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Motivated by recent experiments on second-harmonic generation in three-level systems [K. S. Yngvesson and E. L.
Kollberg, Appl. Phys. Lett. 36, 104 (1980)], a semiclassical description of resonant three-wave parametric

interactions in three nondegenerate levels is considered. Within the limitations of the rotating-wave approximation,

analytical nonperturbative solutions for the nonlinear polarization are derived, which are then coupled to Maxwell's

equations and integrated numerically. The results of sample calculations for second-harmonic generation show (a) a

maximum harmonic conversion occurs on full resonance, (b) the conversion efficiency can be & 50% but requires a

strongly saturating pump, (c) the conversion distance increases with pumping intensity, and (d) the inclusion of ac

Stark splittings is crucial for the achievement of high conversion efficiency. The role of level splittings is further

explored for the case of a resonant parametric oscillator.

I. INTRODUCTION

Optical second-harmonic generation, the first
optical nonlinearity to be observed, is a standard
multiplication technique used from the infrared to
the ultraviolet. ' Although usually discussed from
the standpoint of a bulk nonlinear susceptibility,
the process can be described in terms of a multi-
photon parametric int'eraction, in which case the
explicit matrix element and transition detuning de-
pendences can be seen. ~' For the case of bulk
nonlinearities in transparent media, the nonlinear
coefficients are small because the detunings, in

general, are very large. In contrast, there are
some candidate systems for which the waves may
be at or near resonance so that a resonant en-
hancement or increase in the nonlinear coefficient
occurs. An example is seen in the studies on two-

photon resonant, optical second- and third- har-
monic generation in gases. ~ '

In the case of optical second-harmonic genera-
tion, situations involving resonant enhancement
have been noted in paramagnetic spin systems
tuned by external magnetic fields. Kellington was
the first to explore this effect in room-tempera-
ture ruby samples pumped at 9.4 QHz. In subse-
quent studies on this system, the line shapes and
interference effects due to thermally populated
states were observed. ' Very recently, Yngvesson
and Kollberg have studied resonantly enhanced
second-harmonic generation in iron-doped rutile
pumped at 24 GHz. ' The interesting aspects of
their experiment are the observation of a conver-
sion efficiency of 10 4 obtained at full resonance
and the saturation achieved at a modest pumping
power of -10 mW. Closely related to these are a
number of different observations of resonant dif-
ference frequency generation in ruby, most notably
by Inaba and Hidaka, "and in chromium-doped rutile

by Dathe et al. '2

Unlike bulk second- harmonic generation for which
full conversion is known to be possible under phase-
matched conditions, there have been relatively few
studies directed at the limits of second-harmonic
generation under resonant conditions. 2'' In a now-
classic paper, Clogston initially addressed this
problem from a maser standpoint but ultimately
treated the case of a parametric oscillator with a
strong pump but weak signal and idler fields. '4

From a multiphoton single-atom interaction treat-
ment, Senitzky concluded that resonant sum-fre-
quency generation and second-harmonic generation
should be possible. ' In apparent support of Kel-
lington's observations, Andresen and co-workers
derived the nonlinear susceptibility in a perturba-
tion limit and showed the origin of the interfer-
ence effect in terms of contributions from excited
states. ' ' Bloembergen and Shen considered this
problem in general but ultimately solved Clog-
ston's parametric case for a strong pump and
weak signal and idler waves. " They also indicated
some of the multitude of processes present near

. resonance by expressing their result in terms of
one- and two-photon (naman) interactions and a
parametric interaction. Voskanyan et al. have
considered the case of resonant second-harmonic
generation and derived a correct parametric result
valid for a strong pump but weak harmonic. s They
did not consider the one- and two-photon processes
which occur under the same conditions. Hans ch
and Toschek treated parametric interactions from
a perturbation standpoint and pointed out the multi-
pole moment requirements for the observation of
such effects in systems which possess a center of
inversion. ' There have been many other treat-
ments of parametric interactions involving two in-
put fields (difference frequency mixing) in the per-
turbation limit~' 9'+ and by Javan and Szoke in the
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strong-pump but weak-signal-field limit. " The
general treatment valid for arbitrary field inten-
sities and including propagation effects has not
been presented.

In this paper we address, theoretically, reso-
nantly enhanced second-harmonic generation in
three-level systems. Our motivation for this study
is based on the remarkable observation by Yng-
vesson and Kollberg and on the lack of a complete
treatment of this problem, including propagation.
The treatment is naturally resolved into the deter-
mination of the relevant nonlinear polarizations
due to the presence of all waves and to the coupling
to and effect of these polarizations on the propa-
gating fields. The treatment differs from others
in the inclusion of propagation effects and in the
lack of restrictions on the field intensities. In the
next section, we outline the solutions for the non-
linear polarizations which are derived from a
semiclassical density-matrix approach in a non-
perturbative limit valid for near resonant tuning
conditions. Section GI addresses local solutions
illustrating perturbative and selected nonperturba- .
tive limits of resonant second-harmonic generation.
Section IV addresses propagation and the details of
the limitations on the conversion which, in general,
can be quite high, & 50%. This is followed by a
synopsis of the paper and conclusions.

II. BASIC EQUATIONS

The linkage diagram appropriate to near reso-
nant three-wave parametric interactions is shown
in Fig. 1(a). What is ultimately desired for a de-
scription of these interactions is the specification
of the nonlinear polarizations associated with each
wave in terms of the relevant matrix elements,
detunings, fields, and populations. Given these,
the relative strengths of the interaction can be
determined from a suitable field description based
on Maxwell's equations. In what follows, we shall
recast a density-matrix description of this system
into a form from which partial analytical solutions
will be derived. By this, we mean that the solu-
tions will be comprised of products of coefficients

and populations. The coefficients are obtained
analytically but the populations are determined
numerically except for selected limits. With these
results, the relevant spectroscopy of the system
can be studied algebraically but the conversion dy-
namics have to be considered numerically. The
solutions will be discussed more fully in the next
section for the specific case of second-harmonic
generation for which E,(&u,) =E,(ur, ) and &o3 2(0 f.

Shown in Fig. 2 is an illustration of the number
of different processes which can exist under near
resonant tuning conditions. The parametric gain
will be seen later to share the same matrix ele-
ments and detunings as the two-photon absorption
coefficient of the two waves creating the gain. The
latter process is known to be a maximum on two-
photon and one-photon resonance; that is, when the
two waves are exactly on line center. " Under
these conditions, the parametric gain is a maxi-
mum but the parametrically generated field is
exactly on one-photon resonance and would ex-
perience a strong loss. To compensate for this,
the pump fields may be increased causing two ef-
fects to ultimately occur: population saturation
and level splittings. Both effects have been cori-
sidered previously for the serial two-wave prob-
lem. + In particular, one strong saturating
wave is known to split the two coupled states into
a doublet, Autler- Townes splitting, 2 experimen-
tally observed, '2 whereas two strong waves will
split the three coupled states into a triplet.

(a)

(b)

&(w&)

n„(z)

(b)

,(x)

(c)

FIG. l. (a) Linkage diagram for three-wave parame-
tric interactions in a three-level system. (b) Equivalent
linkage diagram in (a) expressed in terms of Rabi fre-
quencies, A&&, and detunings X=Q2&- ~&, Y=Q32 fd2,
and Z = Q3& —~3 in the near resonant tuning case.

FIG. 2. Interactions involving (a) one, (b) two, and

(c) three waves. Not shown are virtual transitions in-
volving ordered pairs of these.
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Of interest here is subsequent transitions between
the upper and lower triplet manifolds, parametric
transitions involving the triplets, and multiplet
effects associated with a strong parametric field.
These conditions and effects imply that all pro-
cesses shown in Fig. 2 are important necessitating
a nonperturbative analysis. Such an analysis can
be made tractable with the use of a semiclassical
approach in conjunction with selected approxima-
tions, most notably the rotating wave approxima-
tion.

The density matrix p can be resolved into two

distinct, but not unrelated, elements, diagonal
elements p«, which are fractional populations,
and off-diagonal elements, p, &, which control ob-
servables. Separate equations of motion for these
follow from p= [H, p]/iN and are

~ Pij Pfi ~~ p;, lT» E —P,, Ep„(1)

1 ~ p;tsar, tsar' E —p tts' Ep g

po '0 p
T jf

(2)

where 7 «and T&& are phenomenological Tf and

T2 parameters, p«are equilibrium diagonal ele-
ments, 0;& ——(E; —E&)/N, and electric dipole inter-
actions are assumed. '

We assume that the system under consideration
has mixed parity so that matrix elements exist
between all states but that matrix elements of the
form p, ;, can be ignored since these do not cause
transitions. With these and the linkage diagram of
Fig. 1, Eq. (2) can be evaluated for the three off-
diagonal elements pf„p23, and pf, yielding the
equations of motion

+& I:(u3-ru 2) t- (43-%2)& l
P12

p po e t (tu 2t -tf 2+ )
23 23

+ 4 g tC(fsl tsl f) t (A3 kf)a']
P23~

f3 g&&(4s 1+4s2~ t-(41+&2&~&
P13 —P13

+ P4 ~t(tss3t AP)
13

(6)

where p';& are constants to be determined. ' With

these, the most general reductions of Eqs. (3)-(5)
occurs when (d34 (d f+QP2.

Equations (3)-(5) are subsequently reduced to a
set of algebraic equations by substituting in Eqs.
(6)- (8), multiplying by the appropriate conjugate
phase factors and using a short time average to
eliminate rapidly oscillating terms. The resulting
algebraic equations, twelve in number, are ex-
pressed in terms of complex Habi frequencies A f2

isIS i&'/2}s A ss ti ss IS,, & 2/2K, A is

pe $38 3e' 3/2 h and co mpl ex d etunings defined as

Lf2 — f2+ 1 / f2'

L23
——Q23+W2- /T2»

4Lf3= Q13+ M3 —Z/ T 13

and are

12 Q12 3 2 ~ 12&

Lss——Ass+ ~s —~,—s/i'ss

Lis = Qis+ Mi+ %2 —i/r1s

time-independent amplitudes with implicit space
dependence and polarization ~, . Consistent with
the near resonant nature of the interaction, we
assume that, for example, +f is sufficiently close
to Q2f so that the dominant Fourier coeff icients of

p12 are at ~f and ~3- ~2. Using this observation
and the rotating-wave approximation, the dominant
Fourier contribution to p;& can be identified as

~a e&(ssft-aft. &

P 12 P12

p&s
———(iA,s+ 1/s») pis

+[(p„-pss)ti„E+p, swiss E —pssti, s E]/iN»

Pss =- (igss+ 1/ass) Pss

[(pss pss)) ss E psip'is E pist s1

(4)

L12pi 2
—pssA is —p tsAss (pi 1 p ss)A12 ~

4 4 sg

L12P12 P32A13 P f3A23 &

sspss p13Ais p21Als (pss pss)Ass&

-c
L23 P23 P f3A12 P2fA f3 s

is ips pssA1 2 pisAss ~

fs P is Pss 12 P12Ass (P11 Pss)A is '

(9)

(10)

(11)

(12)

(13)

(14)

Pis —(iQ&s + 1/vis) Pis

+ [(p„-pss) ti is. E +p isg ss. E - pis ti „E]/iN,

and where p~; =p;~ follows from the Hermiticity of
P.

Next, we assume an optical-like interaction in-
volving copropagating traveling waves by setting

3

E= 8& cos(&o&t —k&z+ 8;),
i=i

where 8& are arbitrary phase factors and 8, are

The remaining six equations are the complex:con-
jugate terms. For these, the complex detuning is
defined as the negative of the conjugate detuning,
fOr example, L21———L f2 SO that

2ip2i (Ptl Pss)Ats PssA1s ps1Ass'

The solution to this set of equations in which pop-
ulation differences appear as independent variables
is listed in Appendix A.

The next step in the calculation involves the
determination of the populations under the influence

of the fields. For the linkage diagram in Fig. 1,
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the population equations, Eq. (1), become

611=- (P«p-'11}/&11

+21m(pssi111 E+pfs}ass E)/k=O,

p22 (p22 P22)/Tss

+2Im(pss}sss E —Pssgss E)/K=O,

Pss (Pss Pss)/~ss

—2Im(P1s s1 E+Pss

(15)

(16)

nodes are connected by branches, each of which
has a branch weight equal to a Babi frequency.
Each dependent variable node has an associated
node weight equal to the complex detuning bearing
the node label. Thus, the signal flow graph is a
representation of the system of equations, Eqs.
(9}-(14),of the form

(node weight) x (off-diagonal element)

ranch weight
Using Eqs. (6)-(8}and a short time average, the
three driving terms in these equations become

pss}ss1 ~ / pss 11+p11 ssF
«I

p23~32 E~+ p23A23 p23A23

Psst s1 E/g pfsA~1s pss+fs 1

(18)

(19)

(20}

where a phase factor F has been defined as

F=exp(s[((os —(o, —1ds)t (ks--k, —ks}z]j. (21}

The factor J' clearly labels the parametric terms
in Eqs. (18)- (20) and simply expresses the familiar
degradation of the interaction if conservation of
energy and momentum are both not satisfied be-
tween, the interacting waves.

The solutions to Eqs. (15)-(17), which are per-
formed numerically, are then used to determine
the specific value of the off-diagonal elements
under the influence of the three fields at some
space point. Given these, the macroscopic polar-
ization which drives the waves is found, as an
observable, from P =NTr(pp) where N is the
number density of three-level systems. Since P
is real& the relevant complex polarizations are
P& ——Np2», 2, P2=Np, 32p23, and P3=Np, 3,p&3 where
p, l are given in Eqs. (6)-(8}. Each polarization is
thus seen to be comprised of parametric and non-
parametric contributions. Before discussing the
coupling of these polarizations to the waves, the
multiphoton nature of the interaction in terms of
saturation and level splittings will be illustrated.

&& (density-matrix element),

where the arrow on the branch points from the
nodes on the right-hand side of this equation to
that on the left.

Aside from the ability to visualize a system of
equations, one virtue of the signal flow graph is
that a solution may be obtained directly from the
graph using a set of simple rules and algorithms. 33

In our sense, a solution means expressing some
off-diagonal element in terms of relevant diagonal

III. LOCAL SOLUTIONS

Some insight into the relevant dynamics of the
interactions can be gained by considering spatially
localized solutions evaluated at z =0. For the case
of a growth of $3, what is desired is P3 ——Np, 3f p f3
where p„ is given in Eq. (8). The various contribu-
tions to p, s implied by Eqs. (9)-(14) can be ap-
preciated by representing these equations and the
conjugate equations in the form of a signal flow

graph introduced earlier for this application.
The signal flow graph appropriate to these equa-

tions is shown in Fig. 3. The nodes represent the
dependent variables (off-diagonal elements) and
independent variables (diagonal elements). The

FIG. 3. S.gnal flow graph representation of Eqs. (9)-
(14). The nodes are labeled according to the density-
matrix elements and have an implied node weight equal
to the complex detuning associated with the off-diagonal
element. The Rabi frequencies are branch weights re-
ferring to the solid arrow. The open arrows refer to a
branch weight equal. to the conjugate of the indicated
branch weights.
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elements and some algebraic function entailing the
Rabi frequencies and detunings. The solutions
listed in Appendix A were in fact obtained from
this graph using the rules listed elsewhere. 33 For
our purpose here, we only consider the local solu-
tions appropriate to a weak harmonic for both
strong and weak pumping fields with the general
case listed in Appendix A.

Associated with each branch is a "gain" or
branch gain defined as the ratio of the branch
weight to the terminal node weight. For example,
in the lower part of the graph, the branch gain for
the path 13'-12' is —A»/L'„while the reverse
branch gain for the path 12'-13~ is —A»/L, B. A

general path is comprised of a sequence of con-
nected branches which may or may not be closed.
A path gain is simply the product of branch gains.
A solution is ultimately constructed by summing
over all paths which connect a diagonal node to
the off-diagonal node under consideration. Since
closed paths may be traversed an infinite number
of times, the solution expressed in closed form
is equivalent to infinite order perturbation theory
which necessarily includes strong-field level
shifts and splittings.

These paths touch nodes 124, 13', and 23' which
are also common to the two-photon transition

l 1)—l3) so Eq. (24} is seen to be comprised of two-
photon-like parts. The result in Eq. (24), which
was previously derived by Andresen et al. ' and
by Voskanyan et al. ,

9 is one of twelve possible con-
tributions to the overa11 nonlinear susceptibility
derived earlier by a diagrammatic perturbation
technique. 3 However, because of the near reso-
nant nature of the interaction, the result shown in
this equation is the dominant term. The presence
of the complex detunings shows that one resonant
enhancement occurs when the pump is at least on
two-photon resonance, 0» ——2~&. If p« ——p«
a second resonant enhancement condition occurs
when the pump is also on one-photon resonance,
Q2 f (0 f If p „=p'„w 1, then the two terms in the
bracket may interfere causing a local minimum in
the nonlinear susceptibility with pump detuning.
This interference effect has been predicted and
discussed earlier and also observed experimen-

lly ?e8.9s i6

If p« ——p'« ——1, p;, approaches a maximum value
of

p ~p (po e'lmlllf0 +p5 eiklpt} (22}

From Fig. 3, p~» is seen to be connected to the
diagonal nodes via one- and three-branch paths.
The former represents the one-photon transition
l1) —l3) while the latter represents two-photon
or Raman transitions for example

l 1) —l2). The
perturbation limit for these is simply

d A18(PM P ff} A13 A12( Pf1 P22}
2

L L L L'
13 13 23 21

A13 A23( P22- P3$}
2

L i3L',2L»

in which the first term is the one-photon term.
For the parametric term, p'&3, the shortest path
is comprised of two branches yielding

(23}

s Af&28 (Pff P22} (P22 P3$}
3 Lo Lo Lo

13 i2 23
(24}

A. Perturbation limit

The full perturbation limit can be achieved by
considering only the contributions to the off-di-
agonal nodes associated with the shortest paths.
Although the formalism presented so far is appli-
cable to harmonic generation, sum and difference
frequency generation, and parametric oscillators,
we specialize at this point to the specific case of
second-harmonic generation by setting &&

——~2,
gf —g„k,=k„and 8, = 8,=0. What is thus de-
sired is

which shows that the nonlinear polarization may
be increased by increasing the pump field. This
increase will eventually saturate due to two rea-
sons; population saturation and strong-field level
splittings to be discussed next.

B. Strong-pump limit

The strong-pump limit is obtained by adding to
the previous solutions, contributions from higher-
order (longer} paths with branch weights equal to
A f 2 or A23 This involves only closed pat hs of t he
form 13'-23'- 13' which are equivalent to virtual
transitions. ' '4 The summation converges to a
continued fraction form and can be solved for di-
rectly using the graph algebra or deduced from
the general solution in Appendix A in the limit A f3~0

If the pump is strong and near resonance, states
ll), l2), and l3) are tightly coupled and each
splits into a triplet. 3' '~ Transitions associated
with ~3 will then be between the upper and lower
triplet manifolds. An important feature of the
solutions is the inclusion of the location and
strength of the transition between these dressed
states as will now be shown.

We find it convenient to decompose p&3 into one-
photon p» l, and two-photon-like P,3 l, contribu-
tions. In the limit A&3-0, terms lowest order
in A&3 are retained so that the one-photon result
becomes
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3 I
A 13(p33 p11)

P1311 A2 A2
12 23

f3 Lb Lb Lb Lb
13 23 13 12

(25}

which is modified slightly from the equivalent
term in Eq. (23}.. The implication of this result
can be seen by treating 83 as a tunable probe wave
by setting as a variable Z = 0»- &u3 [see Fig. 1(b)
for the field and detuning notation]. Resonances
sensed by 83 then occur at detunings, Z, for which
the denominator in Eq. (25} becomes purely com-
plex, or the real part becomes zero. To deduce
the location of these resonances, set X= 02f + f
and Y= 032- ~f and recast the denominator of Eq.
(25) into an algebraic equation by setting the i/T2
terms to zero; the so-called sharp-line limit.
With these, resonances are the roots of

Z(Z —X)(Z- Y) —A12(Z —Y) —A23(Z- X)=0, (26)
I

Z= 031—~3 —+ (A12+A23)2 2 1/2 (27)

which is the two-photon analog of Autler- Townes
splitting. ' This result is very significant because
it shows that at full resonance, the jl)-~3) tran-
sition is split into a doublet, thus minimizing ab-
sorption of the growing harmonic whi. ch satisfied
the parametric resonance condition on line center,
Z=O. ' This conclusion is independent of the
values of p;; in Eq. (25).

Similarly, the two-photon contributions can be
obtained as

which is clearly cubic implying at most three
resonances. If the pump is on two-photon and one-
photon resonance (X= 1'=0), the roots are simple
to obtain and are

-b Aia A 12 1 Af2 AiA23 12 2 2 2

P1312= (Ptt P22) L4 L3 L3 L4 L4 L4 L4 t 3 L3
21 23 13 31 32 31 32 12 13-

A13 A23 A23 A12A23
2 2 2 2

L4 L' L3 L3
32 12 13 21 31 31 21 23 13-

(26)

where

A = (1 —A 23/L21L31 A12/L31L32)

&( (1 —A12/L23L 13 A23/L 13L12}.
These again are modifications of the form shown
in Eq. (23} and have resonances which are similar
to those just discussed.

Finally, the parametric term can be reduced to

I

the multiplier to this equation saturates at one-
half. Therefore the saturated value of p'» will be
controlled predominantly by the saturated values
of the populations. The population term may, de-
pending on conditions, saturate at a positive or
negative value or even be zero. As a simple ex-
ample, if all matrix elements T, and T, values are
equal, the parametric term can be evaluated from
Eqs. (B1) and (B2) and shown to saturate to

(ou- og ) (()» u))-P13= Le La Le
13 12 23

P13 4 [(Ptt P22) (P22 P33)l ) (31)

X 2 2A„A1,
L12L13 L 13L23

(29)
and indicates that even under fully saturated con-
ditions, the parametric contribution does not nec-
essarily di.sappear and that temperature reduces
the magnitude of the coefficient.

-a Af2A2aT f3T f2P13=- 2
A23T 12T 13 Af 2T f3T 23

2

P 22~ P22 P33~ ~
T23
T f2

(30)

For roughly equal matrix elements and T2 values,

This equation was also derived by Voskanyan et
ul. , e but evaluated by them in the perturbation limit
by setting A,'~-0. Since the detunings in this equa-
tion are independent of Z, this function has an im-
plied parametric resonance when ~3=2+ 1 or 2
=X+ Y. Both numerator and denominator are pro-
portional to Sf so that in the strong field limit p13
must saturate. This can be seen for the case of
full resonance for which

t . Variable scans

The relevant dynamics implied by the multiphoton
nature of the interaction, including saturation, can
be further illustrated with graphs of the off-diag-
onal elements. For these we simply take all T,
and T2 values equal and specify all frequencies and
detunings in units of T,. Of interest are the ab-
sorption, dispersion, and parametric contributions
under various pumping field conditions, but for a
weak harmonic. For the nonparametric term, p f3,
from Eq. (20) it can be seen that the absolute phase
of E3 does not enter since p,3-A13. Hence, nor-
malized atbsorption and dispersion functions are
defined as the imaginary and real parts of p313/A13
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with extrema of ~1 and +0.5, respectively. For the
parametric term, we replace F at z =0 by a Lo-
rentzian

+=e""3 "f "2"
pl (443 244f )t ~ g

Q2

((g 2(g )2+ 52 s & (32)

where 5 is chosen to be one-tenth the width of one
transition. Further, as will be seen in the next
section, the phase 8, adjusts itself so that the ab-
solute magnitude of pf3 determines the initial para-
metric field growth. This leads us to consider a
parametric function

~

p', ~g„~ in the limit as A,S-O.
The norm on this function is one-half. The three
functions are readily evaluated from Eqs. (25),
(28), and (29) using the diagonal elements deter-
mined from the numerical solution of Eqs. (15)-
(1V) outlined in Appendix B.

In Fig. 4 are shown graphs of these functions for
various pump detunings versus the co3 detuning.
The arrows on the lower part of the figure show
the location of the resonances as determined from
Eq. (26}. Figure 4(a) shows the absorption doublet

and a large parametric contribution on line center.
The dispersion is also zero on exact parametric
resonance as expected for a fully resonant situa-
tion. Figure 4(b) shows the splitting of the ab-

sorption doublet into a triplet when the pump is on

two-photon resonance only. There is now a notice-
able absorption and dispersion on parametric reso-
nance. Figure 4(c} is the case when the pump is on

one-photon resonance showing dispersion and ab-
sorption on parametric resonance. Figure 4(d) is
for no pump resonances and shows a reduction in

the magnitude of the parametric term as expected
from the considerations in the last section.

The saturation behavior is illustrated in Fig. 5
for the case of full resonance. Also shown are
the values of the diagonal elements. It is evident
that relatively low fields are required to saturate
the system and that because of saturation, the
medium is transparent to the harmonic and, most
importantly, the parametric term saturates to a
nonzero value. For reference purposes, 4(A;&T2)

=I/I„«&, where I and I„,;& are the field intensity
and saturation intensity for the ~i)-

~ j) transi-

X=o
V=00.2-

DISPERSIO

PARAMETRIC ( 0 )
0.3-

Y = -4
0.2

0.1 DISPERSION

PARAMETRIC (b)
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-0 1 -0.1
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J-0.3 I I I I
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W.3

-20
I I I I I I I I

-15 -10 -5 0 5 10 15 20
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y=4
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-20 -15

I
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RPTION
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PTION
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FIG. 4. Numerical solutions showing the dispersion, absorption, and parametric gain versus detuning Z = (03f 603)T2.
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2, so that (p»- p») —(p»- p33) —(3p;, -1)/2 which
is never zero for realistic temperatures.

Because of the saturated behavior of the para-
metric nonlinearity, it is not particularly fruitful
to speak of a susceptibility in order to appreciate
the magnitude of the effect. The magnitude can,
instead, be compared with the magnitude of the
one-photon absorption contained in p&3. This ele-
ment will be large only in the absence of the pump
and on line center. For arbitrary A», the element
is easily shown to be p, 3

——iA»p f(/(1+ 4A(3),
which has a norm of 0.25. Hence, in terms of a
nonlinear polarization, the fully resonant case can
have a second harmonic polarization as large as
the largest one-photon polarization.

The finite value of
l
p'»g„l under saturated con-

ditions is a consequence of the nonequal value of
the saturated populations. The decay and de-
phasing elements, y«and 7. ;&, are also known to
yield nonequal saturated populations when treated
as variables. ' Since the values of these pa-
rameters and the detailed form of the T& relaxation
terms in Eqs. (15)-(17) tend to become system de-
pendent, we continue to take 7.« ——7.

&z
——T2 and re-

mark that the results to follow may vary from
system to system for a fixed R„value.

The remaining terms in the p;& elements in Ap-
pendix A containing higher powers of A„must be
responsible for level shifts and splittings caused
by a strong harmonic. Selected limits can be
extracted from these equations, and will only be.
illustrated later for the case of parametric os-
cillation.

IV. EXTENDED SOLUTIONS

The results of the last section are very en-
couraging in the sense that even for the case of
saturating fields on full resonance, harmonic ab-
sorption is weak and a nominal parametric gain
exists. The next step is to consider the conversion
dynamics under propagation conditions. Although
most experiments have been performed in sample
sizes dimensionally comparable to the pump wave-
length and wherein dielectric feedback is present,
we shall investigate an optical-like situation com-
prised of two copropagating traveling waves inter-
acting in a dimensionally long sample with no host
dispersion effects. This is clearly a gross ap-
proximation to the experiments to date, but it
permits some insight to be gained into the relevant
dynamics and the strength of the conversion.

A. Propagation paradigm

For the stated model situation, propagation ef-
fects are most easily treated using Maxwell's
equations simplified by the slowly varying ampli-

i NP(( p3((~2'ph + 4~2 pa F+) (34)

where E is given by Eq. (21). In order to have an
appreciable growth, F should be real, requiring
a phase matched condition k3 —2k' and conserva-
tion of energy co3 ——2+&. In order to avoid compli-
cations of phase matching and index effects as-
sociated with the dispersion evident in Figs. 4(b)-
4(d), in what follows we shall assume a perfect
phase matched condition and that k, =k„. This
clearly oversimplifies the situation, but yields
information about the conversion under the "best
of conditions. "

With this assumption, E and F
are replaced by g„ in Eq. (32} to account for con-
servation of energy associated with the parametric
interaction. Dotting Eq. (33}with p» e3e3/3, the
harmonic field growth is thus governed by

d
l l k3IP, &3' E&l N

dz IA(31= 43~ e( '(p»+ p»g } ' j ~

(3 5)

~. Phase paradigm

The phase 83 which was introduced as an indepen-
dent parameter, has a well-defined value for pa-
rametric effects. From the simple results for
p» and p;~ in Eqs. (23) and (24), the choice of
phase has no effect on the product p~3e

' 3 because
p&3-A»-e' 3. Hence 83 is chosen such that
—ipq3g„e ' 3 is purely real and positive. In the
general case treated here, the parametric term
p» is complex so that 83 has to be specified as an
initial condition for each set of field values and

tude and phase approximations appropriate to opti-
cal interactions. With these, Maxwell's equations
reduce to a single wave equation, for an assumed
field E=8(z, t)e""' ~', given by

+ ~ + y2 I 2 g P(( NL &-((vt-hr)
a~ v, at 2" 2 at'

(33}

where k„and v~ are the high-frequency wave vec-
tor and phase velocity and where k g =0 has been
assumed. For two waves, there are two such
equations of the form of Eq. (33}which are coupled
via the nonlinear polarization, PN~. For the case
of the growth of the harmonic, 8 = g3e' 3/2,

P P A(p (PI e((2k'(( Fk(s) + p
~ e((QI3$ AP))

and the phase factor appearing on the right-hand
side of Eq. (33) is e-'"3' '3". Using these, the
driving term for g3 becomes

j IL $2P~0 NL -4(cu3t-03If)
2 at2 '
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detunings. The general complex nature of the pa-
rametric nonlinearity mas also pointed out by
Inaba for the case of resonant difference frequen-

cy mixing. ' The optimum phase can be specified
as

Im( pcs)

and has four special limits. If p~&3 is purely real
and positive (negative) &s=- v/2 (z/2}. If p'~s is
purely imaginary and positive (negative), Ss ——0
(a z). For the case of normal bulk harmonic
generation, p&3 is positive and real while for the
fully resonant. case, p» is real but of either sign
as seen in Eq. (24). Under optimum phase condi-
tions, Be(- spBgze }=IpÃgsl.

C. Pmpagation

%e find it convenient to introduce a dimension-
Ies»pace variable g=ki~l~ i. gis I'z/4)fz whtchhas
the significance that fTs = a:,sz/2 where a» is the
line center Beer's coefficient for the ~1) —~2)
transition. Thus, when the Habi frequencies axe
expressed in units of T2, g measures the distance
in units of field Beex's coefficient. In terms
of this variable, the coupled field equations
become

d~ A&3~ -o - -ie=&oIte[- (Ps& +sP& gs) szsl ~

=Ite[- (Pcs+&&sg }ssft (&'ss+&ssgR)l

(38)

=&sl~s' &»I /"il~&' &el ft =~& &sr/
e&. p, &2, and where 83 is fixed by the value at /=0
determined from Eq. (36). If all matrix elements
are equal and parallel, R = 2 and R„=1. The
graphs to follow mill shorn normalized intensities
defined as pump intensity I~ aod harmonic intensity
Ia:

Au(&)
' I&i(&) I'

A„(o) I f,(0)I' '

I Ags(f) I
' 2 I &s(f} I

'
Ass(0) 8 I g g(0} I

where 2/R in Eq. (40) scales ~A»(t')) into the
same strength units as A fs(0). With these, the in-
tensities are normalized to unity. The propagation
model is thus comprised of Eqs. (3V) and (38), the
phase paradigm in Eq. (36), and the full equations
listed in Appendices A and 8, all of mhich are in-
tegrated numerically.

Some insight into the conversion can be gained
by considering special cases for which analytical
solutions may be obtained. First, me recall the

case of normal second-harmonic generation in
transparent media under phase-matched conditions
for which the growth is governed by

Is=tanh({a ~$,{0)~z } (41)

where a is some collection of constants. 2 If the
argument is one, Is =0.58 which occurs at z = 1/
a )(S(q(0)

~
and shows that an increase in initial pump

intensity shortens the conversion distance. For
large and small arguments, I„-1and I~

(s s
I g, (0) I

sz s and shows the full conversion
capability of the process mhich has an initial para-
bolic growth. Next, consider fully resonant
second-harmonic genexation with p« ——1 and with
very weak fields. In this limit the conversion. is
expected to be small so that the pump undex goes
a simple exponential decay A fs(f) =A»(0) exp(- L}.
Using the perturbation-limit results, Eqs. (23) and

(24), for pe» and ps» in Eq. (3V) yields

2 ((,'((„A„(0)
( „,)j'Z.—2

(42)

2 B )pg~) f
8 A ps(0)

(43)

indicating a parabolic growth. The harmonic mill
continue to grow ultimately to a point where pump
depletion, saturation and hax monic field induced
level shifts become important. For sufficiently
long interaction distances, the pump mill be fully
depleted and the harmonic will decay in a lin. ear
fashion if it is saturating. All these features will.
be illustrated in the next two figures.

Some examples of the conversion of the pump
into a second harmonic are shown in Fig. 8. Fig-
ure 8(a) illustrates a R„value far to the right of
the peak in Fig. 7. In this case, A23 is so large
that the )I) —~2) and (I) —~3) transitions are
split out oX resonance with the fields leaving most
of the population in. the ground state. In this case,
the growth of t;he harmonic can be estimated di-
rectly from Eq. (43) by setting

~
p'z ~= TssA, sAss/

(1+T',A fs+ Tpisss) —0.16 yielding Is =—(0 16k)s, .
which is plotted as dots in Fig. 8(a) and illustrates

for the maximum harmonic intensity which occurs
at f =In(B /2)/(B —2). As a consequence of both
pump and harmonic absorption, the conversion dis-
tance is limited to the smaller value of the recipro-
cal Beer's coefficient for the pump or the har-
monic. For the special case of R =2, f„=l/2,
and Is= [R„A»{0)/eJ '. In the very strong pump
limit, the syste~ is saturated so that p&3- constant
and p&3-0 because of Stark splitting. The pump
will thus undergo an initial linear decay charac-
teristic of a fully saturated, homogeneously
broadened system. Since there is no absorption,
the initial harmonic gxomth is found to be given by
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FIG. 8. Numerical solution of the coupled Maxwell equations for pf&=1, X= Y=Z= 0. (a) Aj2T2-—2, R„=6 and calc,
refers to the parabolic result in Eq. (43). (b) &»T2=2, R„=2, (c) &&2T2=4, R„=2, (d) A»T2=4, R„=2, and R~=2, 8,
32 corresponding to ~3. ~3/pg2 &)=1,2, 4.

the initial parabolic growth characteristic of a
constant nonlinear polarization. As the pump and

harmonic evolve, the nature of the interaction
changes from harmonic growth to loss. For fv 7,
the harmonic now drives the system via degenerate
one-, two- and three-photon processes. The
anomalously slow decay of the pump in this region
is caused by this. The most interesting result is
in the conversion efficiency which reaches 71'
for this example.

Figures 8(b} and 8(c} illustrate the effect of an
increasing pump field on the conversion. Since
the initial pump field is saturating in both cases,
the initial harmonic intensity (~8, ~') growth is the
same. Consequently, for a larger pump, pump
saturation can be maintained over a longer distance
resulting in a larger harmonic intensity I&. This
behavior is evident in Fig. 8(h) and 8(c) and is just
the opposite behavior observed in nonresonant
second-harmonic generation implied in E'I. (41).

Figure 8(d) illustrates the effect of increasing
R =k3ii f3 Eg]/kf~pf2 Ef] ontheconversion. As
implied by E le. (37) and (43) the harmonic growth
scales as R so increasing this results in a faster
growing harmonic which saturates at a smaller
conversion efficiency. This is understandable in
that for a large matrix element p, &3 &~, less field
is needed to cause saturation which results in a
smaller conversion.

In Fig. 9 are shown graphs of I„and the conver-
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FIG. 9. Conversion efficiency and conversion distance
versus &&2 T2 for various R„. Only f values for R„=1

are shown, the others being within a factor of 2 of these.
For all cases X= Y=Z=O, p&&=1, and RO=2.

sion distance f for various A&2 and R„values.
These results show that the highest conversion
efficiency is achieved under conditions of strong
saturation requiring increasingly longer interac-
tion distances with increasing pumping intensity,
both of which are understandable from the previous



SEMICLASSICAL THEORY OF RESONANT THREE-WAVE. . . 1961

discussion. The remarkable result is in the very
high conversion achieved for large R„ implying that
the resonant interaction can, in principle, be as
efficient as in transparent media.

The curve for R„=0.35 is most unusual and is
caused by a population interference effect similar
to the null in p'„ in Fig. 7. From Eq. (30), the
condition for a null can be stated as (p«- p»)
= (p»- p33} For full resonance and a weak har-
monic, the saturated value of the diagonal element
can be found from an algebraic solution of the
equations in Appendix 8 and yield the value of A23
for which a null occurs. For p» ——1, the condition
is expressed as TtA» ——TtA,'t/2-'1/4. From this,
R„=A»/Att. For large At» this yields R„=l/
v2 while as R„-O, TtA„-1/W2. The worst
possible case is when R„=1/W2 for which the
parametric gain is zero except at low field values
in which case the conversion is small. For R„
values larger than those needed to satisfy the null
condition, p» is negative while for all other values
it is positive. The precipitous dip in the conver-
sion for R„=0.35 in Fig. 9 is due to the population
interference effect and the phase reversal of p f3
which only occurs for R„&1/W2 and which re-
sults in the existence of two maxima in the har-
monic intensity at two different lengths.

In all other cases investigated, detuning de-
graded the conversion when the pump Habi fre-
quencies were less than the detunings. For the
opposite case, severe power broadening resulted
in a saturatedlike behavior and a large conver-
sion. However, from Figs. 4(b)-4(d), the exis-
tence of dispersion on harmonic resonance implies
that the large conversion results should be viewed
pessimistically because of phase match difficul-
ties.

The effects of temperature in thermally popu-
lating the excited states reduce pi3, as can be seen
in Eq. (31), and hence increase the conversion dis-
tance f . Although this effect was not explored for
all possible situations, one example is seen for
the case of Fig. 8(a) when SQ» —kT for which the
conversion is reduced to 53% at g =11.2.

which again shows the possibility of an interfer-
ence. Taking p«'= p»'=" p'„/2, Qt, —&os=0, and

1A f31, Etl. (44) simp»fies «
p'„=—sip'„e "&A'tt/4 «1, (45)

where a refers to the two possible values of ~ i.
This may lead to the generation of two frequencies
separated by 21A»1 and 180' out of phase; however,
this may not be too probable because these two fre-
quencies coincide exactly with the 11)—12) ab-
sorption doublets. Alternately, if v2 and ~i
evolved exactly on line center, Eq. (44) simplifies
to

~23 e
Pi2 2p+ Pii v

i3
(46)

which is even smaller than in Etl. (45). This leads
us to conclude that resonant parametric oscillation
may be observable, but that the overall effect will

The case of resonant parametric oscillation is
different in that only one strong input wave exists.
Anticipating a maximum parametric interaction on
full resonance, let 83 be a strong pump on reso-
nance. The effect of this field is to saturate the
population difference p« —p» and to split 11) and

13) into two symmetric doublets located a 1A»1
from the "bare" states. Since this creates de-
generate laser and Raman gain contributions
sensed by 82, the latter may naturally evolve
detuned a 1A»1 from line center. If f, is to evolve
as a parametric field, conservation of energy re-
~ui«»3i ~3 0 II32 ~2+IItt ~t ~ IA»1
+ Q»- ~, or ~i is detuned the opposite amount

~2i a is 2 r m 32 The two situations
are sketched in Fig. 10. The parametric gain,
determined by p~i2, can be found in the limit Af2,
A23 0 and is

AfsA» (Pit P») ( 2P2 P»)

Li2 Li3 tt (1 I ttL sa
(44)

V. OTHER PARAMETRIC CASES

The major implications of the last two sections
can be extended to the other parametric cases as-
sociated with the lin~ue diagram of Fig. 1(a).
For the case of sum and difference frequency
generation which involve two input fields, no major
difference is expected in the strength of the con-
version process provided both fields are strong.
The extended media treatment of these cases will,
of course, require three coupled Maxwell equa-
tions.

(a)
I

(b)

FIG. 10. (a) Linkage diagram for a parametric oscil-
lator. With a strong pump, g&, dte upper and lower
pump states are split into doublets located +[ A&z) from
the bare states. {b)-(d) The doublets are shown as solid
lines while the bare state is a dashed line. The three
cases correspond to the three combinations of frequen-
cies cdi, fd2 which satisfy the parametric reso»yves.
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be far weaker than parametric effects caused by
two input waves.

VI. CONCLUSIONS

In this paper, a semiclassical analysis of three-
wave parametric interactions in a three-level sys-
tem was developed and applied to the case of
second- harmonic generation. Within the validity
of the rotating wave and adiabatic approximations,
the solutions presented for the nonlinear polariza-
tions in. terms of saturated diagonal elements were
shown to be nonperturbative. The inherent multi-
photon nature of the interactions was shown to split
the harmonic transition into a multiplet which gen-
erally I educed potential absorption of the harmonic.

Numerical solutions of the coupled Maxwell-
density-matrix equations indicated the possibility
of high conversion, &50%, provided 8, el. The
origin of the high conversion, which occurs on
full resonance, can be traced to a very large non-
linear polarization, low harmonic absorption, and
to the fact that the strongly saturating pump decays
only linearly due to saturation of the absorption.
As in the case of normal second-harmonic genera-
tion in transparent media, the initial growth of the
harmonic is paxabolic in the space coordinate but
is in. direct contrast in that the conversion distance
increases with pumping intensity.

The existence of an interference effect ln the
weak-field and strong-field limits was noted and
has as its origin the fact that the parametric con-
tributions from I2) enters with a sign opposite to
those from I1) and I3). This sign difference is
due to the sign {phase) of the absorption-emission
sequence amplitude of the virtual paxametric pro-
cess associated with I2) as opposed to the absorp-
tion-absorption (emission-emission) sequence as-
sociat~ wfth I» (13)) The prim»} effect fs «
cause a very low parametric gain for certain B„
&1 values which also depends on the pumping fieM
intensity.

The highest conversion efficiency occurred for
8„&2 for which the pump absorption is reduced.
The multiphoton nature of the interaction again be-
came important in. that for large R„, the pump es-
sentially splits its absorption out of resonance re-
ducing saturation and hence absorption. This most
unusual situation yielded the highest conversion ef-
ficiency in the shortest distances.

The general requirements for the attainment of
high conversion are 8 -2, R„&2, and Taft fs&3
for which a conversion of & 50% will occur at an
interaction distance z & 16/fa fa where fafa is the
line-center Beer's coefficient for the I1)—I2)
transition. The relative effects of nonequal Ti
and T2 values were not explored but are anticipated
to be small provided A,&T2) 3 is maintained. " In

the solid phase, the transitions may be inhomoge-
neously broadened, in which case the effects of pump

attenuation may be much more severe due to dif-
ferences in saturation. The inclusion of this latter
effect adds sufficient complexity to the problem to
warrant a separate study. " Aside from this, the-

large nonlinearity available under resonant, satu-
rated conditions and the reduction of harmonic ab-
sorption by level splitting and saturation are both
suggestive of further experimental inquiries into
the conversion in three-level systems and to the
prospects for strong interactions in resonant four-
1evel systems in the form of tripling.
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c'fs=-Lsf. ~ (&-B)
3 i i3

A'„=- ." [F(1-C-B)-AC],Aiq

2i

(A4)

(A5)

In t;his appendix, we compile the nonperturbative
solutions for the p';& amplitudes in terms of com-
plex amplitudes which are multipliers to various
combinations of differences in diagonal elements.
%'hen deriving a solution from a signal flow graph,
the form of the latter terms always groups into

population differences associated with individual

one-photon transitions, We continue to use this
"natural" form for the solution and express a
general element as

Pu =A f{P« Pas) +B-o(&aa- Pss)+ lf(pss Pff), -
(Al)

where E =~, b. Define xndxvxdual closed path gains
as A= l&ssl'/&fa&'fa, B= l&fs I'/J-f. Lss, c= I&fal'/
f saLsf D= If~as' /~sf' af B= l~fsl'/~afLasi and
F= lw» I'/r, »L, 'fs and a graph determinant as ~
=1—(A+8 + C+ D+E+ F- 2BDE) + (AE +AD
+AC + FD+ FC+ FB+ZC+ ZB+ DB) —(ZCA
+ DBE).33 With these, the coefficients are found to
be given by

s ~ fsf~as

i2 i3

Bfs ——— „{1—A —E —E)~i&2S
L23Li'
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B13
——— ' [A (1 —E —D) —DF],

L32&
(A6) Aogg —— , 3~ [C(1 —F A) —FB] (A14)

B~(2 ~ [D(1-F A) —-AE]i2=L23

C 13
—— 3 (1 —E D—- C —B + EC + DB +EB),a Ai3

(A7)

A'12 ———,~ (1-C B -A ——F+ CA+ CF+BF)
f

(A8)

(A9)

Cgg ——
3

2'~ [B(1—E —D) —EC]
3i

(A16)

(A17)

B'gg= —
~ g (1 —A —F- E —D+AE+AD+ DF}~A23

L23&'

(A15)

C'12 —
3 ~ [E(1—B—C) —DB]
3i

(A10)

(A11)

2i 23

32 23
(A18)

Bg = 13 23 (1 —D E —F-}
32 i

Cfg= —
3 3 (1 F D C) ~

S AisA2a

L13L f2Cf.

(A12)

(A13)

L',3L»4
(A19)

These coefficients are valid for arbitrary field
intensity, phase angle 8, , and detunings to within
the validity of the rotating-wave approximation.

APPENDIX B

Given the complex coefficients in Appendix A, the driving terms in the population equations, Eqs. (15)-
(17), can be found. For example, for p f f,

=21m[A, 2(A;, +A', 2F)(pff- P») +A»(B'»+B', 2F)(p»- Pgg) +Afg(C12+CfgF)(pgg Pff)]-

f2(P11 P22} 12(P22 P33} 12(P33 Pif}

( f2 12}P11 (b12 12}P22 ( 12. 12}P33

where F is the time average of F given in Eq. (21)
and aj&, bj~, and cjoy are some new constants. The
remaining constants follow from Eqs. (19) and (20)
and Eqs. (A2}-(A7) and (A14)-(A19). With these
constants, Eqs. (15)-(17)are reduced to a set of
three coupled algebraic equations which are
readily solved. The solutions for p;; are then used
to construct the polarizations in terms of the co-
efficients in Appendix A. The only restriction on
the solution is that if 0& ~&d3 fd1 (02~& T„Tgi
the fields may beat in the medium causing a modu-
lated polarization. This is not accounted for in
the formalism since all p'j& were taken as time in-
dependent.

—(pgg- pgg}(2c —b)]/d,

(p»- p33) [{pgg p33)(l +2a —c)

(Pf1 P22)(2c —a)]/d.

(B1)

(B2)

A particularly useful limit can be obtained for
full resonance, 7.jj f j&

——T2, and when g3-0.
Setting Xf = T2Afg Xg= T2A23 a ——2g f(I + ~g)/
(1 + &1 + &2), b = 2&2(1 + &2)/(I + & 1 + &2), c = 2&p 2/
(1+ g.1+Xg), and d= (1+2a —c)(1+2b —c)
—(2c —b)(2c —a), the saturated diagonal element
difference terms are found to be given by

(P 11-Pgg) = [(P11-P»)(1+ 2b —c)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Wein-
reich, Phys. Rev. Lett. 7, 118 (1961).
J. A. Armstrong, N. Bloembergen, J. Ducuing, and
P. S. Pershan, Phys. Rev. 127, 1918 (1962).

3J. W. Ward, Rev. Mod. Phys. 37, 1 (1965).
4T. Mossberg, A. Flusberg, and S. R. Hartman, Opt.

Commun. 25, 121 (1978).
~R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Phys.

Rev. Lett. 32, 343 (1974).
C. M. Kellington, Phys. Rev. Lett. 9, 57 (1962).

TH. G. Andresen, H. Welling, and C. M. Kellington,
Phys. Rev. Lett. 11, 361 (1963).



1964 T. A. De TEMPLE, L. A. BAHLER, AND J. OSMUNDSEN 24

E. U. Shafer, H. Friedburg, H. Kuiper, J. Lipp, and
E. Racknagle, Phys. Lett. 6, 21 (1963).

9A. V. Voskanyan, D. N. IQyshko, and V. S. Tumanov,
Zh. Eksp. Teor. Fiz. 45, 1399 (1963) [Sov. Phys. —
JETP 18, 967 (1964)].

~ K. S. Yngvesson and E. L. Kollberg, Appl. Phys. Lett.
36, 104 (1980).
H. Inaba and T. Hidaka, Nachrichtentechn. Fachber.
35, 667 (1968); H. Inaba and T. Hidaka, Nature (Lon-
don) 224, 57 (1969).
G. Dathe, K.-H. Steiner, D. Roth, and G. Schollmeier,
IEEE J. Quantum Electron. 5, 623 (1969).
Some examples of second-harmonic generation in
resonant two-level systems are R. Boscaino, I. Cic-
carillo, and M. W. P. Strandberg, Phys. Rev. B 3,
2175 (1971);G. Dathe, D. Roth, G. H. Schollmeier, and
K.-H. Steiner, IEEE J. Quantum Electron. 5, 169
(1969).

4A. M. Clogston, J. Phys. Chem. Solids 4, 271 (1958).
~ I. R. Senitzky, in Quantum Electronics, edited by

C. H. Townes (Columbia University Press, New York,
1960), pp. 212-214.

~ H. G. Andresen, H. Welling, and K. D. Moiler, in
Quantum Electronics, Proceedings of the Third Inter-
national Congress, Paris, edited by P. Grivet and
N. Bloembergen (Columbia University Press, New
York, 1964), pp. 1597-1602.

'YN. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37
(1964); N. Bloembergen, Nonlinear Optics (Benjamin,
New York, 1965), Appendix III.
T. Hansch and P. Toschek, Z. Phys. 236, 373 (1970).

9K. -H. Steiner, Interactions Between Electromagnetic
Fields and Matter (Pergamon, Oxford, 1973), Chap.
V.
E. G. Soloviev, A. V. Stantsev, and K. K. Pukhov,
Nachrichtentechn. Fachber. 35, 750 (1968).
A. Javan and A. Szoke, Phys. Rev. 137, A536 (1965).
J. E. Bjorkhojm and P. F. Liao, Phys. Rev. Lett. 33,
128 (1974).
R. M. Whitley and C. R. Stroud, Jr. , Phys. Rev. A 14,
1498 (1976).

24C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10,
2311 (1977).
G. R. Osche, J. Opt. Soc. Am. 68, 1293 (1978).
R. Salomaa and S. Stenholm, Appj. . Phys. 17, 309
(1978).
S. H. Autler and C. H. Townes, Phys. Rev. 100, 703

(1.955).
R. E. Grove, F. Y. Wu, and S. Ezekiel, Phys. Rev. A

15, 227 (1977).
2 H. R. Gray and C. R. Stroud, Jr. , Opt. Commun. 25,

359 (1978).
S. J. Petuchowski, J. D. Oberstar, and T. A. De Temple,
Phys. Rev. A 20, 529 (1979).

3~For simplicity, we neglect the Lorentz local field
factors which would be needed to treat condensed
media. See, for example, R. H. Pantell and H. E.
Putoff, Fundamentals of Quantum Electronics (Wiley,
New York, 1969), Appendix 4.

32L. R. Wilcox and W. E. Lamb, Jr. , Phys. Rev. 119,
1915 (1960).

33H. K. Chung and T. A. De Temple, Phys. Rev. A 22,
2647 (1980).

+T. A. DeTemple, H. K. Chung, and S. J. Petuchowski,
Int. J. Infrared Millimeter Waves 1, 27 (1980).
Since the diagonal elements appear as 'inputs' in the
graph representation, the solutions are written in a
natural form including population differences associated
with separate one-photon transitions. They can always
be rewritten in terms of separate population differences
involving one-, two-, . . . photon transitions if de-
sired. See Refs. 30 and 33.
T. A. DeTemple, S. J. Petuchowski, and H. K. Chung,
Phys. Rev. A 22, 2636 (1980).

3~From Ref. 24, the dressed states for this example are
located at 0, +p relative to the bare state where p
= (Af2+ A23) ~ . Taking all possible differences between
two sets of dressed states yields candidate resonances
at 0, ag, +2p relative to line center. The result in Eq.
(27) shows that only two of the five possible transitions
are optically allowed.

38For example, by manipulating the results in Appendix
A, level splittings caused by the strong pump are
counteracted by a strong harmonic when Af3 Af2+ A23

on full resonance. When this condition occurs, the
~1)-~3) absorption muitipiet contracts back into a
singlet sensed by &3 and transitions from these states
to

~ 2) start to become split by the harmonic.
39The effects of nonequal decay and dephasing rates in a

parametric interaction with a strong pump but weak
signal and idler fields was considered in A. Jelenski,
Electron Technol. (Poland) 3, 127 (1970).

4 L. A. Bahler (unpublished).


