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High-order perturbation theory of the imaginary part of the resonance eigenvalues of the Stark
effect in hydrogen and of the anharmonic oscillator with negative anharmonicity
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The "perturbation theory" for the imaginary part of the resonance energies of the hydrogen atom in the Stark
effect and of the two-dimensional anharmonic oscillator with negative anharmonicity, which is a separation constant

in the Stark problem, is solved to high order. The solution is based on the Langer-Cherry generalization of the

JWKB method, which can be carried out in closed form, order by order. The numerical results should be useful both

in interpreting experimental measurements of excited-state lifetimes and in understanding the analytic properties of
the Stark and anharmonic-oscillator resonances.

I. INTRODUCTION

The oldest problem of the quantum mechanical
Rayleigh-Schrodinger perturbation theory (RSPT}
is the Stark effect in hydrogen. " It is perhaps
also the most pathological. The perturbation is
singular, the spectrum is absolutely continuous
along the entire real axis, and the perturbation
series is divergent. ' ' The bound states of the

hydrogen atom become resonances in the Stark
effect, moving off the negative real axis into the
lower half energy plane. ' ' The RSPT series for
the energy is an asymptotic expansion
E- g E+'F", with the energy coefficients in-
creasing factoxially rapidly, ' ' F " -N! The
imaginary part of the complex resonance eigen-
value is related to the ionization rate
(=- 2 ImE/S) and is exponentially small (e 'tr).

The RSPT energy coefficients E are related
to the "perturbation series" for ImE by a dis-
persion relation. "Although the E+ are known

to high order, '0 only the first few terms for ImE
are known"" "in an expansion of the form
ImE -F 'e 'ts Z c,F'. The main purpose of this

paper is to calculate the formal expansion for
ImE to high order.

In solving the Stark effect in hydrogen, it is
convenient to separate the Schrodinger equation
in parabolic coordinates. ' The separated equa-
tions in "squared parabolic coordinates" are
identical to the two-dimensional anharmonic
oscillator, the separation constant being the
oscillator energy. In generating the series for
ImE, we first generate the analogous high-order
series fox the radially symmetric two-dimensional
negatively anharmonic oscillator. This result
is perhaps equally interesting because of the
interest in the analytic px'operties of anharmonic-

oscillator eigenvalues. ""
The calculation of ImE, or more properly the

ionization rate, was begun by Oppenheimer, '0

whose calculation unfortunately was erroneous.
Lanczos" "next developed the JWKB approach.
Many others have used various techniques to cal-
culate ImE numerically. "" The leading asymp-
totic behavior of ImE has been discovered and
rediscovered a few times. ""The possibility
for a complete asymptotic series calculated by the
Langer-Cherry methods4's' was first raised by
Yamabe, Tachibana, Silverstone, "and by
Slavjanov, " The first term beyond the leading
term and the second for a special case were ob-
tained by Damburg and Kolosovis. ss using a
slightly different approach. Silverstone, Adams,
Cizek, and Otto' obtained three additional terms
by numerically fitting the high order E to the
asymptotic formula implied by the dispersion re-
lation. Here we obtain the series to arbitrarily
high order via a Langer-Cherry- JWKB-like
technique; the requisite tedious algebra is done
on a computer. We tabulate the coefficients for
a few examples„ the ground state being taken
out to fifty terms.

We do not attempt here to prove rigorously the
details of Qe functional approximations used to
produce the expansion for ImE, nor do we give a
rigorous discussion of the series itself, although
we do investigate numerically the growth of its
terms. A rigorous earlier discussion does pro-
vide a convergent iterative procedure to calcu-
late ImE (F}for F sufficiently small, and we
suspect that, in principle, there is a summability
technique applicable to the present series.

Just as the RSPT series is an effective way to
calculate perturbed energies, especially when
combined with a summation technique, ""so
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The aim of this paper is to derive a small-E
expansion for the imaginary part of resonance
eigenvalues of the Schrodinger equation for
hydrogen in a uniform electrostatic field F,

(- 3 V3 —1/r+Fz —Z)4' =0.
In this section elementary but unavoidable as-
pects of the derivation are reviewed, with

emphasis on two equations important operational-
ly.

Equation (1) conveniently separates in energy-
scaled parabolic coordinates, "'
o = (- 2E)'~3(r +z),

p = (- 2E}'Z(r z), —

4 = (crp)-'~4, (u)43(p)e'

t'd ' m2 —1
+ +-,'o+fo3 P, 4, (o) =0, -

(2)

(2)

(4)

(5)

d ' m2 —1
(6)

f =-,'(-2E) 3AF,

E = - 3 (P, +P3) '
(I)

(8)

Equations (5) and (6) are eigenvalue equations for
the separation constants P, and P3 (and are equiva-
lent as differential equations via transformation
to squared parabolic coordinates to the radially
symmetric two-dimensional anharmonic-oscil-
lator eigenvalue equation). The separation con-
stant P, has a purely discrete spectrum. The re-
sonances of E arise from resonances of P„
which correspond to "eigenfunctions" 42 with an
outgoing-wave boundary condition at infinity, "'
or, equivalently, to the analytic continuation
from Imf &0 of the L3 eigenfunctions of Eq.
(6) 3-8

Since the basic formal computation of Img2 has
been discussed in some detail, "' a brief simpli-
fied derivation suffices here. If one multiplies
Eq. (6}by p '43~ and integrates from 0 to p, one
obtains

r P, = —(W) '(O" ' —o
dp dp

p-1 @, 2dp
0

(9)

one would expect the perturbation series for ImE
to be an effective way to calculate ionization
rates. The recent work of Koch~'" on the ex-
cited states of hydrogen and of Zimmerman,
Littman, Kash, and Kleppner' on Rydberg
states of alkalis makes an effective, simple,
economical technique for calculating ionization
rates pertinent.

II. ELEMENTARY FORMULAS

ImP3-- l4, ~, /43 „l', (10)

(4, az„normalized to unity, 4, „normalized to
have Wronskian 2i with 4,* ). In Eq. (10), the
symbol "-"means equality in the sense of asymp-
totic expansion, ~3 and i@3.~/43 „l*means the
square of the quotient of the respective asymp-
totic expansions. A more detailed discussion of
the steps leading to Eq. (10) can be found in Refs.
11 and 40.

Since 42 ~ is known to high order, "calculation
of the outgoing wave 42 „

to high-order yields,

Equation (9) is rigorously valid for any value of p
with the exact wave function 42. An approxima-
tion to Eq. (9), asymptotically valid as f-0, can
be obtained by using (or anticipating) that Impz
is exponentially small (exp[-1/(6f)J) and by
computing 42 with Imp2 set to zero. Such an ap-
proxinsate 42 cannot satisfy both boundary con-
ditions, and the value of p becomes significant.

Let 43 (p„p}and 43 3(p„p)denote the solutions
of Eq. (6) for arbitrary p3 that satisfy, respec-
tively, an outgoing-wave boundary condition at
infinity and a regular boundary condition at 0.
If p2 were the resonance eigenvalue, then
42 „,42 0, and 42 would all be the same function
(apart from normalization), but otherwise, es-
pecially for real P„they are different. Now let
p2 take on a resonance value: We have both
43-.4, „(Rep3,p}+O(ImP3), and 43-43 0(Rep» p)
+O(lmp3), but neither uniformly in p. 43 „pro-
vides a good approximation for the numerator4'
of Eq. (9}(which is "physically" the current
density) if p»0, while 43, provides a good ap-
proximation for the denominator4' (which is
physically the probability of the electron being
in the atomic region) if p is well inside the outer
turning point, p«1/(4f ). For sufficiently small
f, the region of overlapping validity is large:
0«p«1/(4f }. (Cf. Ref. 8.)

If in the numerator of Eq. (9), 43 is replaced by
43 (Rep„p), then the numerator is essentially
the Wronskian of two solutions of the same equa-
tion —i.e., it is a constant. We adjust the norma-
lization of 42 „

to make the constant 2i.
If in the denominator of Eq. (9) i@313 is replaced

by l43,(Rep„p)l', the denominator becomes es-
sentially a normalization integral but with finite
upper limit. If i@3 Ol is replaced by an explicitly
exponentially decreasing approximation, such as
an RsPT partial sum l4'3, asl3, then the upper
integration limit can be extended to infinity with

exponentially small error times the dominant
behavior [-e ~, where 0«p«1/(4f)J. We take
43 ~, to be normalized to unity (order by order):
f",p 'I43,~I3&p -1.

In such a manner we obtain the key equation,
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via Eq. (10}, Imp, .
When ImP, has been so obtained as a series

expansion in f, the next step is to evaluate ImE
from Eq. (8). The result, neglecting terms of
O{(lmE)'), js

(11)
(P, +ReP, }' f-(P, +ReP, )'

' f=fy

where f„denotes f evaluated at ReE,

f, = —,
' (- 2 ReE) 'SE

=-,' [P, (f,) +ReP, (f„)]'E.
(12)

(13)

III. ADAPTATIONS OF THE LANGER-CHERRY
AND JWKB METHODS

To calculate Imp, with Eq. (10), one needs the
outgoing-wave solution 4, „ofEq. (6). In the
unbound region [p» 1/(4f )], one has
4, „-Ai'[&f '+(I —4fp}], where Ai(' is the
outgoing-wave linear combination of the two

The "extra term" in the denominator of Eq. (11}
comes from the dependence of P, (f ) +P, (f ) on
ImE through f [Eq. (7)].

pl and Rep, as the RSPT power series in both

f„andF are known to high order'0'"; the series
for ImE, to be generated by Eq. (11), waits only

for the series for ImP„which in turn waits for
the appropriate expression for 4, „

to be put into

Eq. (10).

—16ReP,fx '+(1 —x) 4, „=0. (14}

The basic idea of Langer~ is to transfer de-
termination of 4, „

to the determination of a new
function P(x) via,

vlihf —)6 4
~

Ai(+ ['f -Shy(x)] (1 5)dx ]

(The multiplicative constants z'+f ' ' have been
chosen to make 426'„d4,„/dp —4, , d@,*, /dp=2i. )
The basic idea of Cherry" is to expand (Ie)(x) in a
series inf,

4)(x) = 4) (x) +f P (x) +f'y (x) +

By putting Eq. (15) into Eq. (14) one finds the
equation for (())(x):

(16)

standard Airy functions, "'0 Ai(') (z) = Bi(z)
+iAi(z) .The difficulty is to find 4,

„

inside the
barrier region [0«p«1/(4f)]. We calculate
42 „bywhat is in spirit a modified JWKB method,
incorporating ideas from Langer'4 and Cherry. ~
The details of the method are developed in this
section, the details of the calculation in the next.

We first prepare the differential equation (6}
by changing the variable to x =4fp. The motiva-
tion is to fix the outer turning point at x =1 as
f -0. (As a function of p, the outer turriing point
moves to ~ as f-0.) Equation (6) becomes (with

ReP2 for P2)

-d2
64f' ~ -'( ' —1)* ')dx'

= 1 —x -16ReP,fx '+64 '
4 m —1 x '— (17)

From Eqs. (16}and (17), one has immediately,

$0 =1 —x, (18)

(19)

6„=——,'(1 —x) "f 6*(l x) 6{ )666—"x'4-6„16(' —'l)x '—
1 k, f,k

(o—i —n-l, 0 )~n-l,
o~k~n-l, j+g+k=n)

dg; dQ,.
dx dx

-d{t) ' d -dQ
(20)

(21)

where [.]'" " means "the term of [.] proportional
to f" '," and where we have used the RSPT ex-
pansion" for Ref„

ReP, - P,"'f".
n=

I

Note especially for small f, that ,' f '
(t)

—,'f-—
x(1 —4fp), so that by Eq. (15) the outgoing-wave
boundary condition has been built into 4, „atthe
start. Note also that all the p„(x)are analytic at
x =1. We have found that all the p„canbe obtained
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from Eq. (20) in terms of elementary functions.
It is important to keep in mind that 4,

„

is
needed in Eq, (10) for x inside the barrier. Here
0«x«1, and ,'f '—kP(x)--4f '~'»0. The asymp-
totic expansion for Ai' is appropriate, "from
which we find

&-dSe, =&a~ „(esk'+-,'ie s~-) (25)

duces a layer of tedium, however, that can be
circumvented by defining a new function S, simi-
lar to p and y, that leads to a simpler form for
4, ,„,an/ that is itself simpler to calculate.

We define S(x) by

8
a

k

+-,'i e-"+~ c,
k y

S=S~+fSi+f~S~+ ~

which leads via Eqs. (22) and (23) to

S =y =-', P'k =-', (1 —x)'k

(26)

(2')

where

3' ~0 =3'0+f3'x+f 3's+

(22)

(23)

~) 1 —{I—x}'
(1 )ak

Sm-y2+64c&yo -y2+ 9 yo
1 ~ 1

(28)

(a9}

c~ =(6k-1)i i/[(ak —1}ll(216) kl j. (24)

It would appear that to use the 4'„obtained from
Eq. (20}, one would first compute p from Eq.
(23}, then P, „

from Eq. (22). Each step intro-

and so forth. Although S is completely deter-
mined algebraically from y and dy/Ck by Eqs.
(22)-(29), direct computation of S from its dif-
ferential equation is much easier. The equation
for S is like that for P, but simpler, and is ob-
tained by putting Eq. (25) into Eq. (14),

) =(1 —h) —16Rep, fh '+64f' —'(m' —1)x ' —
) ( I) (30)

S„=-—, Ck(l —h}-'& —16P" h '+165„,(m' —1}h *— dS dS

kx d+ dx

ds (
(31)

Just as Eq. (20) can be integrated in terms of
simpLe functions, so can Eq. (31). Moreover,
S„turns out to be even simpler than the corres-
ponding Q„.

Equations(25)-(31), particularly (25) and(31),
are the key equations for the calculations de-
scribed in the next section. They clearly re-
semble the usual JWKB approximation with f
playing the role of 8, but with some important
practical differences. (i) The "potential" has a
term linear inf, so that S has both odd and even
terms inf. In k- JWKB, only even terms in I
occur. (ii} 'Ihe "outer turning point" at x=1
is defined only by part of the "potential" and is a
turning point in the classical sense only whenf-~. In O'- JWKB, the entire potential is used
to fix the(true) outer turning point. (iii) The in-
tegrand for y„(n&2) has a nonintegrable singu-
larity at x= 1. Notice in Eq. (31) that no limits
have been specified for the integral. This is an
important loose end that we now tie up.

The "integration constant" left vague by Eq. {31)
is neither determined by Eq. (30}, which involves
only dS/dhand not S, nor by the form of Eq. (25)
alone, since an additive constant in S only changes
the relative weights of the positive and negative
exponential solutions. Rather, it is fixed by the
equality of Eq. (25}with Eqs. (22) and {15}that
insures the outgoing-suave boundary condition.
Since that equality is difficult to use directly we
use it indirectly.

First we note that, by the definition {23)of y,
(1 —x) 'ky is order-by-order meromorphic at
x=1. Second we note that in Eq. (22) the
i Img, „(22)is one-half times the analytic con-
tinuation of Req, „(22)clockwise about x=1 from
x=1 —l1 —xle'Oto x=1 —ll —hie '". [By
4s „(22)we mean the asymPtot~c expansion in Eq.
(22). The analytic-continuation relationship holds
for 4, „(22),but not for the function 4~

„
itself,

which is analytic at x =1. As is well known, 42

analytic properties of asymptotic expansions can
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IV. CALCULATION OF 42 ~. RELATIONSHIP
OF C z TO@2,Rs CALCULATION OF Imp2

AND ImE

The integrands dS„/dx of Eq. (31) can be put
into a simple form by the method of partial
fractions (and by iterative substitution),

ds„" =(I-x}-'&Q (x-')+q [(1 —x)-']], n&2

(33)

where P„(x') is a polynomial of degree n in x ',
and q„[(1—x) '] is a polynomial of degree
[3n/2] —1 in (1 —x) '. (Here [3n/2] denotes the
largest integer that does not exceed 3n/2. )
Consequently, S„hasthe form

S„=(1—x)'S(P„(x')+Q„[(1—x) ']}
1 —(1 —x)'S
1+(1-x)" ' (34)

where P„andQ„arepolynomials of degrees
n —1 and [3n/2] —1. Given such a simple form,
it is straightforward to program a computer to
calculate the polynomials P„,q„,P„,and Q„.The
first several S„soobtained for the ground state
are given in Table I.

Observe in Table I that only S, has a logarith-
mic contribution; for all ne1, k„=0.On the
other hand, the integral of the tenn
P, "(1—«) 'S« ' inEq. (31) is exactly a
logarithmic term. Its absence in S„(n~2) im-
plies that P" ' has a value that cancels the
logarithmic contribution of the rest of the inte-
grand. That is, the RSPT P ', 9@,. . . can be

differ from those of the function being repre-
sented. ] Since the asymptotic expansion of Eq.
(25} is essentially the same expansion as Eq.
(22), it must have the same analytic behavior,
which in turn implies that S changes by e "on
the path described above. It is easy to see
directly from Eq. (31) that S„hasthe form

S„=const

+(1 —x) 'sx (function meromorphic at x=1).
(32}

Thus the integration constant in Eq. (32) is
necessarily zero; we may specify the integration

fdx in Eq. {31)more definitely as —,
' f„dx,

where y„is the path from x- i0, counterclockwise
about 1, to x+i0.

Equations (25) and {31),with fdx= —,
' f z dx,

may be regarded as. a JWKB "connection formula"
for an outgoing-wave boundary condition, valid
to all orders in f.

Cnf

1 -16
2
1 -144
2 -96
3
1 -2 912
2 -1962.666 67
3 -1109.33333
4
5
1
2
3

5
6
1 -2 983 200
2 -2 046 464
3 —1 423 667.2
4 -879 001.6
5 -377 651.2
6
7
8
1 -125217 952
2 -86 396 608
3 -62 208 512
4 -42 324 992
5 -24 489 984
6 —9412 608
7
8
9
1 -5 985076 672
2 -4 147 899 392
3 -3 056 238 080
4 -2 196716397.71429
5 -1442 041 270.857 14
6 -782 275 145.142 86
7 -272 376 978.285 71
8
9

10
11

-83 504
-56 864
-37 248
-18176

16
6.666 67

144
48
80

2 784
949.333 33
864
800
491.11111

76 912
26 832
21 424
16 592
13360
17 680

2 664 864
945 952
709 715.2
525 472
417 696
385 440
388 960
220 866.666 67

109 160 864
39 304 928
28 401 440
20 645 920
16 314592
14 180 768
12 576 800
11159306.666 67
13 252 000

5 114690 240
1 862 745024
1 311250 368

944 072 914.285 71
743 035 712
630 531 392
544 525 504
477 725 120
445 681 600
450 568 000
244 196480.952 38

calculated by requiring that S„S„... have no

logarithmic term. In calculating S, we are also
doing RSPT t

To bring out more vividly the connection with

RSPT, we look at 4, „

for small f and small p.
First~ So and Sx ~

TABLE I. Coefficients c„&,d„&, and k„for the state
n, =o, m=o:

S„(«)= (1 —«)' ~ Qc„&x +g&d„&[l-«)-~

+k„in{[1—(1 —«) 21/[1 + (1 —«) ~ ]}.



1930 SILVERSTONE, HARRELL, AND GROT

TABLE II. Coefficients b and a for Imp2(f) and ImE(E) for Eqs. (44)-(47).

n2
y(N)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1.000 000 000 000 00
-1.766 666 666 666 67
-7.094 444 444 444 44
-2.076 771 604 938 27
—7.261 242 541 152 26
-3.007 992 238 854 60
-1.421 562 708 112 81
-7.491 106257 035 15
-4.33g 404 851 569 23
-2.737 219 336 385 62
-1.867 541 477 404 24
-1.371 218 133067 99
-1.079 048 402 558 79
-9.068990 246 255 27
-8.115449 919062 59
-7.710198082 239 25
-7.756 456 789 13350
-8.241 743 808 090 73
-9.227 975 479 471 93
-1.086 317951 221 34
-1.341 710427 599 11
-1.735 222 787 861 56
-2.345 541 072 303 32
-3.308 035 224 687 91
—4.859 962 365 123 29
-7.426 313765 984 16
-1.178624 821 828 54
-1.940 275 228 551 74
-3.308 997 142 91047
-5.839396 695 894 67
-1.065 128 686 755 02
-2.006 092 513 024 11
-3.897 560 703 088 00
-7.804 231 009 081 33
-1.609 114577 601 91
-3.413 564 823 886 31
-7.444 871 598 934 88
-1.668 073 211 907. 18
-3.836 886 554 855 30
-9.054424 830 738 75
-2.190719978 043 26
—5.431 202 081 082 37
-1.378 920 516 830 21
-3.583 266 013 550 19
-9.525 511928 784 05
-2.589 106052 236 16
-7.192098 487 062 92
—2.040 827 951 732 54
-5.913042 608 694 69
-1.748 582 003 076 24
-5.275 396 874 908 01

1.000 000 000 000 00
-1.766 666 666 666 67
-7.094 444 444 444 44
-2.076 771 604 $38 27
-7.261 242 541 152 26
-3.007 992 238 854 60
-1.421 562 708 112 81
-7.491 106257 035 15

x 10o

x los
x10
x10
x10
x 106
x10
x 109

x10
x10
x1O"
x10
x1O"
x10
x 1p22

x10
x 1p26

x 1p28

x 1030

x 1033

x10
x10
x 1039

x10
x10
x&04'
x1O4'
x1O"
x10
x1O'4
x10
x1O"
x 106

x 10M

x 1066

x 1068

x10
x10
x10
x1077
x10~
x 1p82

x 108S

x10
x1O"
x10
x1O'4
x10
x1O"
x10'o2

1O"4

x1O'
x 10'
x10
x10
x10
x 106
x 108
x10

1.000 000 000 000 00 x 10
-8.916666666 666 67 x 10

2.556 597 222 222 22 x 10
-1.587 464 313271 60 x 10
4.690486 854 584 62 x 10

-1.02731728334445 x10
5.635 378 188 555 73 x 10

-1.456 750 142 759 06 x 10
-4.948957447 445 98 x 10
-3.410 502 625 929 72 x 10
—2.588 984466 134 19 x 10
-1.152 824 958 699 14 x 10
-1.333 513920 468 96 x 10
-5.24095740815481 x10'
-8.004 227 004 931 29 x 10i4
-3.071 715246 984 31 x 10'
-5.765 051 302 891 40 x 10
-2.255 153289 697 73 x 10
-4.988 902 332 502 83 x 10
-2.029 182 061 986 27 x 10
-5.150 775341 517 74 x 1023

-2.198455 031 055 02 x 10
-6.283 889 382 11356 x 10
-2.825 381 133 545 30 x 10
-8.967 934457 854 78 x 10
-4.252340256 590 94 x10 '
-1.482 699008 045 32 x 10
-7.412 011738 305 34 x 10
-2.814 542 922 880 91 x 10
—1.481 747125 604 54 x 1038

-6.084 146 692 513 29 x 10
-3.368 377 250 457 17 x 10
-1.486 643 351 275 68 x 10
-8.641 305 361 008 41 x 10
-4.078 650 190369 74 x 1046

2 484917 565 190 60 x10 8

-1.248 799 541 490 64 x 10
-7.961328 532 338 04 x 10
-4.243 702 342 272 49 x10
-2.826362 569 30575 x10
-1.592 570 348 021 65 x 10
-1.106347 449 289 15 x 10
-6.570 071 757 835 92 x 106
-4.753 613 658 288 94 x 106
-2.967 17g 694 833 31 x 1064

-2.23275996248354 x10
-1.461 34613750P 41 x 1P
-1.I42 120 632 456 55 x 10
-7.821 014911620 90 x 10~
-6.340 607 068 176 19 x 10+
-4.533 740159 80409 x 10

1.000 000000 000 00 x 10
-1.733 333333 333 33 x 102
1.469 022 222 222 22 x104

-1.146 492 839 506 17 x 10
9.239 499 904 526 75 x 10

—8.932 636933 934 71 x 10
8.981 570 19913823 x 10"

-1.109190986 11620 x 10
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TABLE II. (Cgntinuecg.

n& n2

8
9

10
11
12
13
14
15

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

-4.339404 851 569 23 x 10
—2.737 219336 385 62 x 10
-1.867 541 477 404 24 x 10
-1.371218 133067 99 x 10
—1.079048402 558 79 x 10
—9.068 990 246 255 27 x 10
-8.115449 919062 59 x 10
-7.710 198082 239 25 x 10

1.000 000 000 000 00 x 10
-9.766 666 666 666 67 x 10

2.212 388 888 888 89 x 10
-1.708321 60493827 x10
-4.641 880 303 497 94 x 10
-4.000 663 228 000 69 x 10
-3.595 852 289 656 62 x 10
-3.371 177 296 637 00 x 10
-$.294951 457 61410 x10
-3.352 506 364 290 28 x 10
-3.545 070 597 498 18 x 10
-3.890295238 852 22 x10
-4.425 273 520 293 74 x 10 '

-5.213373 758 344 02 x 10
-6.356 851 722 778 67 x 10
—8.018812621 172 92 x 10

1.00000000000000 x10
-4.766 666 666 666 67 x 10

2.400 555 555 555 56 x 10
-4.12143827160494 x 10
-2.368 181105 967 08 x 10
-1.447 953 560 613 85 x 10
-9.530 981 889 558 28 x 10
-6.732920041 634 54 x 10'
—5.073 807 241 971 18 x 10
-4.057 941 687 293 67 x 10
—3.431 104122 586 16 x 10'
-3.058 202 384 831 12 x 10
-2.867223442 71195 x 10
-2.822 861 997 840 79 x10
—2.914447 979 638 25 x 10
-3.151727 832 486 09 x 10 6

1.340 972 283 31139 x 10
-2.023 560 932 103 26 x 10'

2.831 501 147 484 67 x 10
-5.043 115734 357 03 x 10

7.978 122 618 002 75 x 10
—1.637706361 759 52 x 10

2.888499361 972 74 x 10
-6.719456 394 907 50 x 10

1.000 000 000 000 00 x 10
-1.893 333 333 333 33 x 10
1.273 555555 555 56 x 10

-6.598 083 950 617 28 x 10
3.021 433 514 403 29 x 10

-2.992 693 902 362 69 x 10
8.138008 370 063 00 x 10

-3.564 224 520 862 39 x 10
-1.506154783 262 99 x 10
-8.408 024783 576 55 x 10
—9.997 671 864571 75 x 10
—3.009 643 616 091 68 x 10
-5.240 874465 506 04 x 1024

-1.405 025 266 781 30 x 10
-2.982 328209 612 55 x 10
-8.009 111337 91590 x 10

1.000 000 000 000 00 x 10
-1.733 333333 333 33 x 10
1.237 422 222 222 22 x 10

—7.840 928 395 061 73 x 10
4.962 988 971 19342 x 10

-4.567 811192 660 63 x 10
3.379 709 494 877 49 x 10

-4.896 026 312 350 55 x 10
3.435 255 648 281 33 x10

-8.395 041 891 807 70 x 10
4.264 541 464 147 79 x 10'9

-2.084 863 737 153 26 x 10
4.232 120 165 241 76 x 10

-7.005 536 998 358 71 x 10 6

-]..].00 994 385 '763 16 x 1Q

-3.036 158965 13311 x 10

S - ——X+—X~+ ~ ~2 1 p
p 3 4

S 8P ' ln —'x-+8P "(-'s+ ~x'+ ~ ~

show that

(3S)

(36)

(o)

+2 [(fp)s2 e~&s&-~&+2 i(fp) & e ' ' '~ '].
(3'f)

Compared to the real part, the imaginary part
is exponentially small as f-0,

It would appear (and can be shown more rigo-
rously) from Eqs. (3'l) and (38) that
v 2 (- dS/dh) '~e' ' is the solution of Eq. (6)
(with real J3,) that is regular at the origin That.
is, not only is

(p)-~~f" e'"N(f)4., ~ (f-0, «&p«kf)
(39)

where N(f ) is a relative normalization factor,
but also

~(-dS
( Bx

x ll+ iO(f-'s, e 'e~)] (38)
(

-1/ 2 (o)
es/s& ~2f s2 e ksfN(f)4

The positive-exponential JWKB-like function

(40)
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TABLE III. Values of (~) n a: Comparison of exact values with values extracted
numerically from a "Bender-Wu analysis" of high-order RSPT E' in Ref. 9.

Exact Numerical fit

—47.035 979 652 492 0
92.651 592 189325 8

-1352.845 805 227 26

-663.479 652 491 998
4 455.777 345 933 04

-35 898.264 427 142 4

88.441 358 024 691 4
-381.833 561 957 019
1 457.095 637 733 07

-12 026.965 592 699 8

-47.0360 + 0.000 2
92.65 + 0.2

-1350 + 20

-663.45 + 0.1
4450 + 20

-34 000 + 3000

88.441 36 + 0.000 05
-381.832 + 0.01
1 455.7 + 1

-11700 + 200

Imp2 comes out in the form,

lmP -—~ [n !(n +lml)i] if -~2-™-le

)( (1 p f)(l)f pl)t))f I +. . . ) (44)

exactly reproduces the RSPT function in the sense
that rearrangement of the terms of the former
gives exactly the latter, except for normalization.

From the point of view of the (-dS/dx) '+e~+/'
wave function (where S is associated with the outer
turning point at x =1), the identity (40) is not en-
tirely anticipated, since the small-x expansions
of (- dS/dx} '~ and e~/~/) separately contain
negative powers of x. The negative powers cancel
in the product, a fact we first noticed by direct
computation.

The final step in computing ImP, from Eq. (10)
is to compute the square of the ratio

-dS -'~
9-RR 4 ~2 g/(af) (41)2sR$ dx t

-( 0+/s, )/(8/) 4,
dx

For technical reasons, it was particularly con-
venient to calculate that ratio as the ratio of the
p terms in the numerator and denominator of
Eq. (42). Since

(0)
4, ~-Q'2 e ' '/[n, l(n, +lml}!]'+j

x[1 iO(p '}+O(f)J,

x exp [-2/(3n'&) +3(n, —n, )]

x (1 + a" )F + a")Z' + ~ ~ ~ ) . (46)

The a+'for a few states are given in Table II.
The values of a" extracted numerically from a
"Bender-Wu" analysis of the high order E'
are listed in Table III for comparison.

All the computations described here were
initially carried out in double precision on DEC
System-10KL computers. The calculation of
4, ~, although very fast (1% of total computation
time), turned out to suffer from serious "cancel-
lation error" for N&20 arising from the sign
alternation of the expansion coefficients of
42 ~ on the unperturbed wave functions. Such
cancellation error was circumvented by calcu-
lating 42 ~ in quadruple precision on an IBM
3033 computer. The b and a+' reported to
fifteen digits in Table II are probably accurate
to +1 or 2 in the last digit.

where the b+' for a few states are listed in Table
II. In Eq. (44), n, denotes the usual second para-
bolic quantum number (n, being the first) to which

P2~ is related by P~+=n&+p(lml +1).
From Eq. (44) and from the RSPT series for P,

and Rep2 obtained from Ref. 10, it is only a mat-
ter of elementary manipulations of power series
to obtain ImE in the form (where n =n, +n,
+lml +1),

ims -- —,
'

[n&n, i(n, +l ml} i]-'(-,' n'F }-'"2-)-)-'

V. DISCUSSION AND SUMMARY

In a uniform electrostatic field the hydrogen atom energy eigenvalues turn into resonances with a
negative imaginary part. The resonance eigenvalues for the separation constant (radially symmetric
two-dimensional negatively anharmonic oscillator) and energy have the asymptotic expansions,

0 - g po)f" —i [2n t(n +lml)!] 'f-s"I-I~l-'&-'/())&) g y&)f"
N=D N=O

(46}
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E-Q EI»)F» —i[2n3n!(n +lml) I]-1(—n3F)-2»2-I I-'e 2 '" ""&-&' Q a+'F".
N=O N=O

(4'7}

TABLE IV. Ratio analysis for the ImP2 series for the
ground state.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

b(N+f )/(6bQI'))

—2.944 44
0.669 29
4.878 87
5.827 35
6.904 22
7.876 59
8.782 71
9.654 57

10.513 04
11.371 28
12.237 28
13.11545
14.007 70
14.91428
15.834 40
16.766 66
17.709 43
18.661 05
19.620 01
20.584 99
21.554 86
22.528 72
23.505 84
24.485 64
25.467 67
26.451 54
27.436 99
28.423 78
29.411 71
30.400 65
31.390 46
32.381 03
33.372 29
34.364 15
35.356 55
36.34945
37.342 78
38.336 51
39.330 61
40.325 03
41.31977
42.314 77
43.310 04
44.305 54
45.301 26
46.297 18
47.293 29
48.289 57
49.286 02
50.282 62

b m+g &/[(N+ 1)b(z&]

-17.666 67
2.007 86
9.757 74
8.741 02
8.285 06
7.876 59
7.528 04
7.240 93
7.008 69
6.822 77
6.674 88
6.557 72
6.465 09
6.39184
6.333 76
6.287 50
6.250 39
6.220 35
6.19579
6.17550
6.15853
6.144 20
6.13196
6.12141
6.11224
6.10420
6.097 11
6.090 81
6.085 18
6.080 13
6.075 57
6.071 44
6.067 69
6.06426
6.061 12
6.05824
6.055 59
6.053 13
6.050 86
6.048 76
6.046 79
6.044 97
6.043 26
6.041 66
6.040 17
6.038 76
6.037 44
6.036 20
6.035 02
6.033 91

The real part of the expansions is ordinary RSPT.
The imaginary part is calculated by a perturbation
theory that maintains an outgoing-wave boundary

b'&' =- 34u' —S2a —~ +6M

b = 578k —92k —~~ k —90k —~8

—204&k +100Mk+26M+18M2,

(46}

(49)

where M=~(m' —1), and b=P~IO' =n, +»lml +».
The polynomial for b "was first obtained by
Damburg and Kolosov, "'"who also obtained b"
for the special case n, =m =0.
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condition at ~. The uniform version of the "outer"
perturbation theory follows Langer and Cherry.
Since the "outer wave function" is needed far from
the outer turning point, an asymptotic version of
the theory, like JWKB with f playing the role of
0, derived from the Langer-Cherry approach, is
more convenient. The "actionlike" function S
is expanded in a power series in f, and to each
order S can be expressed in closed form in terms
of elementary functions.

The computational details are quite tedious for
humans, quite simple for machines. We have
written computer programs to generate the b
and a+' for arbitrary states of hydrogen to large
N. The a+' should be useful for comparing theory
and experiment, but the most useful summation
procedure remains to be determined.

The nature of the divergence of the Q a "'F"
and Q b+'f » series is also of interest. The nu-

merical values in Table IV clearly indicate that
for theground state, b "'/[(V+1)b ']-6 as
N-~, which is the same behavior as for the

P, '. The approach, however, is not as rapid as
for the P, ', and we cannot yet distinguish the
correct asymptotic behavior, say, from among
6"N!, 6"N! lnN, and 6»N!(alnN+b), for the
ground state.

The E and p, ' can be expressed as poly-
nomials in the quantum numbers n„n„andm,
with rational coefficients. Similarly, so can the
a+' and b+', although we have not calculated them
as such except for b "and b ', which are
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