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The spontaneous and induced emission from a free-electron laser is treated for the case
in which an axial magnetic field is imposed in addition to the helical, axially periodic
wiggler magnetic field. The classes of possible single-particle trajectories in this config-

uration are discussed, and the results are applied to a calculation of the incoherent radia-

tion from a beam of relativistic electrons in the system. The coherent radiation is treated

by solving the Vlasov-Maxwell equations for the hnear gain in the tenuous-beam limit,
where the beam plasma frequency is much less than the radiation frequency and self-field

effects can be ignored.

I. INTRODUCTION

Recent experiments' 3 have amply demonstrated
the usefulness of the free-electron laser as a tunable
source of coherent submillimeter radiation, and
have stimulated interest in a variety of experimen-
tal configurations. Theoretical work in this re-

gard has concentrated on the case in which a,rela-
tively low-density {i.e., self-field effects are negligi-
ble}, relativistic electron beam is propagated
through a periodic helically symmetric magnetic
field, referred to as the "wiggler" field. In the
beam frame the wiggler field appears as a back-
wards propagating electromagnetic wave, and radi-
ation is produced by means of coherent scattering
of this wave off electrostatic fluctuations in the
beam. Another configuration employed is one in
which an axial guide field is present, and is used

principally, but not exclusively, in the regime in
which electron densities and currents are sufHcient-

ly high that the axial field is required to contain
the beam against the effects of the self-fields.
Theoretical analyses of the coherent radiation
mechanism in this regime have begun to appear in

the literature for this configuration as well.
It is our purpose in this work to treat both the

coherent and incoherent radiation from a free-

electron-laser configuration which contains an axial
guide field in the low-density limit. Full relativis-
tic effects are included, but the self-fields of the
beam are neglected. The principal application of
this study to existing experiments is the Stanford
University free-electron laser' in which a low-

current (-2-A), high-energy (24—43-MeV) beam

was injected into a drift tube in which an axial
guide field of 1 kG and a wiggler field of about 2.4
kG were applied. In this regime collective beam
eAects are negligible.

The organization of the paper is as follows. In
Sec. II, we discuss the single-particle trajectories of
electrons in a magnetic field geometry composed of
a combined axial guide field and helical wiggler
field. The incoherent, spontaneous emission spec-
trum is calculated in Sec. III using test-particle
techniques, and the linear gain is found in Sec. IV
in the limit of a low-density beam. In treating a
low-density beam, we restrict the analysis of the
linear gain to the small-signal regime but provide a
fully kinetic derivation of the gain based upon the
Vlasov-Maxwell equations. This is in contrast to
the work of Kwan and Dawson and Bernstein and
Friedland' in which collective effects due to high
beam density were included in the context of a
fluid theory of the interaction. The small-signal

gain has also been considered by Friedland and
Hirschfield" by means of a fluid analysis. Thus,
we provide a fully kinetic expression for the small-

signal gain and an extensive description of the
parametric dependence of the gain in the cold-
beam limit. A summary and discussion is given in
Sec. V.

II. SINGLE-PARTICLE TRAJECTORIES

The wiggler field is generally due to a helical
current winding and the resultant field can be
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shown, in a self-consistent way, to be of the
form' '

B=Boe,+B~(r,z),

where the wiggler field is derived from a vector po-
tential of the form

rotation of an electron in a uniform magnetic field.
By means of these constants, the problem can be
reduced to the solution nf a single nonlinear dif-
ferential equation for v 3,

'2
dx +4(x}=0,
d7

2BwAw=-
k

I,(k„r}cos(8—k z}e„
1

kwr

I i (k~r—) sin{8—k~z}es, {2)

where

x:—P3 —Po, r=Qot/2,

P3 vp /c, Po =Qo/k~c

in cylindrical coordinates. In Eq. (2), B~ and k
(—=2e/A, ~, where A, is the wiggler period) are as-
sumed to be constant, and I1 and I1 are the modi-
fied Bessel function of the first kind and its deriva-
tive, respectively. In most free-electron-laser exper-
iments, however, the initial beam radius is a small
fraction of the wiggler period, and expansion in

powers of k r yields

B B (e cosk~z+e~sink z} . (3}

Rather than work in the laboratory frame, we
choose to transform to the frame rotating with the
wiggler field. To this end we define

e 1
——e„cosk„z +e„sink z,

e2 ———e sink z+e~cosk z,
A
e3 ——e»

and write the orbit equations corresponding to the
field structure given in (1}and (3) in the form

ui ——vz(k~u3 Qo)

vi = —Q~us —Ui(k~v3 —Qo),

V3 =Qwv2,

(4)

where Qo= [ eBo/ymc ~, Q =
( eB /ymc ~, and

y—:( I —u /c } '~ . Since the total energy is a
conserved quantity, v —=v1+v2+v3 is a constant
of the motion and Eqs. (4) are fully relativistic.
The principal benefit derived from this transforma-
tion is that the equations of motion are now coor-
dinate independent, and depend only on the com-
ponents of the velocity and their derivatives.

In addition to the total energy, a second constant
of the motion can be found by elimination of v2
from (4); specifically, u —=vi —k (v3 —Qo/k ) /2Q„.
This is analogous to the axial invariant discussed
by Davidson and Uhm, ' which in the B ~ limit
implies that the axial velocity is conserved and de-
fines the rotating frame to be that of the Larmor

4{x)= x +4epo{&po+Pu)xi+8@ Pox

+4e'P'o(p'o+PN' P,'}—
e=B~/Bo, p„=v/c, and p„=a/c. Note that Eq.
(5} has the trivial solution x =0 (i.e., vq ——const) in
the limit of a uniform axial magnetic field (B~~)

A detailed discussion of the solutions of Eq. (5}
has been given by Freund and Drobot'; however,
we restrict our attention here to solutions corre-
sponding to relatively uniform axial velocities. The
reason for this is that the radiation mechanism is a
resonant one in which the emission frequency is
given by co 2y, k u3, where y, =(1—uq/c )

As a result, variations in the axial velocity of the
order of EU3 lead to a broadening of the emission
spectrum which scales as Aced-2y, k hv3. Thus,
while small oscillations in U3 about some bulk axial
velocity lead to a relatively narrow bandwidth,
large oscillations can result in spectral broadening
with a corresponding decrease in the linear gain.

The conditions which lead to small oscillations
in the axial velocity can be investigated by con-
sideration of the roots of the pseudopotential 4{x).
Physically meaningful (i.e., real) solutions are pos-
sible only when 4 &0; therefore, the real roots of
the pseudopotential correspond to the bounds on
the oscillation about some bulk axial velocity {de-
fined by the local minimum in 4 between the
roots). The typical character of the pseudopoten-
tial when e & 1 and Po& I is shown in Fig. l. In
this regime, the pseudopotential has two real roots
which for given values of e, Po, and u shift in both
position and spacing with variations in p„within
some fixed range. The extrema in the range of P„
occur when the real roots of 4 are degenerate, and
correspond to solutions with constant axial veloci-
t 15,16

&wvllV1�-
=kw�v 0

U2 =0,
U3=vll,
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4 (x)

--32

those with uniform axial velocities. Because of
this, two electrons which are characterized by only

slightly different values of P„and which are close

together at some point will not undergo a large
separation in the course of their orbits. To be
more specific, an initially bunched electron beam
will tend to remain bunched. This describes an
"orbitally stable" uniform-v3 solution, in the sense
discussed by Friedland. ' A quantitative test for
orbital stability can be expressed in the form

Q=-11.6 P ~ ~ 0.008

4.08

12 4.00 -2.96
4 (x)

2= 2 2
where the axial velocity v~~ is given by v =vi +v3
for some choice of the total energy.

The values of P3{=Pp+x) corresponding to the
real roots of 4 are shown in Fig. 2 versus P„ for
@=0.1, and Pp ——1 and 4. Thus, the figure
describes the bounds on the oscillations in the axial

velocity for given P„. It is iinportant to recognize
that small deviations in P„ from the extrema result

in trajectories which do not differ greatly from

~ -0.008

FIG. 1. Graph of the pseudopotential 4 versus x for
@=0.1, v/c =0.97, and several values of Pp.

E p &1,
(vii/c —Pp)

which (since v~~ &c) is trivially satisfied for the
uniform-vi trajectories when Pp & l.

In contrast, when Pp is less than unity the pseu-

dopotential can have as many as four real roots,
and as many as four uniform-v3 orbits appear. An
example of this is shown in Fig. 3, where we plot

P3 corresponding to the roots versus P„ for a=0. 1,
and Pp=0. 5 and 1. The orbits with uniform axial

velocity correspond to the points of vertical slope
in the figure, and when Pp=0. 5, four such trajec-
tories appear. Three of these orbits are stable;
however, the trajectory corresponding to point A in

the figure represents a fundamentally diA'erent class
of solutions than the other three. The behavior of
the pseudopotential for values of P„ in the vicinity

of a stable orbit is shown in Fig. 1. In contrast,
the behavior of 4 with P„ in the vicinity of point
A is shown in Fig. 4 in which the uniform-v3 tra-

jectory is obtained when the central maximum is
zero. Arbitrarily small deviations from this condi-

- 0.5
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40
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-10 0

FIG. 2. Graph of the bounds on the axial velocity

versus p„ for a=0.1, u/c =0.97, and p0 ——, .=1 4.
FIG. 3. Graph of the bounds on the axial velocity

versus p„ for @=0.1, v/e =0.97, and p0=0. 5, 1.
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C =0.1

0.97

0.5

-0.5

FIG. 4. Graph showing the variation of the pseudo-
potential with p„ in the vicinity of an orbitally unstable
uniform-u 3 trajectory.

tion result in drastically different types of trajecto-
ry with large fluctuations in the axial velocity.
Such uniform-V3 trajectories are referred to as be-
ing "orbitally unstable, " since a bunched electron
beam with a spread in the axial invariant in the vi-
cinity of point A will rapidly disperse.

As po decreases further, the range of p„ in which
possesses four real roots increases, as shown in

Fig. 5 for Po ——0.1. In Particular, the high axial
velocity, uniform-v3 trajectory for motion parallel
to Bo becomes more Pronounced as Po decreases
further relative to e. This characteristic of the
solutions in the small-Po regime exists even where
e & 1 (see Fig. 6). Finally, we conclude that the re-
quirement that electrons propagate with relatively
small fluctuations in axial velocity is most dificult
to satisfy when po-1. The natural corollary,
therefore, that extremely broadbanded emission will
occur in this regime is supported by observa-
tion 17' 18

In order to treat cases of nearly uniform axial
velocity we implicitly restrict consideration to tra-
jectories corresponding to the stable uniform-v3
solutions. In this limit, we can write approximate
solutions for the momenta in the laboratory frame

p„= cosk z +P cosQpt Py sinQg
Qwp

Qp —k V
I I

Qwp//
py

—— sink~z +Pz sinQpt +Py cosQpt
Qp —k~v(i

Q~ (7)

p, =p~~ — [P cos(k~z —Qot)
Qp —k vii

P» sin(k z ——Qor)],

= 0.1
& = O.97
C
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FIG. 5. GraPh of the bounds on the axial velocity versus P„ for e=O I, v/c =0.97, a.nd Ps —O. l.
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D.S

T/2I'= —lim —f dt f d x E(x, t) J(x,t),
T~m T

(9)
where E(x,t) denotes the microscopic radiation
field, and

Nb

J(x,t)= —e g vj(t)5(x —xj(t)) (10)

-a.s

is the source current composed of the sum of the
microscopic currents due to all Nb electrons in the
beam during the interaction time —T/2 & t & T/2.
The radiated power can be expressed in terms of
the Fourier amplitudes of the microscopic fields
and source currents in the following manner:

&=—2(2n') lim —f d k f dc0Re{E& „J& „),

-1
0

FIG. 6. Graph of the bounds on the axial velocity
versus P„ for e=3, v/c =0 97, an. d Po ——0.01.

where the asterisk (~) denotes the complex conju-
gate, and the Fourier amplitude is defined as

fk „—f dsk f dcoexp(irot —ik x)f(x, t) .

where pll ~ an» are approximate constants of
the motion, and vll

—=pll/ym. Observe that in the
limit of a vanishing axial guide field, Eqs. (7} re-
cover the well-known result in which P„and P»
are the canonical momenta in the transverse direc-
tion. This approximation remains valid as long as
P„+P» «p ll, and the total momentum is given
by

Q
2 2 2 W 2

p =P+P + 1+ pll
(Qp —k~vii)

to within terms of order e . The form of these tra-
jectories is shown schematically in Fig. 7. Particle
motion predominantly follows the helical wiggler,
but also contains a small component of Larmor
procession due to the axial field.

III. SPONTANEOUS EMISSION

The time-averaged radiated power P can be corn-
puted by means of the equation

B+B0

A self-consistent relation between the fields and
source currents depends upon the dielectric proper-
ties of the beam, and can be written as

4ri-.E~ — I~
k, N k, N k, gp

(12)

(co —ck )

As a result, if the emissivity g(co, Qg) is defined to
be the power radiated per unit frequency and
volume into the solid angle Qg subtended by k,
then we find

2

g(a), Qg) =(2m)
Vc3

where the dispersion tensor

A-„„=(1 n}I+n—kk+V-„„, (13)

n(=ck/co) is the index of refraction, I is the unit
dyadic k = k /

I
k I, and Vz „is the beam dielectric

tensor. For the case of a diffuse beam, in which
the radiation frequency greatly exceeds the electron
plasma frequency, Vz „ I and (12) can be inverted

to give

FIG. 7. Schematic representation of the single-
particle trajectories.

x lim (
I Jk, I' —

I
k'

~, I )k= /

(15)
where V is the total volume of the interaction re-
gion. The radiation spectrum, therefore, can be
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determined from (15) with a knowledge of the
single-particle orbits (7}necessary to compute the
source current.

Using the trajectories in (7), we find that after
transforming to the frame (eg = cos|Ie +singe„,

l

e~ = —singe„+cosine», and tansy( =k»/k„) in which

k =kyeg+k, e,

[ki ——(k„+k» )' ], the source current is

II, sin[(co k,—vi'(' (I—+n)k vi'(' (m——n)QOI')T/2]
lim g exp{ —ik xo ) ~

) (') (')(2e) r I=i l, m, n= — v[I0 'ku—
i( (I+n)k ui( (m n)—Q/ ]

x exp[ibi'l' sin(p'1' —f}—im (p' ' —ll )]

X exp[ib'I'sin(k zIII' —p) —il (k zv'I' —g)]

X exp[ib i'(' sin(kmzI'll' Itl'I'—) in {—k zol' —p' ')],
where xo defines the initial position of the jth electron,

f'I' =tan '(P» /P„), b'I'= k, Q—ml'/km (QII
' kmu—I(' ), b il' —=kl V,'I'/Qd",

b,'I'= k, Vgl'—Q'I'/(Q&f' kmu i'('—), and V) =(P, +P» —)/ym .

In addition,

Ik v'l'+mQI}" J (b'I')J (b,' ')e, +i [u'J'J; (b' ')J (b ' ')+ V' 'J (b' ')J' (b ' ')]ep

(16)

+ u '(' — Jl(b"')J (bp'}e,
n(QdI' —k.v' ')

(17)

2 2 b ceN
00

q(~, Q~)= ',
2mc V j=l l, pp, p= — I',~',n'= —m

(j) (j) (j) (j)
bl nl++n 8m,-'n, m'' —n'{ Imn I'm'n' k' /lmnk ~l'm'n')

where u —=Q uii/(Qv —k uii), and J» and J~' are the regular Bessel function of the first kind and its deriva-

tive, respectively. In computing the quadratic forms of the source current which appear in the emissivity

(15), we impose a random-phase approximation to obtain

X5(co—k,vi'(' —(I+n)k vi'(' —(m n)Qg')k—(18)

e2 2 b ao

ri(co, Qg)
, 2mc Vj ) I~

We treat the emissivity in the limit in which b,' ' « 1, which is generally valid as long as

2y, ePp( Vg/uii )« 1. When this condition is satisfied the dominant terms in (18}are those for which
n =n'=0, and the emissivity takes on the relatively simple form

Ik„u '('+m Qg'
cosg(J)sing J(b(J))J(b(J))

k I m

+ [v ' 'J,'(b' ')J (bi~')+ VP'J (b' ')J' (bP )]

X5(lv —k, ui'(' —Ik vi'(' —mQI}")k (19)

where 8—:cos '(k e, ) is the polar angle between the wave vector and the axial guide field.
We now convert the discrete sum over individual electrons in (18) and (19), into a continuous integral



24 COHERENT AND INCOHERENT RADIATION FROM 1971

Nb
over the beatn distribution function by making the replacement V ' g .&~ns f dP„dP&dp Fs, where

ns =Ns/V, and the beam distribution Fs is assumed to be a function of (P„,P„,p) As a consequence

2 2 2
e nba' lk u~~+mQO

r)(~, Qg) 3 f dP dPydpFs g „cos v—
~~

sine J( (b)J (bg)

+ [v~Jg (b)J~(bg)+ VgJ((b)J~(bg)]

/5(cg —k, u~~
—lk u~~

—mQO)k (20)

where u~~ is determined by means of Eq. (8). Since (8) is, in general, a quartic polynomial for u~~, care must
be exercised in selecting the appropriate root. In the limit of propagation parallel to the axial guide field,

(20) reduces to the comparatively simple form

2 2 2 2
e nb u~ Vj

rl(co, Qg, ) -f dp„dp„dpF& 25[co (k +k—~) v~~] + z
5(co kv—

~~

—Qo)
27TC C C k =co/c

(21)

Thus, the incoherent radiation corresponding to the usual free-electron-laser resonance at co-2y, k u~~ scales

as u~. The emission at the cyclotron resonance is expected to be much less intense in this regime in which it
is required that V1 & v~ in the derivation of the relativistic trajectories (7).

In order to illustrate typical noise levels and spectra to be expected in the course of operation of a free-

electron laser we assume a distribution of the form F(P„,P„,p) =nb5(P„)5(P~)Gb(p), and model the variation
in total momentum with a distribution of the form

Gb(p) = hp 1

(P —Po)'+ &P
'

where po characterizes the bulk momentum in the beam and hp describes the momentum spread. Note that
since P„=Pz——0, the component of the motion describing Larmor rotation is assumed to be negligible, and
the noise spectrum is predominantly associated with the free-electron-laser resonance. As a consequence, the
emissivity is of the form

m~b ~4 (1+u h) hu
rl(co, Qg; )= 2 2 28n k c (ca+k c) (Poyo —u~h) (u~h —uo) +6u

(22)

where cob =one nb/m, hu =hp/mc, uo=pp/mc, and

1+0 /k c
k c 1+2'/k c

As an example, we shall evaluate the emissivity (22) for a 1-A electron beam characterized by a bulk ener-

gy of 1.4 MeV with a 3% energy spread and a 3-cm beam radius. The beam density, therefore, is approxi-
mately nb 1&10 cm . In addition, we shall assume the wiggler amplitude and period to be 700 G and 3
cm, respectively, and the axial guide field to be 15 kG. The resulting noise spectrum is shown in Fig. 8.
The peak intensity is of the order of 0.013 pW Hz ' cm and occurs at a frequency of approximately 240
GHz with a half-width of 6%.

IV. COHERENT EMISSION

In this section we derive the linearized gain by
solution of the Vlasov-Maxwell equations. If the

distribution is written as the sum of equilibrium
and fluctuating components fs(z, p, t) =Fs(P»P»p)
+5fb(z, p, t), then the formal solution of the
Vlasov equation for the perturbed distribution is
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0.010-

Nx

0.005-

to first order in the radiation fields, where the solu-

tion is parametrized in terms of the axial distance
from the start of the interaction region (at z =0),

z
and t(z):tv—+ dz'l v, (z') is the sum of the time

0
required for an electron to traverse the distance
and the entry time t0. The transverse components
of the trajectory, therefore, are written in the form

p„=p cosk~z +P„cosQot(z) —P~ sinQot(z), and

pz ——p~ sink z +P„sinQot (z) +Pz cosQot (z).
We assume plane-wave solutions of the form

exp(icot) and choose to work with scalar and vector
potentials of the form

Q(z, t}=2 5$(z) exp{ itot—)+cc.
I

15 25 35
and

Cie/kwc

FIG. 8. Graph of the emissivity versus frequency for
propagation parallel to the axial guide field.

dz t t
5fb(z, p, t (z))= eI, 5E(z', t (z')

o v, (z')
BF

+—v(z') X5B(z', t(z'}).
C ap(z )

(23)

5A(z, t) = , 5A (z—)exp( i cot}—+cc.
where it is evident that e, 5A=O. After transfor-

mation to the basis e+ ———,(e„+ie~), therefore, the

perturbed distribution can be written as

5fb(z, p, r(z)) =5fb{z,p) exp[ itot(—z)]+c.c.,

where

5f (z, p }=—I dz', '
[ cp, (z')5—,5$(z')+i'(p (z')5A (z')+p (z')5A {z')]]-e *,exp[i toe(z, z'))

2c 0 v (z'} p ~p

+ exp[i Qvt (z')][i to —v, (z'}5, ]5A+ (z') +ia . a

Fb (P„,Py,p),+exp[ i Qt(oz')]—[iso v, (z')8,—]5A {z') i-a a

z

p+ —=p +ipse, 5A+ = , (5A ~i5A&), and —(zr,z')= I, zd"Iv, z(") .

Using {24) the perturbed current,

5J {z,t}=[5J+{z)e++5J (z)e +5J,(z)e, ]exp( icat)+c.c. , —

can be computed as follows:

(24)

5J+ p+I dP„dP„dp 5fb(z, p)5J, . m
" ~

yp,
'

pz
(25)

Since the assumption of small P„and Pz is central to the analysis, we shall adopt an equilibrium distribu-

tion of the form

Fb(P» Py p) =~b5(P» )&(P, )Gb(p),

in the interest of computational simplicity. Here„ob(p) is an arbitrary function of the magnitude of the

momentum subject only to the normalization dp pGb(p)/p, =1. Using (26), we find the perturbed
0

(26)
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currents

2
Q)b Oo

P p+p- p+
5J+ —— f dp exp[+iQvt(z)] 2+ 2 D++exp[+iQot(z)] 2 D+

8~c o p y pz pz

8 8 8 8
D D+p+ +i D+ +p+ —

~P
—p+ z gp

Gb(p) &

where

2
a . a a . e a+i D+ + —i D —Dz Gb(P),
Px Py x y P P„=P =0

(28)

p, =p~~[—:(p —p )' ], p+ ——p exp(+ik z), r(zz')=(z —z')/v~~, tos=4me nblm,
Qp z

D+ = —exp[+iQvt(z)] 5A+(z) —5A+(0) exp[i(to+Qo)z/v, ]+i dz'5A+(z') exp[i(to+Qo)r(z, z')]
v,

(29}

and

.z

D, = ~ f dz' exp[icos(z, z') ] —5, 5$(z')+ 5A+ (z') + 5A (z')
p 0 c p,

+
p,

(30}

for Pz Py 0 The dispersion equations are ob-

tained by using these perturbed currents in the
wave equations:

8 ~ 477
5,'+, 5A, (z)=— 5J, ,

c

5,@.)= ' '5J, .
67

(31)

We are primarily interested in the low-gain,

tenuous-beam limit in which cob &&co and the wave

amplitudes vary little over the length of the in-

teraction region. This is the regime appropriate to
the experiments conducted at Stanford Universi-

ty. ' In this regime collective effects are unimpor-

tant and the space-charge potential can be neglect-
I

where
~

1mk+(z) [ &&
~ Rek+(z) ~

. Under the as-

sumption that k+(z) =k +5k+(z), where k is in-

dependent of axial position and
~ 5k+ (z)/k

~
&& 1,

the dispersion equation becomes

and

k' ~'/c'=0 (33)

I
ed. In addition, the coupling between the elec-
tromagnetic modes described by 53+ and 5A

scales with p„/p, . However, the assumption of
low gain implies that this parameter is small, and

we can focus attention on one or the other of these
modes exclusively. We choose to consider 5A+,
which in the low-gain regime can be represented as

5A+(z)=5A+(0) exp i f dz'k+(z'), (32)

cob, 2 Sin(co/V)) —k —k )z
Im5k+(z) —

2 f dp. —,mcoP
2kc /v)

)

— —
N p

p Pw to Qp
+

yp, 2 k v))
—Qp rg —(k+kl)v))

Q) —Qp1—
k v))

—Qp

Qp
2

sin(co/v)) —k —k )z
(k v))

—Qp m —Qp —kv)))

2

1+ 1
yp 2 k v —Qp

Q) —kv
)) sin(co/v

II Qp/v)
I

—k)z Gb(p),~—Qp —kv))

(34)
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+ p P
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co —Qo1—
2Vll kwVll Qp

where P =p /p, . This result reduces to that found by Sprangle and Smith" in the limit of a vanishing axi-
al magnetic Geld.

The total gain over an interaction region of length L is defined as GL =—— dz Im5k+(z). Integrating
0

(34), therefore, we find

p2
1+ 1+

. wVll +0

QOL sin Hs
8g+ 7

"ll 8g
(35)

where 8 —= (co/u~~ —k k)L/2—and Hs
——(co/u)( —Qp/v() —k)L/2. If the beam is sufficiently cold that a dis-

tribution of the form

Gb 4» = &(P —Po)— (36)

can be used, then the total gain becomes

cob L }Hw0 co L
2k 7 2 4

'2

CO —Qp1—
kwVll0 0

2 2
yzQPwoQO 8 Hwo

you i{
Q (1+P )—k
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Qp{ 1+pwp) —kwv[(p 2kwu~~0

CO Qp QOL 1 sin8 p+ 1+
kwvllp Qp co 2vllo Hgo 8wo

sinOwo

8wo

1+ 1+Pwo

2 kw vll0 0
QOL 1 sin Hgp1+
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(37}

In Eq. (37},

y
—=(1+p /m c ) ) 0—= (1—u)y/c ) p 0=p plp{{p, —

2 = 2 2 2
two —=Qwp

[ [0/( Qo —kw v

and

sin8wp

8wp
(38)

pllp and vllp( =pllp/p~)

are determined by the appropriate solution to pp ——pwp+p lip. It is clear from (37), therefore, that wave am-
plification can occur, in principle, for frequencies corresponding to both the usual free-electron-laser reso-
nance [co (k+k )v{~0] and the Doppler-shifted gyroresonance (co=QO+ku~~o).

If the pump period is short compared to the length of the system, the gain for frequencies co=(k +k )vllp
is dominated by first term in (37),

cubL k y, (P OQO
GL Pw0 2 2 1 —

2
0

16yoy oui{0 Q (1+P o) —k u((p i}8

The extrema occur for 8wp +1.3 at which 8 (sin8 p/8„p) /88 p +0.54, which correspond to frequencies
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co—2&@0k~v I!0(1+2 6/kwL)

and peak gains

2

(GL ) ~=+0.068P~p q i (k~L) 1—
yok~c

2 2r.oPwoQo

Qp(1+P~p) —k~v()p

(39}

(40)

where the plus or minus sign must be chosen to
give a positive gain in (40}. These expressions for
the gain are similar to those found previous-

ly ' in the limit of zero axial field. The prin-
cipal differences between this result and those
found previously are that (1) gain can occur for
both frequencies shown in (39), and (2) a singulari-

ty is introduced for k~v~~p —Qp(1+P~p), which im-

plies that the effect of the axial guide field can be
to substantially enhance the small-signal gain over
the case in which no guide field is present. Note,
however, that the singularity is a product of our
choice of a monoenergetic beam. The inclusion of
an energy spread can be expected to broaden the
resonance and remove the singularity.

We now focus on the effect of the axial magnetic
field on the gain for the free-electron-laser reso-
nance. If 6 denotes the ratio of the gain in the
presence of an axial guide field to the appropriate
expression in the limit Bp~ then it follows that

, e P. +(p I )[++(p —I)'yp ']-
p2 , (41)

l~ —(V —1}'1[~+()Li—1}')'o ']
where p=k ullp/Qp and vllo must be computed in
a self-consistent manner to recover the constant-u3
solutions in (5). As a result, 6 can be expressed as
a function of e, P„, and Pp (where the choice of
constant-vq solutions implicitly selects P„). With
these considerations in mind we plot 6 vs Pp for
fixed values of total electron energy and wiggler
period and amplitude in Fig. 9(c). We shall re-
strict consideration to stable uniform-v3 trajectories
propagating parallel to the axial guide field. We
choose P„=0.97 and Q /k~c =0 07 and p. lot the
variation in v~~p with Pp in Fig 9(a). Evidently
there is a stable high axial velocity trajectory (orbit
I) in the low-Pp regime ( &0.72 for the chosen

parameters), as well as a trajectory which varies
widely in magnitude with Pp (orbit II). Since the
frequency of the amplified modes scale approxi-
mately as vllo, an electron beam characterized by
trajectories in group I can be expected to excite
high-frequency waves for all accessible values of Pp.
In contrast, trajectories in group II can give rise to
a wide spectrum of oscillations and, for the chosen
parameters, and high-frequency waves will result

I

only for Pp& 1. This is clearly shown in Fig. 9(b)
in which we plot the resonant frequency versus Pp
for both classes of orbits. The significant feature
which we are concerned with, however, is the effect
of the axial guide field on the small-signal gain.
To this end, we plot 6 vs Po in Fig. 9(c) for the
stated parameters. We observe, first, that 6 & 1

throughout the entire range of Pp accessible to or-

bits in group I and, hence, the gain is enhanced re-

lative to the zero axial field (Pp—A} limit. In addi-

tion, significant enhancements in the gain are pos-
sible near the indicated resonance at

Pp ——(1+@ ) 'v~~p/c, (42)

which is the orbital stability boundary discussed
previously in the regime in which Pp & v~~p/c. The
resonance condition is not found for orbits in
group II, however, since Pp & v~~p/c for all such tra-
jectories. Indeed, 6 vanishes for pp 1.39 in the
range of axial fields studied. Enhancement in the
gain for these orbits occur only for limited ranges
of Pp. A significant enhancement is found in the
low-Po regime (i.e., 0.1 & Pp & 1.34},but corre-
sponds to comparatively low-frequency waves [see
Fig 9(b)]. E. nhancements in the gain for high-
frequency waves is found only for a limited range
of axial field strengths (1.45 & Po & 1.8},but is at
most of the order of 35%.

The enhancement in the gain for axial fields
such that Pp is of the order of unity is readily ex-
plained from consideration of the behavior of v~.
It is clear that for axial fields in which Qo-k vila
(i.e., Pp-1) large enhancements in the wiggle velo-
city v occur. This is the source in the enhance-
ments in the gain. However, as Bo continues to in-
crease u = ullo, and the wiggle velocity decreases
relative to that found in the zero axial field limit.

In the absence of an axial guide field the small-
signal gain scales as the square of the wiggler am-
plitude (i.e., Q~/k~c ) which is also the square of
the wiggle velocity. However, for finite values of
the axial guide field this variation is more complex
and the gain does not increase monotonically with
either Q /k c or the wiggle velocity. This situa-
tion is illustrated in Fig. 10, in which we plot the
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peak gain (solid line} and frequency corresponding
to peak gain (dashed line) versus 0 /k c for

Po ——1.13 and v/c =0.96. For small values of this
parameter the gain does indeed scale as the square
of the wiggler amplitude, but a peak occurs at
0 /k~e 0.012 after which the gain rapidly drops

to zero. In addition, the frequency monotonically

decreases throughout. Note that while Q~/k~c
does not equal the wiggle velocity in the presence

of an axial field, the decreasing frequency implies a
decreasing axial velocity which, in turn, leads to an

increasing wiggle velocity. This is illustrated more

clearly in Fig. 11 in which we plot the variation in

the axial velocity versus 0„/k~c for v/c =0.96
and Pe=0.75 and 1.13. For Po ——1.13 all orbits are

of the group-II class and the axial velocity is a de-

creasing function of 0 /k c over the range stu-

died. Since this means that the wiggle velocity in-

creases with the wiggler amplitude over this range,

viio 05
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FIG. 9. Graphs of axial velocity, and resonant fre-

quencies and enhancements in the gain for stable trajec-
tories versus Pp for v/c =0.97 and 0 /k c =0.07.

I

0.5
0

FIG. 11. Graph of the axial velocity versus 0 /k c
for U/c =0.96, and Po——0.75 and 1.13.
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it must be concluded that the small-signal gain
cannot necessarily be increased by a simple
enhancement in the wiggle velocity.

For sufficiently smaller values of Po, group-I or-
bits appear (see Fig. 11 for Po=0.75) over a limit-
ed range of wiggler field amplitudes. The peak
gain (as well as the corresponding frequency) for
this case is shown in Fig. 12, and describes the fre-

quency and gain associated with the group-I orbits.
We have restricted consideration to group-I orbits,
because while group-II orbits also lead to growth,

the gain is weaker and the frequency is relatively
low (co & 8k c). For these orbits, the gain is seen
to increase with increasing wiggle velocity, and the
singularity mentioned previously is also found at
the transition to orbital instability. It should be
remarked, however, that the small-signal approxi-
mation breaks down in the vicinity of the singulari-

ty.
The gain for gyroresonant emission is given by

(CO QQ+ kU
((Q )

coo LQo P o1+ 1+
3'QU((Q 2 k U((Q

—QQ

sin OgQ

2
HgQ

(43)

for a long interaction region (kwL » 1), and

growth is possible if k Ul(Q & QQ and
cob Pwo ( +ullo~ )1 zo+0+kw

(GL)m,„2 0 —k2$Qc

C

(Qo kwullo)

(k +kw)u
(44)

Peak amplification occurs at the maximum of
(sinO~Q/O~Q) =1, which corresponds to a frequency

+kUIIQ an peak gain

(45)

The variation of the peak gain and associated
frequency for gyroresonant emission with axial
field strength are shown in Fig. 13 for parameters
consistent with the calculation of the frequency and
peak gain at the free-electron-laser resonance
presented in Fig. 9. Gyroresonant emission is
found only for group-II orbits and, as expected, the
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frequency increases with increasing Po. In con-

trast, the gain is found to decrease with increasing
axial field strengths. The large increase in the gain

as Po approaches zero results from the fact that v~~0

also vanishes in this limit. However, the small-

signal-gain approximation breaks down in this lim-

it, and nonlinear effects can be expected to produce
enhancements lower than expected on the basis of
the linearized theory.

V. SUMMARY AND DISCUSSION

In this work, we have considered both the spon-
taneous and induced emission from a free-electron
laser in which a uniform axial guide field is
present. The existence of the axial field is found to
introduce an additional source of coupling between
the axial and transverse electron motion which, for
sufficiently strong field levels (44}, can lead to orbi-
tal instability for motion parallel to Bp. Since the
existence of orbital instability results in a rapid
dispersal of an initially bunched electron beam
with disastrous implications for the expected radia-
tion levels, we focus attention on the parameter re-
gimes corresponding to orbital stability and orbits
characterized by nearly uniform axial velocities.
The predominant transverse motion of these orbits
is to track the wiggler field; however, a relatively
small component of Larmor rotation associated
with the guide field may also be present. Because
of this, emission can be expected for both the free-
electron laser and gyrotron resonance conditions.

The spontaneous emission describes the ambient
level of noise within the device prior to the
coherent amplification process. As shown in Eq.
(21), the spontaneous emissivity for waves pro-
pagating axially contains components due to the
transverse motion resulting from the action of the
wiggler and axial guide fields. In each case the
level of emission is proportional to the square of
the magnitude of the transverse velocities. This

velocity corresponds to the canonical momentum
in the transverse direction for the gyrotron mode
(~ Qp+kv~~), and to the wiggler velocity v for
the free-electron-laser mode [co (k +k)v~~]. It
should be recognized that the presence of a finite

Bp leads to an enhancement in v~ and, consequent-

ly, in the free-electron-laser emissivity by a factor
of (Qp/k v~~

—1) . As discussed in Sec. IV, the
limit in which Qp ——k~v~~ is not achievable.

Enhancement in the linearized {or small-signal}

gain are also expected to result when an axial guide
field is present. For the tenuous-beam, low-gain

regime the enhancement of the gain is expected to
be greatest for parameters in the vicinity of the
transition to orbital instability (denoted by the
dashed line in Fig. 9},which corresponds to a
beam characterized by orbital stability. In order
for the analysis to be valid for orbitally stable
beams, however, stringent requirements on beam

quality must be satisfied because a small energy
spread can lead to a rapid breakdown in the coher
ence of the beam. In addition, the small-signal-

gain approximation must break down in the vicini

ty of the resonance (i.e., the transition to orbital
instability}. Finally, significant enhancements in
the gain are expected to occur for low-wavelength
oscillations only in the low-Po regime.
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