluorescence problem, "
when the two-level atoms are assumed to be
predominantly in their excited states, making a
linearized theory valid. In contrast to the super-
fluorescence problem, in which the linearized
theory breaks down at long times due to the
movement of the atoms to their ground states,
the Raman problem has a regime which can be
described by the linearized theory for all times
and arbitrary gains. This occurs in the low-
signal gain limit treated in the present work,
where it is assumed that level )1} and the laser
remain undepleted. This means that stimulated

Raman scattering is properly identified as a
particular case of superfluorescence, involving
collective atomic behavior initiated by quantum
fluctuations. In this case the coupling between
the effective inverted medium and the spontaneous
radiation field may be thought of as being:"turned
on" by the presence of the laser field. Super-
fluorescent effects in Raman scattering have
been discussed previously, ""'" but with spatial
propagation neglected.
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APPENDIX A: SLOWLY VARYING OPERATOR
EQUATIONS

t
(i) =8 (0}e nsi i df e mi &-&')

0

x (d E(t")[8„(t')—8 (f')] +d E(f')Q(f')e s ' '} (A4)

When this expression is substituted into Eq. (Al), only those terms which oscillate near the frequency &d„
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need to be retained. For example, the o,(0} term does not contribute, while the following term has a
part which does:

t
i-P d„, dt'e'"~&~' ' d, E(t)E(t')[Cr»(t') —Cr (t')] = i«,*-E z(t) Es~(t)[8»(t) —o (t)]e'"'",

ol 0
(A5)

where «, is given in Eq. (7). This result is found

by noting that of the sixteen terms arising from
E(t)E(t'), only two contribute,

P,(z, t) =
~ P,(r', t)d'~8

Ez(t)e z'Es' (t')e '" s' + Ez(t')e'"z'E~z+~(t)e'" s'

(A6)

corresponding to the two time orderings shown
in Fig. 1. The integral in Eq. (A5) is carried out
adiabatically, since +gy E8 y oyy and + are
slowly varying compared to exp(iru, t). The term
in Eq. (A4) containing Q contributes only a Stark
shift term which we neglect. Carrying out a
similar procedure for 0, leads to the adiabatic
equation for ogy,

31 31 31 «1 ELEs e (d oss) (A7)

=Ng«,*Ez(z, t)Q (z, t)e' " ' 's'

+H.a. , (A11)

in agreement with Eq. (15).

APPENDIX B: SOLUTION OF MMAVELL-BLOCH
EQUATIONS

Here a method will be presented for solving
equations of the form of Eq. (16), i.e.,

+ — E(z, t) = i«, Q(-z, t)A(z, t), (Bl}
(8 1 8

The final simplification comes by making a
linearization assumption. If the atom never de-
parts significantly fram its initial state ~1},
then o» -o'33 may be replaced by the unit opera-
tor "Equ. ation (AV) [with the exp(-ikz) factors
reincluded] then leads directly to Eq. (5).

The form of the macroscopic polarization
operator given in Eq. (15) follows from a similar
adiabatic treatment. The polarization is defined
as

8
Q(z, t) = —1'Q(z, t) +i«,A*(z, t)E(z, t)

+Pz, t). (B&)

8
E(z, r} = i«, Q(z, 7-}A(r), (B3)

Changing variables to r = t z/c, and as-suming
that A(z, t) depends only on r, gives

Ps(r, t) = g P s(t}5'(r —r ), (A8) a
Q(z, r) =-1'Q(z, r)+i«, A*(r)E(z, r)

P =g g (d,o, +d d )+H.a. (A9)

Substituting Eq. (A4) for 6' „and a similar re-
sult for c~ into this expression, and retaining
only those terms which oscillate at ~8, leads to

where P gt) is the polarization resulting from an
atom located at r

+F(z, r}. (B4}

The values of the function E(z =0, 7) and Q(z, v=0)
are assumed known.

We will use a Laplace transform technique to
solve Eqs. (B3) and (B4). Reimann's method has
been employed" for equations of nearly identical
form [without the F(z, r) term]. Define e(z, v) to
be the Laplace transfarm of E(z, 7)

e(s, r) =Z(E(z, 7))
P~ -tf«EgQ e'&"s~-ss'&+H. a.1 (A10}

A term corresponding to a background refractive
index for the Stokes wave has been neglected.
The macroscopic polarization, averaged over the
volume 4Vof a transverse slice at z may then
be found:

e ~E z, 7)dz,
0

and similarly

&(s, 7) =&(Q(z, &)],

(B5)

(B6)
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f(s, r) = & {E(z,r)].

Then Eq. (B3) leads to

e(s, r) =s '[E(0, r) —i«,q(s, r)A(r)],

(BV)

(B8)

and

q(e, o) =&{9(z,o)),

7

a(r) = «,«, (A(r'). )'dr".
0

(B11)

(B12)

and Eq. (B4), along with the above result (BS),
leads to

q(s, r) =[ r+-s '«, «, (A(r) (']q(s, r)

where

7
+ d7'8. I -r~7 7 ) S I.N(7)-~(7')]

0

x [is '«&A*(r')E(0, r)+f(&, r')],

(B10)

+is '«, A*(r)E(0, r) +f(e, r), (B9)

which may be solved to give

q(s, r) =q(s, 0)e "'e'
(B13}

This result for e(s, r) may be inverse-transformed,
with the aid of the Laplace convolution theorem
and the known transform of the modified Bessel
function"

g{(z/a)"&'1((4az)'~')] =s o'+'&e~ "
to yield

(B14)

Substituting this solution (B10) into (BS) gives
for e(s, r)

e(s, r)=s 'E(0, r) —i«, A(r)e q(s, O)s 'e'
7

+A(r) dr'e &'~ &e' C'&'& '~' &l

0

x [s «&«2A+(r )E(0p )-is «If (s T'}].

4

E(z, r) =E(0, r) —i «,A(r)e "' dz'i&&(z'0}I,([4(z -z')a(r}]' ')
0

+(c,s,g)'i'A(vlf dr'e ~i' ' A (r )E(or)', '
0 a r —a r

7 g
—i«, A(r) dr' dz'e ' ' &+(z', r') I, ({4(z-z')[a(r)—a(r')]]'~') .

0 0
(B15)

This verifies the solution given in Eq. (19}of the Maxwell-Bloch equations Eq. (16).
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