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Precision wavelength measurements are presented for the 1s 2s Sl-1s 2p Po 2 transitions
of silicon, sulfur, and chlorine. Calculations have been made for these transitions using a
double expansion in Z ' and a Z . These calculations include the nonrelativistic energy,
one-electron Dirac energy, plus relativistic corrections and the Breit interaction calculated
in first-order perturbation theory in both high-Z and low-Z approximations. After con-
sidering the one-electron Lamb-shift corrections to high order, comparison with our mea-
surements and with other experiments for Z =4—26 reveals a discrepancy which is ap-
proximately 0.015Z cm '. We show that this can arise from two-electron quantum elec-

trodynamic corrections to the one-electron Lamb shift and we derive an ab initio estimate
of this correction in good agreement with the observations.

I. INTRODUCTION

In one-electron atoms, the Dirac equation plus
existing quantum electrodynamic (QED) calcula-
tions accurately predict the observed atomic energy
levels. However, there is no closed-farm analog to
the Dirac Hamiltonian to describe two-electron (or
more} atoms. In addition, in all currently success-
ful atomic theories, QED corrections are only ad-
ded perturbatively, although bound-state propaga-
tors have been used for accurate caIculations' of
some of the QED-type corrections in one-electron
systems. For ions of low nuclear charge Z, rela-
tivistic efFects are generally combined with the
Breit interaction in a Breit-Pauli Hamiltonian
which is useful in obtaining their contributions to
first order using perturbation theory. When Z is
very large the electron-nucleus interactions dom-
inate over the electron-electron interactions. In
these systems, we can first consider the electrons to
be noninteracting and bound to the nucleus accord-
ing to the relativistic Dirac equation. The
electron-electron interactions and QED corrections
can then be treated perturbatively.

In this work, we have combined the best existing
calculations following the perturbation theories ap-
propriate to the low-Z region with a new calcula-
tion of the perturbation theory appropriate to the
high-Z region. The combination is applied to the
hn =0, n =2 state transitions of the two-electron

heliumlike isoelectronic sequence, and provides
results which are applicable to the range of ions for
Z =2—50.

We also present some new precision measure-
ments of the transitions ls2s S~-lsd Po2, in the
heliumlike ions of silicon, sulfur, and chlorine. We
have compared all measurements for these transi-
tions in the heliumlike ions for Z =4—26, with
our theoretical results. Agreement between theory
and experiment is obtained when we include a
first-order correction to the one-electron QED con-
tributions. We discuss our estimate of this correc-
tion in the two-electron system and the improve-
ments which might be possible in atomic structure
calculations for more general many-electron sys-
tems.

II. EXPERIMENT

A. General

The experiment is a standard beam-foil excitation
measurement using fast beams (u/c =0.08) of sil-
icon and sulfur from the Argonne FN tandem ac-
celerator' impinging on a thin foil in a target
chamber as shown schematically in Fig. 1. Most
of the experimental details have been described pre-
viously. ' The observed transitions were measured
with a 1-m normal incidence monochromator, po-
sitioned to view the radiation emitted near 90 to
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FIG. 1. Experimental geometry.

the beam direction. We determine the fine-

structure transition wavelengths by measuring their

wavelength separations either to previously mea-

sured transitions, or to transitions connecting

high-lying Rydberg levels. These latter wave-

lengths can te calculated accurately. The problems

associated with this technique are monochromator

calibration, proper accounting of Doppler shifts,

and careful evaluation of mean wavelengths of the
fine-structure components of the calibration lines.

We consider these three problems below. The 1200
lines/mm grating used for the sulfur measurements

was blazed at 150 nm and overcoated with osmi-

um. For the silicon measurements, an osmium-

overcoated grating blazed at 250 nm was used.

These overcoatings increased the reflectivity of the

gratings below 100 nm. The blaze wavelengths

enhanced the reflectivity for the orders of diffrac-

tion in which the transitions were measured.

We reduced the large Doppler broadening ex-

pected in perpendicular viewing of fast-beam light
sources with a monochromator focused for a sta-

tionary source by employing the method of fast-

beam refocusing. ' We made adjustment to a
pivoting cam which controls the distance from the

grating to the exit slit, thus refocusing the mono-

chromator at all wavelengths for a particular beam

velocity. This procedure was performed once at
the beginning of an experiment, for a beam velocity
representing an intermediate value to those actually
used. (Typically U/c =0.07 was chosen. ) This was
done for convenience and to ensure precise calibra-
tion. Repeating the procedure for each change in
beam velocity (typically four or five different ener-

gies were used for each experiment) would have
used up valuable beam time (the monochromator

has to be opened and then allowed sufficient time

to reach an operating vacuum of about 1 X 10
torr}. More importantly, wavelength calibration of
the monochromator is then done with the mono-

chromator in the same refocused configuration as
used in the experiment.

In order that the best reproducibility be attained

when making multiple scans with the monochro-

mator over the same wavelength region, a
computer-controlled stepping motor was interfaced

to the monochromator. At the end of each scan
the computer automatically reset the wavelength

drive before beginning the next scan. Typical
reproducibility, as measured by the position of
strong transitions on multiple runs, was better than

0.002 nm.

B. Monochromator calibration

Our calibration procedure allows us to accurate-

ly correct for the effects of nonlinearities in the

grating drive mechanism, which cause small

periodic variations in the dispersion, correlated
with the rotation of the grating drive screw of the
monochromator. In addition, it provides an accu-
rate check on the value of the linear dispersion

coe%cient, nominally 2.5 nm per revolution of the
drive screw.

For calibration of the monochromator disper-

sion, we measured line spectra between 85 and 200
nm from a windowless argon discharge lamp with

the monochromator in both a refocused' and a
nonrefocused configuration. The measurements

resulted in a wavelength deviation from the stand-

ard constant dispersion of
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FIG. 2. Sample spectra used in the Si xni 1s 2s S&-1s2p 'P02 wavelength determinations.

+ (A +BAst)sin [(AM —A&)2n/2. 5],

multipole interactions of the Rydberg electron with
the core. For two-electron ions the 1s core polari-
zability can be calculated nonrelativistically from
the Schrodinger wave functions, '

where Q is the offset error of the zero-wavelength

reading, kA,~ is a linear error in the measured
wavelength A,~ due mainly to a misadjustment of
the grating lever cam, and the constai'ts A, B, and
A,~ describe a periodic error due principally to dif-

ferent modes of wobble in the screw rotation of the
grating drive.

The linear error was small (k (3X 10 ), while

the peak-to-peak periodic error was typically 0.010
nm. Reproducibility of wavelengths was typically
better than 0.002 nm.

C. Calibration lines

The hen-foil light source has long been
known" to strongly populate Rydberg states of
high (n, l). Because of the small interaction with
the core electrons for the nonpenetrating orbits, the
energy of these Rydberg states is nearly hydrogen-
like and can be easily calculated. Thus, these tran-
sitions are especially suited as calibration lines in
beam-foil spectra, as suggested previously. ' '

For the energies used in these experiments such
Rydberg transitions are observed for ion species
containing 2—5 electrons, as can be seen in Fig. 2.
The term energies contributing to these transitions
are generally described' as the sum of a hydrogen-
ic term TH obtained from the Sommerfeld formula
plus a core polarization term hp corresponding to

A =(9/2)[(Z —1)/Z)4,

k =(10/3)[(Z —1)/Z]2,

(2)

(3)

where A and k are the dipole and quadrupole fac-
tors as defined in Ref. 14.

For a three-electron ion, the 1s core polarizabil-

ity is approximated by an empirical fit to measured
transitions in lower-Z ions, '

A =9(Z —2) (Z —s)

kA ' =0.2113Z +0.59S—2.4Z

where s is a screening parameter given by

(4)

s =0.3397+0.102(Z —0.4)

Some comparisons between theory and experiments
of these formulas in high-Z three-electron systems
have been made by Edlen. ' In particular, the 4f
Sg transitions in Si XII show agreement at the pre-
cision of the experiment (+5 cm '). Because the
effects of Dirac fine structure and the fine structure
contributed by differing core interactions for differ-

ing l sublevels are small, the observed transitions
generally have fine-structure components whose
separations are we11 below the experimental resolu-
tions. We have estimated the cumulative effect of
this fine structure. Each wavelength within the
given n, n' transition is weighted according to its
hydrogenic transition probability and according to



2s-2p TRANSITIONS IN HELIUMLIKE IONS 1875

two schemes for the population of the upper state.
Statistical (2l + 1) populations may be expected

and have been observed in previous beam-foil mea-

surements. ' However, some observations' have
shown population distributions which increase
more strongly with 1. Thus the weighted mean
wavelengths are calculated with both a 2l +1 and
an I weighting for the upper level.

Because the yrast transition (n, l =n —1 to
n'=n —1,1'=I —1) gives the major contribution to
the total line intensity and because the splittings of
other members which contribute appreciably are
small, the calculated mean wavelengths are not
strongly dependent on the weighting of the upper
level. We have decided to use the statistical
weighting and take the difference from the I
weighting to be an estimate of the associated error.
Because of the difference in the lifetimes of the in-

dividual fine-structure states, these populations will

vary as a function of the distance downstream from
the foil, i.e., the time from excitation. For an ion
velocity of 0.07' these changes in population pro-
duce shifts in the mean transition wavelength on
the order of +0.001 nm/cm. In these measure-

ments, we collect the light emitted over the first 3
mm of the decay, which typically implies a correc-
tion of about +0.0003 nm. We estimate an error
from this effect of 0.0005 nm, which is much
smaller than the wavelength uncertainty due to the
initial population distribution. An associated effect
is due to the nonuniform intensity of the light
source over the observed beam length, due to the
decay in flight of the moving ions. This can pro-
duce a lifetime-dependent Doppler shift of the ob-
served wavelength. For the transitions observed,
the shift is less than 0.0005 nm.

The estimated contributions to the uncertainties
in the absolute wavelengths of the observed hydro-

genic calibration lines are summarized below:

Population: 0.001—0.002 nm,
Mean life: 0.0007 nm,
Profile asymmetry: 0.001 nm,
Polarizability: 0.001—0.002 nm,
Total: 0.002—0.003 nm.

The polarizability uncertainty is one-half the total
wavelength change due to the polarizability and is
certainly an overestimate.

In addition to these hydrogenic transitions, it
was found worthwhile to use as calibration lines
other previously measured transitions. The reso-
nance lines (1s 2s S&/2-1s 2p Pf/23/2) in three-

TABLE I. Calibration lines used in the experiments.

Transition Wavelength (nm)

Sixties n =5-6
Sixnt n =7-8
Si xII n =5-6
Sixu n =6 7
Si xi' 'S-'P&/,
Si xu S- P3/2
Sxiv n =6-7
Sxiv n =7-8
S xiv 'S-'P&/2

S xiv 'S-'P3/2
Sxm 'P-'D
Clxv n =8-9
Clxtv n =8-9

44.097+0.003
112.710+0.003
51.762+0.002
85.851+0.003
52.069+0.003
49.940+0.003
63.070+0.002
97.179+0.003
44.572+0.003
41.766+0.003
50.042+0.003

123.477+0.003
70.61+0.02

electron silicon and sulfur were observed in our
spectra, and they have been measured previously in
both laboratory spectra' ' and in solar flares.
A weighted average from these four references for
the sulfur resonance lines is used; A( S~/2 —P~/2)
=44.572+0.003 nm, A ('S, /2 P3/2) =41.766+0.002
nm. For silicon the weighted mean wavelengths
for these transitions, as reported in Refs. 20—22,
are 52.069+0.003 and 49.940+0.003 nm, respec-
tively. For the sulfur spectra, the wavelength of
the 1s 2s 2p 'P -1s 2p 'D transition is given by
Fawcett' as 50.042+0.003 nm.

Table I summarizes the wavelengths and their
uncertainties for the calibration lines used in these
experiments.

=A,oy(1 —P cos8), (7)

where y= 1+E/mc, f3=(1—1/y )'/ . E is the
kinetic energy of the beam, m is the mass of the
ion, 0 is the angle between the beam direction and
the optical axis of the monochromator, and Q is
the wavelength at zero velocity of the source.

D. Doppler shift

I

Having obtained the dispersion of the monochro-
mator, we can accurately determine the wavelength
separation between any two measured transitions,
which, however, will be dependent on the Doppler
shifts of the lines themselves.

The Doppler formula gives the measured wave-

length, A,
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Thus, the Doppler-free wavelength separation
between two transitions EA,O is

Zg= )t.,"' g ' = b A, /y(1 —pcos8),

where the m subscript refers to measured wave-

lengths and
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FIG. 4. Sample spectra used in the SXv SI-'P2
wavelength determination.

(9)

In this way we can then use a calibration line, for
example, Q ', to obtain the desired zero-velocity
wavelength of, for example, Q":

Q"=l(e '+hit, /y(1 —pcos8) . (10)

It is therefore important to know the value of this
Doppler factor y(1 —pcos8) as accurately as possi-
ble. Limits on its accuracy are imposed by uncer-
tainties in the beam energy E and the angle 8. Our
uncertainty in E ( & 300 keV) affects the Doppler
factor through the energy dependence of y and

pcos8, and both effects are very small. They are
approximately 1 X 10 for y and 2)(10 for
P cos8.

The largest uncertainty in the Doppler factor is
that associated with the observation angle 8. As-
suming a nominal value for P of 0.07, an uncer-

tainty in 8 (for 8 near 90') results in an uncertainty
in the Doppler factor of 1.2)&10 /degree of un-
certainty in 8.

We determined this angle by measuring the
shifts in the measured wavelengths as the beam en-

ergy was varied. Figure 3 illustrates this effect on
the 1s 2s Si~2-1s 2p P3/2 SiXII transition mea-
sured in fifth order. The scans over each transition
(eight different transitions were used in the
analysis) were taken at four different energies.
There is an approximately linear increase in wave-

length with energy as predicted by Eq. (7) with 8
near 90.
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Using one particular energy as a reference, the
shift in the measured wavelength of the eight lines

at the other three energies gives 24 independent
determinations of the angle. The distribution of
values has a mean of 91.0' and a one standard de-

viation of 0.35'.
The largest contribution to the uncertainty of a

single determination of 8 arises from the uncertain-

ty in the measured wavelength shift and decreases
for larger energy separation or Q. Taking a proper
weighted average, one obtains a mean of 91.0' and
a one standard deviation of 0.26', which corre-
sponds to uncertainties of about 0.006 nm in the
measured wavelength shift. Statistically, the stand-
ard error of the mean is under +0.05'. Because
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the results do not show a Gaussian distribution we
use a conservative estimate of +0.13'.

Systematic shifts in beam energy, expected to be
less than 15 keV/MeV, may have a small effect on
the determination of 8 (+0.06'). The total uncer-
tainty in 8 is estimated to be 0.15', 0.13' from sta-
tistical uncertainty, 0.06' from systematic uncer-
tainty. This uncertainty dominates the overall un-
certainty in the Doppler factor, its contribution be-
ing approximately 2.0)(10

III. DATA ANALYSIS AND RESULTS

The data analysis was carried out using an in-
teractive computing system at Argonne National
Laboratory. All spectra (e.g., Figs. 2, 4, and 5}
were fit to Gaussian profiles with position, height,
width, and background parameters.

For each different run of each energy, the wave-
length separations between the S- P transitions
and the calibration lines are corrected using the as-
sociated monochromator calibration curve. These
corrections are typically 0—0.01 nm. The separa-
tions are then corrected by the appropriate Doppler
factor for the energy of the run to obtain the
Doppler-free separations. Depending on the energy
at which the run was taken and the actual separa-
tion, this correction would be 0—0.05 nm.

The Doppler-free separations for all runs are
then compared for scatter. Typically this scatter is
on the order of 0.006 to 0.020 nm. The average is
used as the true separation from the calibration
line. This separation, together with the wavelength
of the calibration line, determines the wavelength
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FIG. 8. Sxv 'S, -'P2 wavelengths obtained from each
calibration transition.

of the S- P transition (in the spectral order in
which it was measured). In addition to the scatter,
the associated error in this final wavelength is tak-
en as the root-mean-square sum of the following
errors:

(1) An uncertainty of 0.0025 nm in the correc-
tion associated with the monochromator calibra-
tion curve.

(2) An uncertainty in the calibration lines
(0.002 —0.003 nm}. These would be multiplied by
the appropriate factor when used in higher order
than the first.

(3}The error associated with the Doppler factor
is taken to be 2.0X10 times the wavelength
separation. Actually, this error factor varies slight-
ly with the energy [(1.7—2.2) X 10 ] and should
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be applied separately to each different energy.
However, because this error is almost entirely due

to the uncertainty in the observation angle, which

does not change with energy, this procedure would

obscure the statistical scatter in the wavelength

separations, which shows a clear correlation with

the intensity of the associated lines. Figures 6—8

show graphically the results of these analyses ap-
plied to the Si- Pp 2 transitions in Si XIII and for
the Si- P2 transition in S XV. For the weaker
Si- Po S XV transition only four spectra were used

and resulted in the two determinations
75.639+0.006 nm (when compared with the 'P' 'D-
S XIII transition) and 75.650+0.007 nm (when

compared with the S&q, P&&2 S-XIV transition).

If, in addition, the best value of the S&- P2 transi-
tion of S XV is used as a reference line, we obtain
75.640+0.006 nm.

Wavelength measurements of the Si- Pp 2 tran-3 3

sition in chlorine were reported previously. ' In
the original report the Cl XV n =8—9 wavelength

was reported as 123.485 nm. Using the revised

wavelength reported here, 123.476+0.003 nm,
changes the S&- P2 transition wavelength by
—0.004 nm. The disagreement in the previously

reported calibration wavelength was caused by the
neglect of the lower I transitions in calculating the
mean wavelength. A new measurement of the S~-
Po transition in chlorine is presented.

The final results for silicon, sulfur, and chlorine
are given in Table II along with the preliminary

values obtained at Notre Dame for these ions, as
well as measurements from Oxford ' for Z =14.

IV. THEORY

A. Introduction

In one-electron systems, relativistic corrections
to the nonrelativistic energy (from the Schrodinger
equation) are evaluated directly using the Dirac
theory. Contributions which arise when using the
more rigorous treatment of QED can be evaluated
perturbatively. In this way, the two effects arising
when one includes relativity and QED theory are
clearly separated from the nonrelativistic energy
and from each other.

For two-electron ions, although the nonrelativis-
tic energy is well defined, separating the relativistic
and QED contributions is more diAicult and not

truly possible. QED is completely covariant, and
its rigorous application to the two-electron system
would include all of these contributions. However,
the difficulties associated with an exact treatment
have prohibited its use for high-order calculations
of these interactions. Thus, for low-Z systems only
the ground-state corrections to order a have been
obtained and have used nonrelativistic wave func-
tions for their evaluation. Calculations of the a
QED corrections have been applied to the ls 2p 3P

fine-structure intervals in helium. Extrapolations
of these a corrections to high Z for all the n =2

TABLE II. Results for the 1s 2s 'S~-1s 2p 'P2 p transitions in Si, S, and Cl.

Wavelength
(nm)

3 3Si- P2
Wave number

(cm-')
Wavelength

(nm)

S1- Pp
Wave number

(cm ')

16

17

81.469(2)'
81.470(10)
81.460(10)'
81.450(40)
67.343(2)'
67.350(10)
61.379(2)'
61.380(10)

122746 (3)
122 745(15)
122 730(15)

148493 (5)
148 480(20)
162923 (6)
162 920(25)

87.862(3)'
87.880(20)
87.860(10)'
87.830(60)'
75.644(6)'
75.640(20)b
70.600(20)'

113815 (4)
113790(25)
113817(13)

132 198(10)
132 200(40)
141 643(40)

'This work.
Notre Dame results, Ref. 22.

'Armour et al. , Ref. 23.
O'Brien et al. , Ref. 24.

'Berry et al. , Refs. 7 and 8.
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levels are discussed below.
Much of the theoretical interest in the atomic

many-body problem has focused on developing

Hamiltonians and operators which can accurately
approximate the contributions of relativistic and

@ED interactions.
Thus, the well-known Breit operator

B =(—e /2ru)[al a2+(a l
. ru)(a2 ri2)/ri2]

HD(i) =(a; . p;+P;mc Ze—2/r; ) (13)

is the Dirac single-particle Hamiltonian for each
electron (i =1,2). The next two terms consist of
the nonrelativistic and relativistic electron-electron

interactions, respectively. HMp is a mass-polariza-
tion term, arising because the center-of-mass

motion cannot be completely decoupled:

HMp = ——
(p& p2)M

(14)

represents some of the terms corresponding to ex-

change of transverse photons between the electrons.
It has been treated extensively in the literature

and has been modified ' to allow calculations to
all orders in the external potential. Sucher gives

a treatment of the theoretical basis for the Hamil-

tonians we shall use.

B. Methods of calculation

Formally, we use the Hamiltonian

and can be evaluated perturbatively.
We shall use scaled atomic units (s.a.u.},

4=m =Ze =1, such that the velocity of light
c =1/aZ, where a=e /Pic and
a ' = 137.03604(11).

The Hamiltonian H can be considered in two
parts in two different ways for the high-Z and
low-Z ranges of ions: for high Z, we write

H =Hp, ran+ ~ra»

where

2

H =PHD(i)+ +B+HMp
12

where

(12}

and

13r ai ' pi'
Ho, rel g p 2 +aZ aZ

(16)

W«l ——Z '(1/ruI 1 —i [al a2+(al rl2)(a2. ru)/ri2] I) . (17)

Note that Hp d is the sum of one-electron Dirac
Hamiltonians and W„& is the sum of the Breit and

1/r &2 interactions written in s.a.u.
Alternatively, for low-Z systems we can reduce

the Hamiltonian to the Breit-Pauli (BP) approxi-
mation, and our Hamiltonian becomes

H =Hp Bp + hap

where

(18)

Pr
Ho, ap=g +Z1 ) 1

12
(19)

and

8 Bp =a Z (Hi +H2+H3+H4+Hs)+HMP, (20)

with H~, . . . , H5 as defined in Ref. 28. In our
units, all of the basic operators (P, r,p, s, etc.) are of
order unity, except the a matrices, which are of
order az. The choice of the zero-order Hamiltoni-

an should thus depend on the values of the larger

I

perturbation parameter; Z ' for the first or a Z
for the second. For Z =27 they are roughly equal.
Thus, near this value both the correlation and rela-
tivistic effects are of similar importance.

The Breit-Pauli Hamiltonian was used extensive-

ly by Accad et al. ' for the nuclear charges
Z =2—10, using variational wave functions with

as many as 2300 parameters to obtain highly accu-
rate values for the zero-order energy. Applying
their wave functions to the expectation values of
the perturbative terms they also give results for the
relativistic corrections and the mass polarization.
The fine structure of the QED corrections of order
a is included in their fine-structure intervals.
These are given by operators similar to, but not
identical with, the Breit operators H3 and H5 with

an extra multiplicative factor of a/~, and take ac-
count just of the electron's anomalous magnetic
moment. This work has been extended to all Z
ions using the variational perturbation technique to
solve the nonrelativistic Hamiltonian as a 1/Z ex-
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pansion

Ho up='Ho+Z (1/r]~) (21)

Blanchard refined the energy expansions of
Sanders and Scherr and of Aashamar to obtain

nonrelativistic energies accurate to better than 1

cm ' for intermediate values of Z.
Similarly, we have obtained the mass polariza-

tion, relativistic correction, and fine-structure inter-

vals vp~ and v2i from an extrapolation of the values

of Accad et al. ' using a Pade approximation tech-

nique. With the relativistic energies in units of
R, the reduced mass Rydberg, their data were fit

to a rational polynomial of the form

EJ ——Z ~ ap+a ~Z

+Z-' gbZ '
Ã2

1++ c,Z

(22)

where the EJ are the energies for Z =2—10. The
value for ap is known exactly, while a

&
can be ob-

tained from the work of Doyle.
For the fine-structure intervals vp& and v2~, the

same fitting function is applicable. In order to be

consistent, the QED part of these intervals of order

a, though actually fit in the fitting procedure, was

subsequently subtracted off in the final results ac-

cording to a formula given by Ermolaev which is

expected to be accurate for high Z. The total con-

tribution of this a term for Z =17 is only 37.5
cm ' for vp& and 10.4 cm ' for v2&.

The larger a contribution to ap can be obtained

from the difference of the Dirac fine structure for
the {ls ~/2, 2p&/2) Po and ( ls ~/q, 2p3/2 } P2 states

and the diagonal matrix element after transforming

to the LS basis, choosing the triplet rather than the

singlet value. (This matrix element is the value for

Qo used in the extrapolation of the P~ relativistic

correction, EJ }Note that t.his results in a mixing

of the 'PI and P~ levels and is largely responsible
for the decay of the latter to the ground state. The
coefficients a; can be similarly obtained from the
a Z coefficients of Doyle, which are also given

in jj coupling.
Of course, no more than nine parameters were fit

at one time, though checks were made with less

than this maximum. For all extrapolations the fi-

nal results were insensitive to the values of Ni and

N2 in Eq. (22) to within a few parts in 10 . At
this level, the results were also in agreement with

those of Ermolaev and Jones.
For ions of very high Z, we must take relativis-

tic effects into account as accurately as possible,
while the smaller effect of correlation energy may
be evaluated perturbatively, along with the Breit
interaction.

The Hamiltonian of Eq. (16) gives zero-order
wave functions which are antisymmetrized Slater-

type product wave functions, whose components
are the well known Dirac four-component spinors.
Trivially, one also obtains for the zero-order ener-

gy, the sum of the Dirac energies of each electron,
' —1/22 2

E.—
k +(k 2 a2Z2)1/2]2

I

{23)

Because of the uncorrelated nature of the zero-
order wave functions in this approximation the
mass-polarization expectation value is zero for the
s states. An exposition for a closed-form expres-
sion for the evaluation of the first-order perturba-
tion energy was given by Drake.

Using this technique, we have evaluated the di-

agonal matrix elements of W„~ for the 1s&/2ns&/2,

ls~/qnp~/2, and ls~/2np3/2 states (n =2,3) for
Z =1—50. This is the first application of this

technique to the hn =0 n S~-n Pp 2.
It is well known that both the Dirac energy and

wave function can be expressed as power series in

a Z, with the leading terms in the large and small

components of the wave function differing by a fac-

tor of aZ. Thus, terms in the perturbation interac-
tion which do not mix large and small components
result in an expansion in powers of a Z . The
terms in the Breit interaction containing the Dirac
matrices a; which do mix large and small com-

ponents (and so would lead to half-integral powers
of u =a Z ) enter only quadratically. Hence, the
Breit interaction and the zero-order energy can be
expanded in integral powers of u.

It is interesting to examine the results of this
perturbative technique in the light of this argu-
ment. We have fit the obtained perturbation ener-

gies for z =1—50 to a power series in a Z . The
leading terms are of order Z Ry and a Z Ry and
can be compared with the similar coefficients ob-

tained with the variational perturbation method.
We find the results for the leading coefficient agree
with the results of Blanchard to all eight signifi-

cant figures given there. The results for the second
coefficient also agree with the less precise results of
Doyle obtained from similar considerations. We
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E =g g e,lZ '(a Z )J,
i=pj =0

(24)

in Z Ry (reduced mass). While the relativistic
Hamiltonian gives the energy in a form

E=g g elZ '(a Z )J,
i =0j=p

(25)

in Z Ry (reduced mass).
It should be noted that there are four common

terms in these two expansions (Fpp 6'p& t. ]p 6~ ]). Er-
molaev and Jones show that the two techniques
are exactly equivalent in these common coeffi-
cients, though, of course, only if the nonrelativistic
wave functions are exact.

have thus adopted these values in the extrapolation
of the relativistic corrections and fine-structure in-

tervals of Accad et al. '

We have thus shown that with the Breit-Pauli
Hamiltonian, one obtains an expansion of the ener-

gy which can be written

It can be expected that by summing both expan-
sions, taking care to count common terms only
once, one can obtain results more accurate than ei-
ther gives if taken alone.

The final results of this calculation are illustrat-
ed in Tables III, IV, and V which show the ener-

gies for the 1s2s Si, 1s2p Pz, and 1s2p Pp in a
manner that illustrates this type of expansion.
Terms along the top row are the energies associat-
ed with the Dirac equation of zeroth, first, and
higher order in a Z, along with their total. Simi-
larly, the terms in the first column represent the
nonrelativistic energy of zeroth, first, and higher
order in Z, along with their total. Terms in the
second row were obtained from the Drake tech-
nique and represent the one-photon-exchange term
in the Breit interaction to all orders in a Z . The
second column gives all relativistic and Breit
corrections of order a obtained from the extrapo-
lation of the relativistic and fine-structure intervals

of Accad et al. ' The mass-polarization contribu-
tion and the total energy are given separately at the
end of each matrix. Extrapolating to the next

TABLE III. S& energy matrix (in cm ').

(+2Z2)0 (+2Z2)1 (&2Z2)2+ Total

Z2
zl
Z0+
Total
Mass polarization =0.58
Total energy =—26389837.50

—26 885 114.13
577 426.71

—10485.36
—26 318 172.8

Z =14

—73 659.26
2467.26
—96.31

—71 288.31

Z =16

—391.55
14.57

—26 959 164.95
579 908.54

Z2
Z|
Z + e ~ ~ '

Total
Mass polarization =0.59
Total energy = —34588 842.26

Z2
zl
Z0+ o ~ ~

Total
Mass polarization =0.58
Total energy = —39 108 378.38

—35 115337.19
659 917.86

—10474.87
—34465 894.21

—39 641 981.95
701 163.76

—10470.60
—38 951 288.79

—125 659.76
3682.92

—126.05
—122 102.89

Z =17
—160 144.72

4417.53
—142.41

—155 869.60

—874.22
28.46

—1259.16
38.58

—35 241 871.17
663 629.24

—39 803 385.82
705 619.87
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TABLE IV. P2 energy' matrix (in cm ').

(R2Z 2 )0 (&2Z2) l (+2Z2)2+ Total

Z2
Zl
Z +
Total
Mass polarization = —56.92
Total energy = —26266629.77

—26 885 114.13
693 567.69

—16293.15
—26 207 839.59

Z =14
—59 628.93

1303.26
—107.58

—58433.25

Z =16

+299.39
—0.62

—26 945 042.45
694 870.33

Z2
Zi
Z +
Total
Mass polarization = —66.27
Total energy = —34439599.87

—35 115337.19
792 650.73

—16257.82
—34 338 944.29

—101 724.57
1945.39

—140.52
—99919.69

—668.43
—1.19

—35 217 730.19
794 594.93

Z =17

Z2
Zi
Z +
Total
Mass polarization = —68.92
Total energy = —38944532.14

—39 641 981.95
842 192.64

—16243.40
—38 816032.71

—129640.96
2333.43

—158.64
127466.17

—962.73
—1.61

—39 772 585.64
844 524.46

higher rows and columns indicates a probable error
in the total energy of less than 5 cm ' for the S&

and P2 states, and slightly larger for the Po state.
Uncertainties in the extrapolation of the relativistic
corrections are probably also less than 5 cm

C. Lamb shift

We have previously discussed ' the one-electron

part of the -Lamb-shift corrections. The results far
the 1s2s Si-1s2p P02 transition for Z=2 —50 are
shown in Table VI, together with the results of the
calculations of Sec. III B. The total energy updates
that which is given in Ref. 8 which contains errors
due to double counting of some QED fine-structure
corrections and same typographical mistakes.

In Table VII, we show the difference between ex-
periment and the theoretical values of Table VI for
the energies of the transitions 1s 2s S&-1s2p Po 2.
These differences EPo and dd'2 indicate an approx-
imate Z dependence; this can also be seen from
the quantities Q; =(~;/Zi)100, (i =0,2) which are
shawn in Table VII and in Figs. 9 and 10. We

note that the difference between experiment and
theory is 45 cm ' for S XV, far outside the es-
timated experimental error of +5 cm '. This Z
discrepancy was first noted by J. Silver for ions of
Z & 10 (private communication). i9

We have considered possible omissions from the
theory which could give rise to such discrepancies:
two-photon-exchange or second-order Breit terms
which would contribute energy corrections to the
double series expansion are estimated to be of the
order of 5 cm ' and insuFicient alone to account
for the discrepancies. The first-order corrections to
the Lamb shift correspond approximately to the
lowest-order shielding corrections of the Lamb
shift. As for the non-QED terms they also contri-
bute at the 1/Z level. We briefly sketch an esti-
mate of the a Z and a Z corrections for the
a Z and a Z one-electron self-energy and
vacuum-polarization terms.

Using the nonrelativistic density of the electron
at the nucleus 5„~(r)=5ioZ lrrn to illustrate the
contact terms of the Lamb shift, we may write the
two lowest-order, one-electron terms ' in the form
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TABLE V. Po energy matrix (in cm ').

(+2Z 2 )0 (&2Z2)1 (~2Z2)2+ Total

Z2
zi
z + o ~ ~

0

Total
Mass polarization = —56.92
Total energy = —26275 533.55

—26 885 114.13
693 567.69

—16293.15
—26 207 839.59

Z =14

—73 659.26
7047.82

—682.25
—67293.70

Z =16

—391.55
48.21

—26 959 164.95
700 663.72

Z2
zi
z + o ~ ~

0

Total
Mass polarization = —66.27
Total energy = —34455 823.96

—35 115337.19
792 650.73

—16257.82
—34 338 944.29

—125 659.76
10520.38
—894.03

—116033.40

—874.22
94.22

—35 241 871.17
803 265.33

Z2
zi
z + s ~ ~

0

Total
Mass polarization = —68.92
Total energy =—38965769.62

—39 641 981.95
842 192.64

—16243.40
—38 816032.71

Z =17

—160 144.72
12 618.83

—1 010.70
—148 536.59

—1259.16
127.75

—39 803 385.82
854 939.21

E(n, l) = (8a Z/3)5„i(r) [ I —2 1n(aZ)+3~aZ(, ~ —0.5 1n2)]

+ (8a Z /3nn )[ 1n[Z /Eo(n, l)]+(1—5&o)3cl&/[8(2l +1)]] Ry,

where

(26)

CIJ
——'

(l+1) ' for j=l+ —,

—I ' fork=l ——, . (27)

The extension to the two-electron Lamb shift is then taken as '
E(1s,nl) = (8a Z/3)(5 (r i )+5 (rq) ) [

—„—2 1n(aZ)+1n[Z /Ko( 1s,nl)]+3naZ( 38~
—0.51n'2) J

+ (8a Z /3nn )(1—5Lo)(1—5so)3[AL J+(BL-J 3AI J)Z ']/[8L—(L+1)(2L+1)], (28)

(29)

—(L+1), Bl. L i ——4L(L+1)/(2L —1) .

where

AL„L.+i ——L, BL„L.+&= —4L(L +1)/(2L +3),

ALL
———1, BLL ——0,

Excluded terms include electron-electron contact
terms (which vanish for the triplet states) and
higher-order corrections in Z ', for the fine struc-
ture, along with all corrections of higher order in a
and aZ.

Thus in order to obtain the Lamb shift for a
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TABLE VI. Is2s 'S, -ls2p 'Po, transitions —theoretical values, neglecting two-electron QED corrections (in cm ').
The QED values for 3S,-3P2 also include the J-dependent corrections as evaluated by Garcia and Mack, J. Opt. Soc.
Am. 55, 654 (1965).

z

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Non-QED

9 223.955
18 229.22
26 872.18
35 440.36
44042.8

52 757.28
61 650.21
70794.3
80260.59
90 141.16

100520.8
111508.9
123 207.7
135745.3
149242.4
163 846.2
179704.9
196961.7
215 800.5
236405.1

258 952.6
283 647.2
310696.3
340328.1

372 749.2
408 323
447 132.2
489 553.7
535 840.3
586 302.2
641 239.5
700967.4
765 836.2
836 178.9
912 382.1

994 808.4
1083 865
1179957
1283 516
1394995
1514855
1643 571
1781 650
1929612
2088003
2257 380
2438 342
2631 474
2837 422

S,-P
One-El. QED

—0.46
—2.02
—5.78

—12.97
—25.00
—43.40
—69.84

—106.09
—153.91
—215.12
—291.83
—385.95
—499.60
—634.99
—794.10
—979.43

—1193.20
—1436.81
—1714.05
—2026.59
—2377.06
—2767.00
—3200.79
—3680.14
—4206.38
—4785.14
—5414.22
—6106.86
—6853.20
—7667.6
—8545.2
—9491.4

—10512.2
—11 606.1

—12 784.9
—14038.8
—15 386
—16815
—18 346
—19976
—21 229
—23 563
—25 530
—27 597
—29 819
—32 131
—34629
—37233
—40006

Total

9223.50
18 227.20
26 866.40
35427.39
44017.81
52 713.87
61 580.36
70688.21
80 106.68
89 926.04

100228.9
111 122.9
122 708.1

135 110.3
148 448.3
162 866.8
178 511.7
195 524.9
214086.4
234 378.5
256 575.4
280 880.2
307495.5
336 648.0
368 542.8
403 537.9
441 718.0
483 446.8
528 987.1
578 634.6
632 694.3
691 474.0-

755 324.0
824 572.8
899 597.2
980 769.6

1068479
1163 142
1265 170
1375019
1493 626
1620008
1756 120
1902015
2058 184
2225 249
2403 713
2594 241
2797416

Non-QED

9 225.021
18232.34
26 868.91
35 404.13
43 920.11
52458.86
61042.22
69 689.39
78408.93
87 221.43
96 131.08

105 157.5
114303.9
123 589.9
133018.3
142 608.8
152 372
162 304.3
172432.2
182 772.1

193323
204 100.9
215 113.9
226 379.8
237 883.9
249 756.4
261 835.6
274241.2
286957.4
300012.3
313411.5
327 162.6
341 294
355 803.4
370727
386063
401 837.9
418061.2
434753.3
451 935.3
469 625
487 831.8
506 579.9
525 886.9
545 778.1

566 266.8
587 388.9
609 143.8
631 568.1

3 3S)- Pp
One-El. QED

—0.47
—2.09
—6.00

—13.49
—26.08
—45.41
—73.26

—111.51
—162.15
—227.12
—308.74
—409.11
—530.58
—675.59
—846.35

—1045.62
—1275.88
—1538.80
—1838.45
—2176.79
—2556.76
—2980.17
—3451.74
—3973.48
—4547.06
—5178.43
—5865.71
—6622.50
—7439.25
—8330.73
—9292.29

—10329.8
—11449.6
—12 650.5
—13 944.3
—15 322.8
—16 803.2
—18 375.6
—20059.5
—21 851.6
—23 772.3
—25 796.9
—27 958.7
—30234.7
—32 678.9
—35 221.6
—37 990.1
—40853.3
—43 935.7

Total

9224.55
18 230.25
26 862.91
35 390.64
43 894.03
52413.45
60968.96
69 577.87
78 246.78
86994.31
95 822.34

104748.4
113773.3
122 914.3
132 171.9
141 563.2
151096.1

160765.5
170593.7
180595.3
190766.2
201 120.7
211 662.2
222406.3
233 346.8
244578.0
255 969.9
267 618.7
279 518.1

291 681.6
304 119.2
316832.8
329 844.4
343 152.9
356782.7
370740.2
385 034.7
399685.6
414693.8
430083.7
445 852.7
462 034.9
478 621.2
495 652.2
513099.2
531 045.2
549 398.8
568290.5
587 632.4
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multielectron atom, we need to evaluate the elec-
tron density at the nucleus and the Bethe loga-
rithm term Eo(n, l). From the 1/Z variational ex-
pansion we can use the nonrelativistic values for
the two-electron system,

Z3
n(5 (r))+5 (rp))=g 35( o+aZ +bZ+

(30}

The second term in this expansion yields part of
the first-order screening correction to the one-

electron Lamb shift. The largest term is propor-
tional to Z .

Evaluation of Ko(n, l} requires calculation of the
sum

S;=gf,„v;„ln
~
v;„~, (3 I)

where f;„ is the oscillator strength from the level of
interest i to leven n, and v;„ is the energy differ-

ence; the sum is taken over all discrete states and
continua. Calculation of S; is, in general, difficult'
for systems of more than one electron, and has
only been attempted for a few states in helium
and Li+.

We choose Eo to be of the Z-expansion form
suggested by Bethe and Salpeter, but with its
leading term adjusted to give a Z dependence of
the Lamb-shift equation (26} in agreement with the
one-electron Lamb shift. For example, for the

TABLE VII. Differences between theory (neglecting two-electron QED corrections) and
experiment (in cm ') for the 1s2s S~-1s2p Pp2 transitions.

Ion

(Eexpt Etheor)

2s Si-2p P2

EP2

2$ S)-2p Pp

dd'p

Qz=,

EP2
100

Z3

Qo=
EPp

100
Z3

BenI
BIv
Cv
NvI
Ovn
FvnI
Ne IX

Al xn
Si XIII

Sxv
Cl xvI
Ar xvn
Fe XXV

1.5(0.2)'
2.1b

3.8(1.0)'
5.6(0.6)'

14.9(0.8)
12.2(3.0)'
13.8(1.3)'

—13 (100)
37 (15)~

27 (15)h

38 (4)
45 (5)'

57 (6)'
—10 (300)"
433 (125)'

4.5(0.7)'
2.6b

5.0(1.0)'
0.4(1.4)'

10 3(3 0)
8.1(4.0)'

20.1(2.5)'
182 (100)
17 (25)~

29 (15)"
42 (5)'

27 (12)'
80 (40)'

256 (250)"
—763 (550)'

2.34(0.3)
1.68
1.76(0.5)
1.63(0.2)
2.93(0.2)
1.65(0.4)
1.38(0.13)

—0.6(4.6)
1.35(0.6)
0.98(0.6)
1.38(0.2)
1.10(0.12)
1.16(0.12)

—0.2(5.1)
2.46(0.71)

7.03(1.1)
2.08
2.31(0.5)
0.12(0.4)
2.01(0.6)
1.10(0.4)
2.01(0.25)
8.28(4.6)
0.62(0.9)
1.06(0.6)
1.53(0.2)
0.66(0.3)
1.63(0.8)
4.4(4.4)

—4.34(3.1)

'B. Lofstrand, Phys. Scr. 8, 57 (1973).
Edlen, Nova Acta Regiae Soc. Sci. Ups. 9, (1934).
'B. Edlen and B. Lofstrand, J. Phys. B 3, 1380 (1970).
S. C. Baker, J. Phys. B 6, 709 (1973).

'W. Engelhardt and J. Sommer, Astrophys. J. 167, 201 (1971).
B. Denne, S. Huldt, J. Pihl, and R. Hallin, Phys. Scr. 22 45 (1980).

NReference 22.
"Reference 23.
'This work.
'Reference 8 and this work.
"W. A. Davis and R. Marrus, Phys. Rev. A Q, 1963 (1977).
'J. P. Buchet et al. , Ref. 44, p. 236, and J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J.
Desesquelles, M. Druetta, J. P. Grandin, and X. Husson, Phys. Rev. A 23, 3354 (1981).



1886 R. DESERIO et al. 24
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FIG. 9. Experiment —theory for is 2s S&-is 2p 'P2

(scaled by Z') versus Z.

-6-

FIG. 10. Experiment —theory for is2s S~-is2p Pp

(scaled by Z') versus Z.

1s 2p state we write
Eo(ls2p) =19.186Z (1+d/Z . ) (33)

lim 1nKO(1s 2p) =1nKO(1s)+ —31nKO(2p)
1

Z~ 00
2'

leading to

(32)
The results of the calculations for 1s 2s S~-

1s 2p Po 2 are listed in Table VIII and are shown

TABLE VIII. Two-electron Lamb-shift contribution to the is 2s 'S~-is 2p 'Pp 2 (in cm ')
~

3 3S)- P2
Expt. ' Theory

S)- Pp
Expt. '

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0.21
0.63
1.34
2.40
3.84
5.70
8.01

10.80
14.11
17.95
22.36
27.37
33.00
39.29
46.28
53.99
62.5
71.8
81.9
92.9

104.9
117.9
131.9
147.1
163.4

1.5(0.2)
2.1

3.8(1.0)
5.6(0.6)

14.9(0.8)
12.2(3.0)
13.8(1.3)

—13(100)
38(4)

45(5)
57(6)

—10(300)

433(125)

0.26
0.77
1.68
3.05
4.97
7.50

10.70
14.64
19.37
24.95
31.45
38.92
47.44
57.05
67.82
79.84
93.2

107.8
124.0
141.7
160.9
181.9
204.7
229.3
255.9

4.5(0.7)
2.6
5.0(1.0)
0.4(1.4)

10.3(3.0)
8.1(4.0)

20.i (2.5)

182(100)
42(5)

27(12)
SO(40)

256(250)

—763(550)

'Experimental data as given in Table VII.
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as the dashed curves in Figs. 9 and 10. Note that
Eq. (28) consists of two principal terms each of
which is expanded in powers of 1/Z. Each leading
term is the hydrogenic term, proportional to
Z /n, which has been subtracted to give the two-
electron corrections of Table VIII. The last term
of Eq. (28) has been adjusted to be consistent with
the work of Ermolaev ' ' to order Z . The uncer-
tain contribution from the correction to the Bethe
log term [d in Eq. (8)] is neglected. Crude esti-
mates (from calculations at Z =2) of its effect indi-

cate a probable upward shift of this curve of ap-
proximately 10—20%. However, it should be not-
ed that higher-order (Za) corrections to the one-
electron Lamb shift at Z = 17 constitute more than
10% of the total and hence the two-electron, 1/Z
correction to these terms should also become im-

portant, especially for the higher-Z ions.

V. SUMMARY AND CONCLUSION

This work concludes this stage of our precision
wavelength measurements of the 1s 2s S&-

1s 2p Po 2 transitions in the heliumlike ions of sil-

icon, sulfur, and chlorine. We have attained accu-
racies of 4—6 cm ' for the P2 transitions and
5—30 cm ' for the Po transitions. Improved pre-
cision may be possible only with improved

knowledge of relative populations and fine struc-

tures of the high Rydberg transitions, or of experi-

mental precision of resonance-line wavelengths of
lower-charge-state ions. Problems from the disper-

sion of the monochromator and signal-to-noise ra-

tios may be reduced by multiplexing the signals

with a position sensitive detector in the exit focal

plane of the monochromator. This reduces the

grating screw problem, and enhances the signal-to-

noise ratio for a given ion-beam flux. We have

made initial measurements of this type.
We have shown that accurate tests of QED in

strong electromagnetic fields can be obtained from

fine-structure measurements in medium-Z ions.
Current theoretical limitations lie in calculations of
the two-electron Lamb-shift terms.

We have demonstrated the usefulness of a double

series expansion of the "known" (Coulomb and

Breit) interactions, in powers of the correlation and
relativistic parameters, Z ' and a Z, respectively.
Through extrapolation of the Breit interaction of
order a from lower values of Z, and actual calcu-
lation of the one-photon-exchange part of the Breit
interaction to all orders in a Z, we have reduced
the uncertainty in these non-Lamb-shift terms to
the level of the experimental precision.

Using a similar approach to the calculation of
the Lamb-shift contributions, we use the one-

electron Lamb-shift calculation and attempt to ob-
tain correlation corrections to it. This arises natur-

ally from the correlation correction to the density
of the electrons at r =0, used in the one-electron
contact interactions of the Lamb shift and leads to
a technique to extrapolate the Bethe logarithm so
that the leading term of the two-electron Lamb
shift is in agreement with the one-electron values.
We find that we can reduce the discrepancies
between theory and experiment to approximately
the level of the experimental precision by including
a Z and a Z corrections to the corresponding
a Z and a Z one-electron Lamb-shift values
(which contribute 90% to the total).

There are relatively few measurements of QED
in the strong-field limit where perturbative ap-
proaches based on a weak-coupling coefficient may
eventually break down. With new or improved ex-
perimental techniques and two-electron Lamb-shift
calculations, these measurements and measure-
ments in other high-Z ions of few electrons can be
expected to provide the most demanding require-
ments of this fundamental theory of physics in
atomic systems.
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