
PHYSICAL RK VIE% A VOLUME 24, NUMBER 4 OCTOBER 1981
I

Semiclassical picture of depolarizing collisions: Application to collisional studies
using laser spectroscopy

J.-I.. Le Gouit
Laboratoire Aume Cotton, Centre National de la Recherche Scientifique, Batiment 505, 91405 Orsay-Cedex, France

P. R. Berman
Physics Department, New York University, 4 Washington Place, New York, New York N003

(Received 2 April 1981I

An extension of the Jeffreys-%entzel-Kramers-Brillouin approximation to inelastic processes is used to obtain the

scattering amplitude which describes the colhsionally induced depolarization of magnetic substate coherences. It is

found that the scattering amplitudes contain contributions from two overlapping regions. For large interatomic

separations, the different Zeeman sublevels are shifted and mixed by collisions, but follow a common collision

trajectory. For small interatomic separations, it is possible to find adiabatic eigenstates which follow distinct

collision trajectories. The theory is used to investigate the nature of the depolarizing collision kernels and rates

which enter into the analysis of laser spectroscopy experiments.

I. INTRODUCTION

Laser saturation spectroscopy experiments are
beginning to provide an important probe of col-
lisional processes occurring in low pressure
gases. ~ The elimination of the broad Doppler
background encountered in standard spectroscopy
permits a more sensitive measure of the manner
in which collisions perturb the energy levels and
alter the velocity of atoms.

A particularly interesting process that may be
studied 1n such exper1IQents ls the way 1n which
collisions perturb suPe~osg'lion states in atoms
that have been created by an atom-field interac-
tion. Since the various internal states comprising
the superposition state are generally shifted and
scattered different/y in a coiiision, one is ied to
a somewhat complicated description of the .entire
scattering process for the superposition state,
especially if collisions can also couple the super-
position levels. Formal theories" have been
developed to describe the scattering and time
evolution of atomic superposition states via a
quantum-mechanical transport equation, but lit-
tle progress has been made in obtaining solu-
tions or physical interpretations of the results.
It is the purpose of this paper to provide a sim-
plification of the transport equation and some
additional physical insight into the scattering pro-
cess. Methods of semiclassical scattering theory
are used to achieve these goals.

The specific problem we choose to study in-
volves the scattering of atoms prepared in a linear
superposition of magnetic substates of a level
character ized by internal -angular -momentum
quantum number j. The way in which collisions
couple, shift, and scatter the various magnetic

substate s is investigated. Coherent superposi-
tions of magnetic substates (magnetic moments,
Zeeman coherences) are conveniently created and

probed using the "three-level" system of Fig. 1.
The 1-2 transition is excited with a nearly mono-
chromatic laser beam and the 2-3 transition is
probed with another colinear laser beam. Level
2 (shown for j = 1) is (2j+1) fold degenerate; Zee-
man coherences within level 2 may be produced
and detected using a proper choice of the laser
beam polarizations. Owing to the Doppler effect,
the excitation-detection scheme excites or probes
only those atoms having a specific velocity com-
ponent along the laser beam direction. Thus,
any collision-induced modification of the Zeeman
coherences for atoms having a specific longitudinal
velocity can be monitored in such a system. The
Zeeman coherences tend to be destroyed by in-
separable contributions from collisional effects
on the internal (shifting and mixing of magnetic
subieveis) and external (state-dependent scattering
for the different magnetic subieveis) atomic de-
grees of freedom. In such experiments, the col-
lisional relaxation is determined by the number
of collisions per lifetime of the level under con-

FIG. 1. "Three-level" scheme for depolarizing coQi-
sion studies. Levels 1 and 3 are nondegenerate. Level
2 has three substates which, though separately indicated
in the figure, are assumed to be energy degenerate.
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sideration and the specific interatomic potential.
It should be noted that collisional depolarization

studies are not new. Optical pumping techniques
have been used to investigate depolarizing col-
lisions between optically oriented excited state
atoms and ground-state perturbers. 4 However
the general nature of such optical pumping work
(broadband sources, total cross-section mea-
surements) does not lead to results that are overly
sensitive to velocity-changing effects. Recent
laser saturation experiments' based on schemes
similar to that shown in Fig. 1 provide a more
sensitive measure of such effects.

In attempting to analyze the scattering process
for an atom in a linear superposition of magnetic
substates one is naturally led to examine the ap-
plicability of the classical pictures shown in Fig.
2. The first drawing represents the single-tra-
jectory limit. The dependence of the deflection
on internal state is negligible so that the internal
and the translational motions are decoupled. The
second scheme depicts the situation where a diag-
onal representation has been found. Then each
sublevel obeys the rules of elastic scattering
along a substate-labeled trajectory. When none
of these extreme situations holds, is a classical
picture still possible? Answering this question
would help to complete the blanks in the third
drawing of Fig. 2. It should be noticed that the
existence of a classical picture is questionable
since depolarizing collisions imply a coupling
between the internal motion, which is highly quan-
tumlike due to the smallness of the electronic
angular momentum, and the translational motion
which can be quasiclassical. ' We shall discuss
app], icability of the various limits and approxima-
tions in terms of standard treatments of collision
problems.

In Sec. II various methods available for treating
inelastic scattering, when the de Broglie wave-
length of the colliding particle is much smaller
than the characteristic dimension of the interac-
tion region, are reviewed. In Sec. III exact equa-
tions for the scattering amplitudes are obtained

O~

(b) (c')

FIG. 2. Schematic representation of atomic trajec-
tories during a depolarizing colli, sion. In (a) an atom
in a superposition state is scattered along a trajectory
common to the three substates which are mixed by the
collision. In (b) a distinct trajectory is associated with
each substate and no transition between substates is in-
duced by the collision. In (c) the single-trajectory ap-
proximation is not valid and transitions are induced be-
tween substates: What trajectory does the atom follow?'

and those expressions are evaluated in the various
semiclassical limits discussed in. Sec. II. In Sec.
IV we return to the problem encountered in laser
spectroscopy and examine the semiclassical limit
of the transport equation for atomic multipoles of
a degenerate level. A summary is given in Sec.
V.

II. APPROXIMATIONS IN INELASTIC
SCATTERING THEORY

A few years ago, the development of research
in the fields of collisional rotational and vibra-
tional excitation of molecules, ' and of electronic
excitation and charge transfer in atoms' stimu-
lated efforts for obtaining a semiclassical descrip-
tion of inelastic collisions, ' "which should be,
by far, more tractable than a purely quantum ap-
proach. Since certain procedures in these theo-
ries are similar to those encountered in obtain-
ing semiclassical limits of elastic scattering,
it is useful to recall that two semiclassical ap-
proximation schemes" may be used to calculate
the elastic scattering amplitude,

f (8) = . g (2l +1)(e""&—1)P, (cos8)
1

2jK

(where K is the magnitude of the atomic wave
vector and g, is the phase shift of the l-labeled
partial wave).

(i) The first method is the semiclassical phase
shift approximation, which is valid when the de
Broglie wavelength% is much smaller than the
distance of closest approach y, . In this form of
the JWKB approximation, each g, is calculated
along a classical path which is characterized by
the initial velocity and the impact parameter
(l+ -', )/K. Although the g, are calculated along
classical trajectories, the classical correspond-
ence between scattering angle g and impact param-
eter is lost in Eq. (1) since a large range of 1

values contribute to scattering at angle g.
(ii) The second method, valid under the more

stringent condition v4 «W~„ is the classical tra-
jectory limit. The condition ~4' «/r, permits
one to retain in Eq. (1) only those $ values such
that the impact parameter (1+~2)/K corresponds
to classical scattering at angle g.

A number of papers have explored the conditions
for generalizing the JWKB approximation to in-
elastic processes~ "using an approach which
was initiated by Kemble. ' 'They have concluded
that such an extension is possible only when the
atomic translational motion is nearly independent
of the internal states. In the case when the addi-
tional condition W4&=Mr, is fulfilled, the JWKB
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extension is thus possible only when atoms follow

the same common spatial trajectory in any of the

coupled internal states as in Fig. 1(a). A com-
pletely different approach has been developed
under the name of classical S-matrix theory by
Miller and Marcus. ""They treat the internal
degrees of freedom quasiclassically, retaining
only the interference properties of quantum me-
chanics, since they ealeulate scattering ampli-
tudes. In these papers there is no apparent con-
dition of common trajectory. A special mention
must be made to the work of Pechukas" which
bypasses the common trajectory condition at the
expense of complications with a noncausal inter-
action.

In light of these general methods let us examine
the depolarizing collision problem. A ground-
state spinless particle, the perturber, collides
with an atom having internal angular momentum

j. The magnitude of j is on the order of a few
+ and is supposed to be much smaller than that
of the translational angular momentum. Since
the collision is assumed to result only in a change
of direction of j, the other numbers which charac-
terize the internal state of the active atom are
implicit. The effective interatomic potential is
a function of the intexnuelear distance r and of
the angle (r, j ).

A classical S-matrix method o "seems very
tempting for solving the problem formulated in
this manner. With this approach, for given initial
and final values for the variables describing the
system (internal and interparticle angular mo-
menta, energy), one calculates 8-matrix ele-
ments classically along the trajectory connecting
these initial- and final-state values. A phase
cp, = fp dr/0 evaluated along each trajectory en-
ables one to account fox any quantum interferenee
effect arising from contribution of several trajec-
tories to a given 8-matrix element. The classical
8 matrix has the advantage of ebminating the dis-
cussion about common trajectory for the various
magnetic substates since it is only the initial-
and final-state variables that determine the scat-
tering process. However, the solution of the prob-
lem in the frame of classical mechanics is rather
difficult: the couple of colliding particles in the
center-of-mass system has 8 degrees of freedom
and after taking account of the conservation of fj (,
of the total angular momentum J, of total energy
E, one is left with three differential equations,
two of which are coupled. In general these equa-
tions must be solved numerically.

If instead, we adopt a quantum-mechanical for-
mulation of the problem, certain simplifications
are possible. Since the interatomic potential de-
pends only on the quantum variable P and on the

operator j r, one immediately notes that, if the
"instantaneous" axis of quantization is taken along
P, then the Hamiltonian is a function of 7 and j,
and commutes with j, (recall that [r, j}=0 since r
is the interatomic separation and j acts in the
active-atom subspace). Thus using this basis,
known as the helicity representation after Jacob
and %ick,"one eoneludes that the various mag-
netic sublevels in this representation are coupled
only by the rotation of the internuclear axis during
a collision. Two limiting cases may be envisioned:

(i) If the various instantaneous magnetic sub-
states experience approximatively the same col-
lisional interaction (the explicit condition is pre-
scribed in the next section), then the notion of a
common classical txajectory may be valid. The

coupling between magnetic substates induced by
the rotation of the internuclear axis can be sig-
nificant in this ease since the "instantaneous"
eigenfrequencies differ by less than the inverse
duration of a collision (i.e. , the helicity repre-
sentation is Not an adiabatic one in this limit).
The coupling and scattering of the levels can be
calculated using a semiclassical phase-shift ap-
proach. One expects that the limit of nearly equal
collisional interaction for the different substates
is achieved for collisions with large impact pa-

rameterss.

(ii) In the other extreme, one can imagine that
the helicity representation is an adiabatic one.
The various magnetic sublevels experience sig-
nificantly different collisional interactions and

axe scattered independently according to the equa-
tions of classical scattering theory. Normally,
one requires small internuclear separations to
achieve this adiabatic limit. "

It is the classical trajectory limit of these two

extreme situations which is illustrated in Figs.
2(a) and 2(b). One might expect, that the range
of validity of the semiclassical picture could be
extended by combining these two approximations.
For example, in a given collision, limits (i) and

(ii) could be used for large and small internuclear
separations, respectively. The precise conditions
of validity of these different situations are exam-
ined in the next section.

III. CALCULATION OF THE SCATTERING
AMPLITUDE

The calculation is performed using the helicity
representation which has been defined in the pre-
ceding section. During a collision, the g com-
ponent of the internal angular momentum changes
from an initial value AM relative to a quantization
axis directed opposite to the initial velocity (i.e.,
in the direction of the interparticle separation
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P} to a final value gM' relative to a quantization
axis which is taken along the final direction gy.
The scattering amplitude takes the closed form"

where V„(r) is the interatomic potential in sub-
state M and

i, (J,M')= [JQ+1) M-'Qf'+1}l" ~

where $e~„, is an $-matrix element and X)~«-,(y, 8, 0)
is the rotation matrix of rank J. The internal
angular momentum j and the relative orbital angu-
lar momentum l have been coupled into the total
angular momentum J and the summation is over
all allowed values of J = 1+j. The $-matrix ele-
ments can be obtained in terms of the asymptotic
form of the radial wave functions p ~~(r) as (see
Appendix A)"

In the absence of coupling between the channels,
Eq. (4} reduces to

(
2 g 2@2

+VN(r)+ 2
Fi' p„(r)=0. (5)

The general solution of this equation in the JWKB
approximation is a linear combination of functions
e"o«/|P'~' where

x [6 ~~re ( l)j gt eirr] (8)

This boundary condition selects appropriate solu-
tions of the radial equation

+(M ) V )M& I g ~e'(r)(
g' d' hK'
2p, d/ 2p. N

This suggests that one tries solutions to Eq. (4)
of the form

(6)

V M'

which is derived from the Schrodinger equation
(see Appendix A). In this equation, p is the re
duced mass, and

—X (j,M)A, (J;M)b„„.„j,

(4)
'The standard theory of second-order differential
equations states that, in addition to the boundary
conditions, a supplementary condition is needed
to determine bz„(r)." We have chosen the follow-
ing condition:

b' e'o»+b e"o»- —~(b' e'e»+b e»)=0I 15"
JN JN 2 t JN JN

JN

(8)

which transforms Eq. (4) into the set of first-order
differential equations

b~„(r)=~ b~~e ' »+, "
-»&2(b», ,e' »+i' » +b „e"@»+x&o»&)

JN 5 gZ»+1 g

(b+ e'&o» ~' »& + b- «ta», ~o»&)AXE
(g ~ )1/2» -1 JNW

Z JN JN-1 (9)

where-

X~g = A~(J, M)X, (j,M)/r (lo)

and obtain

and a prime indicates d/dr. Except within a
distance of a few 4 from the turning points
where O'JN is close to zero, these "exact"
equations may be simplified by using the condi-
tions that we have imposed at the beginning. From
4«r„ it follows that (P««d'~„/k and since j «Z,
it follows that )fX „/2(g»g „„)'&«g»/t. Using
these two inequalities one may neglect the terms
having rapidly varying phase factors in Eq. (9}

where

N'

+NN +
2 ~ /~ ~ )1/2 ~ JN~N'Nyl

+Xge5N e g)e»»
Thus, the inward wave (represented by b~„) is de-
coupled from the outward wave (represented by
b») This is the. essence of the semiclassical ap-
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proximation and can be considered as an expres-
sion of microscopic causality. However, the semi-
classical approximation requires, in addition,
that a connection can be made between inward and

outward waves at the classical turning point. This
is accomplished provided one of the two following
conditions is fulfilled':

(i) )5'» -(P»„)«(P»+(P»„. This condition per-
mits one to define a turning point, which is com-
mon to all the channels. When in addition gd( «Mr„
a common trajectory is available.

(ii) ~(P» -4'», ~~»X~stf'/2((P»$'»„)'t . In this
case the A», in Eq. (11) are very rapidly varying
functions of y. 'Thus the substates are not sig-
nificantly mixed by collisions and the b~„are ap-
proximately constant. This decoupling corresponds
to the adiabatic approximation.

These explicit requirements for a semiclassical
description, correspond, as expected, to the lim-
iting situations that we have evoked in the pre-
vious section. In terms of the potential difference
between the internal states, the above conditions
are, respectively, transformed into

(V~-V~} ii

E,

0 ro

adiabatic
approximation

single l'rajec tory

—vzgr»(t)) when t&0,«
v J y~„ t )) when t

r»(0) =r~'~',

(13)

FIG. 3. The spatial domains for adiabatic and single-
trajectory approximations are represented in the case
of continuously decreasing

~ Vs(r) Vsi (r }~—. At ro both

approximations are valid.

[(V (r) —V„,(r) ~
&& (5'»+(P», z) /2 g = Ez,

(p» +(p».i
IV (r) —Vs.t(r} I»X &4

—
i1~2~+J»kl I

(12a)

(12b}

where the radial speed v»(r) is

P»(r)/p, when r & rc,
v„(r) =

v~(r) = (P», (r))„,/p, when r &r, ,

(14)

Condition (12a) requires that the difference be-
tween the scattering potentials for different mag-
netic substates be small enough to allow for a
"single-trajectory" approach to the problem while

condition (12b) requires that the potentials differ
enough so that the collision is adiabatic with re-
gard to the helicity eigenstates. Except in the
vicinity of a classical turning point, E, is of the
order of thermal energy and is much larger than

E, which is of the order of O'K'/p. r. Therefore,
throughout the classically accessible region, at
least one of the inequalities (12) is satisfied by

any potential difference. This guarantees the
general validity of a semiclassical description of
depolarizing collisions.

As an illustration, we consider a simple poten-
tial such that ( V„(r) —V„„(r)) is a monotonic, de-
creasing function of y. Thus if y, is a distance
such that Ea «( V„(rc) —V»,(r, ) ~«E„ the condi-
tions (12a) and (12b) are fulfilled, respectively,
when y&yp and y&yo. This situation is repre-
sented in Fig. 3 which exhibits the overlap of the
adiabatic and single-trajectory regions. In this
situation one may transform Eq. (11) in order to
examine the classical motion character of the
problem. We define a set of classical trajecto-
ries using a time parameter t. The radial co-
ordinate y«(t) satisfies the equations

and y~~& is the coordinate of the classical turning
point in channel ~, with angular momentum J.

Two different situations may be examined in the
limits that y~„' is larger or smaller than yp.

y~„&y, . The incident particle first reaches the
radius y, at a time t~ which is M independent as-
suming a common trajectory rz(t) for -~ & t & tz
(since this interval corresponds to r &r,). In Eq.
(11) we replace b~„(r) by c»(t} defined by

c,„(t)= b~gr J(t}), t & t~

and find that c»(t} obeys the differential equation

(16)

where

B» (t) =2. [Xzz(rz(t})5„„,~+Xrs(rz(t))bs, s x)
28p,

ixexP
@ [Vs(rz(t')) —Vsgrz(t ))]dt', t & t~ .

(17)

In arriving at Eqs. (16) and (17), we set ((P~+»,}'t'
= ((P»+(P»,)/2 = p, vz(r) and evaluate the phase dif-
ference (t/11) (' ((P» -(P».)dr' to first order in

~v —~v"
In the region r & ra, the bzs(r} are constant owing
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to the adiabatic nature of the colli sion for r & rp.
There is a classical trajectory r«which may be
associated with each he 1icity state and a cor re-
sponding classical turning point r~&„The JV'1KB

connection formulas are used at the turning point
to relate b~„(r) and one finds

(») (rs i
ib'„(r ')e'o«"~" ' = b „(r~ ~)e ~oi&'w ' (18a)

i b;s (~) = i Q b~u(r~„. ((I)l =g c,"„'(~) . (22)

c „(t)=OUI „(t', t)c „(t'), t&t (23a)

This equation can be put into a more transparent
form if time evolution operators are introduced
such that

(18b)

Since the beau(r) are constant for r&ro, Eq. (18a)
may be written

(rJ )
ib~„(ro) = b~e(r )e 'ord"w ) .

c~„(t)= Q U„„(t',t)c~„,.(t'), t &t~s .
g If

(23b)

Connection with the time-dependent cz„(t) ampli-
tude s is achieved by associating

One can combine Eqs. (22), (23), and (20) to ob-
tain

+

b;gr, „(t}), t &

c,„(t)=

i b~gri„(t)l, t &
t +t'

(19a)

(19b)

where t~„ is the M-dependent time at which a clas-
sical particle moving along the r~„ trajectory
would exit the r & r, region. Using Eqs. (19}, (18),
and (6) we find

tbgs(&e) Q Ue s(tJ&Jf&& )

( i
e', . (r „'(r))d&)

t~

x U„„„,(-~, t;)b;„„( ~) . (24)

c,„();„)=c,„()')ex&(-— ' '" . (&0)
i ' «5",&(r~„(r))dr

cpu«) = tb'zs(re (t» t tie (21)

where r~&(t) is the extension of the trajectory
associated with M =M ' in the r & r~ region, one
finds that cud„obeys equations analogous to (16)
and (17). The final value for b~„(~) is given by a
sum over al 1 trajectories, i .e.,

Finally, for times t )t«, we are again in the r )r,
zone. Each r» trajectory created for r & r, now

continues into the r & ro region without further
splitting. Thus, each trajectory can be labeled by
its M value ~'n the r&r~ region. For t& t~„(i.e.,
r &r,) there is again coupling of the bi„(r) along
each trajectory. Defining

Eauation (24} may be given a simple physical in-
terpretation (see Fig. 4). In order to calculate
the contribution of the Jth partial wave to the scat-
tering amplitude, one starts a collision at t = —ce

with b~„„( ~). For —~& t& t~, collisions mix all
states along an average common trajectory and

this mixing is represented by U„„,(-~, t~). For
t~ & t & ]~„, the adiabatic states are not mixed by
the collisions and one evaluate s elastic scattering
phase shifts along each trajectory. Finally, the
states are again mixed along each of the fin@1

trajectories as represented by UN~"„(t~„„~)(recall
that the superscript M ' labels the trajectory in
the adiabatic region}. The time-evolution opera-
to rs describe the mixing and shifting of atomic
sub states as the atoms move along classical tra-
jectories. The spatial coordinates have been
changed from quantum- mechanical variabl es into
time -dependent parameters. However, there sub-
sists in Eq. (24} an exponential phase i'actor which
attests to the quantum -mechanical character of the
translational motion in the region where r & rp .

To get expressions for the time -evolution opera-
tors, one may use Eqs. (23), (16), and (17) to ob-
tain

J+ )/a/X

FIG . 4. An atom in a superpos ition state enters the
interaction region with an impact parameter P + y)/E' ~

From time tz to t ~+~ or t ~+~i no transition occurs be-
tween substates and their respective trajectories may
part from each other. ARer t &+~ or t ~+i a single tra-
jectory starts from the point reached at t z+~ or tz+~i ~

U'„.„(t', t) = Z—a„'„„(t)U'„,„:(t',t), t& t, (25a)d J'

@It

JN + ~r
dt U&I&s(tz„, & t) = Z EY„„-(t)Ui~s"(tzs'& t) & t & AN'

N"
(25b)

subject to

Usre(t& t ) = 6eN» Uv"&I& (t~, Vu ) = s s" ( )
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where B„„,is given by Eq. (17) and B„"„„(t)is
also given by Eq. (17) with ri(t) replaced by r~«. (t)
(recall that r~«: indicates the trajectory associated
with the M" helicity state in the adiabatic region).

An expression for $-matrix elements is obtained
by substituting Eq. (24) into Eq. (7) and making
a comparison with Eq. (3). One finds"

er, collapses, so that t~ and t«may be set to 0
in Eq. (22) which reduces to

$~„,„=(-lgp„,„(-, )exp(ir) „,+i7) „), (28}

where

~'-««=(- I}'2~««-( "t-i}U«"-«(t'I«

where

x exp(ig~"«+ ,2iq~«„), (26)

and

qz«n =lim Jl
' dr' —Kr+(J+ z) — (27a)

„( )«"

Itg
J [V«(rz(r }}—V«gr~(r}}]dr

j oo

+ — [V«e(r,«(v}) —V«(r~« '(7)l]d-7, (27b)
t gg&&

rz~~) &ra. In this case the time interval [t, t'„],
during which the trajectories part from one anoth-

I

This region corresponds to weak (large impact
parameter) collisions.

This is the farthest point which can be reached
in the direction of a semiclassical picture under
the approximation ~ «z, . As has already been
noted in Sec. II, the classical trajectories which
have been hitherto considered may not be regarded
as actual paths since deflection in direction gy,
which is described by the scattering amplitude
[Eq. (2}]involves contribution from all the impact
parameters (J+ —,)/K.

The final step of the semiclassical approxima-
tion is possible provided N «~y, . It consists in

using the stationary-phase method to calculate
the scattering amplitude [Eq. (2)]. This calcula-
tion is performed in Appendix B. In the simplest
case, that of a purely repulsive interaction, one
obtains

hei (- I)' g/2 Jgg» Jgg»N" + J'8 giiAf"f '„«(e,y)= . }.&, ~(J»-) U«. «„(-~,t, )tr«„«(t',«„,~)exp(tn«, «+2iq, «„)g (81n8) ee"

(eg '~' & imx
~

— exp~I ———'IM'+I)- ue .. )exp(e- ), pee
&~~eg ~

(29)

where Je„„is the angular momentum giving rise
to scattering at ey for an atom following trajec-
tory M in the adiabatic region. This result is
valid provided that W4m~r, and Je«e» 1. The
former condition allows one to use a stationary-
phase method, and the latter condition implies
that validity of Eq. (29) breaks down in the small-
angle diffractive region.

As in elastic scattering, the major contribution
in the sum over J comes from specific values of
J, linking these values and the scattering direc-
tion (ey). However, Eq. (24) differs from the
usual elastic scattering amplitude in the fact that
for a given deflection direction gy, a distinct im-
pact parameter (Je„„+—,')/K is associated with
each intermediate internal substate Af". For more
general forms of the interaction potential, a rain-
bow angle may be defined and when p is smaller
than it, several values of J are generally involved
in the scattering amplitude for given 6) and M".

Throughout this section mention has been made
of classical trajectories. However, this notion

is actually meaningful, only when collisional ef-
fects on observables are considered. Then scat-
tering cross sections instead of scattering ampli-
tudes are involved. The aim of the next section
is to discuss the classical trajectory picture of
depolarizing collisions on the observables which
are accessible in laser spectroscopy.

IV. DEPOLARIZING COLLISIONS IN LASER
SPECTROSCOPY

In a gas cell, the quantum-mechanical state of
atoms within a small domain of position-velocity
space around (F,.1)}is most conveniently described
by the density-matrix elements p„,(r, 0) where
~ and o ' label internal states. We shall limit the
discussion to the case where ~ and ~' belong to
the same j level since we are interested in study-
ing the effect of depolarizing collisions. The gen-
eral transport equation which determines the col-
lisional evolution of density-matrix elements of
"active atoms" immersed in a perturber bath is
given by'



&838 J.-L. LE GOUET AND P. R. BERMAN

—p' t = —Z P" t(P)p', .t.(,P, t) ~ Q f d vt'v 't'(P P'),p .t ',(Ptt , t'), ,aS aP a5 (30a)

where

r t('(p)=N f dvp', (p, )
' [p,.(p„p,)p„.-p„(p„p,)p,..]) (30b)

Pt t'(P', P) Nf d v.=fdt(P' ,-P —)t)(P, (P -P,'+)))P(v, —v')v, 'f„(P.', P.)f), t(P,', P ), (30c)

where 0„ is the relative velocity between active
atom and perturber, W (0,) is the perturber equi-
librium velocity distribution, V = ()t/m)(tt„—&„),
& is the perturber density, and f, (tt,', tt, ) is the
~', 0„'- ~, 0„ inelastic scattering amplitude. In
our case the internal state is labeled by the mag-
netic number ypg and the relevant scattering ampli-
tudes are f, (0„', lt„,&) where yg and m' are taken
along a fixed quantization axis g. This scattering
amplitude'may be expressed as a function of the
scattering amplitude in the helicity representa-
tion by

g..(&„,&„,A) = g 3i."„(6i )u'. .„,((tt)g„"„),(&„,V„},
Wf'

(31)

where 6=(()),8,0) and 6(' =(y„, 8.. .0) and (p

and g are polar angles with respect to g.
In traditional optical pumping experiments in

which depolarizing collisions are studied, 4 neither
the vapor excitation nor the signal detection is
velocity selective. In these experiments, the
broadband excitation creates density-matrix
elements p', (f', 'tt, t) in a state of given j and the
intensity of radiation emitted (or absorbed) from
these ypg~' substates in a given direction and with
a specific polarization is monitored. With broad-
band excitation and detection, the signal is a func-
tion of velocity-averaged density-matrix elements

p' .(I, t)= tv p' .(~, &, t)

and provides some measure of the effects of de-
polarizing collisions in level j. Integrating Eq.
(30a) over velocity we find

dtP' .($, t)
d

coll

where

Z f dp r (pipt. .,".("p'ptl, , ,

(32a)

r: ;".".(".p") =f".d "'pp -(p', p )."„".-. (-p'pv)

m m gS ~f % mn™ (33)

where W(V) is the active atom velocity distribu-
tion. A good approximation to Eq. (32a) is then

d
—p'„.(&, t) = — Q y

"."p'„„,(&, t) (34).

The y, ™describe the (velocity-averaged)
coupling between magnetic sublevels and, as such,
reflect the nature of the collisional interaction.
Thus the structure of the y m, can provide some
insight into the collisional process. By combining
Eqs. (33), (32b), (30b), and (30c) and performing
some of the integrations, one may obtain'

Equation (32a) does not decouple y and p,' however,
an approximation that is often made" is to neglect
the 0 dependence of the y's. In effect, one re-
places y", (it) by

&mm' =+ d ~r~r r ~r ~ m "m( & r ~m'm'~ m"'m'( r & r)~mm" ~~V &fm" m ~r& r &m"'m' ~r& ~r) (35)

This expression can be written in terms of S-matrix elements if Eqs. (31}and (2) are used for the scat-
tering amplitudes. The resulting equation can be simplified by using the relation $„~,(e, y, 0)
=P„.,m~„„($)$~*,„„($'),and other elementary properties of the 5) matrices. The integrals over dA, and
QQ„. can be carried out and, after some cancellation of terms, one is left withvr
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e( ee(er w+ ~( I)q{2J +I)(2J I+i)(2f+I) /j j fl f j j f} ( j j fl f J J fl
(m -m' qj (m" -m'" q) EM —&' qj EM' —M'" qj)

/J J' f}
M ej fde(e(e ) (e () —s «e ~ ), (36)

where the sum is over all repeated indices (except j). Equation (36) contains the selection rule m -m"
m"' which may also be obtained from symmetry considerations. One can verify that Q p

fleeting the conservation of probability p dp (P, t )/dt ~,,))
= 0.

Using Eq. (26), one can write the dynamical factor appearing in Eq. (36}as

U.'N(t~. +"}~l-f(&'"N'-N -&'"N-
N)l exp[ »(n-, ~ -n, }].

In writing Eq. (37) we have implicitly used the selection rule
~
J -J

~

~j which is imposed by the 3 —j sym-
bols appearing in Eq. (36). Since J»j, differences between J and J' can be neglected in all but phase fac-
tors. In the previous section it has been shown that the quantum-mechanical aspect of the translational
motion is concentrated in the factors exp[-2f(l)~„. -)7~„}]. The other factors describe the evolution of in-
ternal substates along classical paths r~„(t). Let )U, be the angular momentum for which r~~~NP' =r, . In Eq.
(36), the sum over J may be regarded as a sum over the impact parameter (J+ —,')/If, in analogy with the
classical mechanics calculation. In the region where J &J, [or r, & r~~~~) ] a common motion approximation
is valid. Since ~J-J ~«J, the phase difference in Eq. (37) can be expanded under the form

~ lzn'(J'-J) (38)

where 2sq~„ /sJ can be identified as the classical deflection angle 8d (see Appendix B). Then, following Eq.
(28) one reduces Eq. (37) to

5N N 5N N
—$N N'$N "N 5N"'N'5N"N U N eN (- I+ jU N N( — ) + )

J'g

«xp — [V N (rz(f))+ VN (q~(t)) —V N,fr~(t)) —V„(r (t))](ft exp[ f(J' J)8 ],
(39)

where ()7~„—)7~„,) have been expanded to lowest
order in the potentials. This expression describes
the substate mixing along a single trajectory r~(t).

When J&J, [or r, &Hzg)], it may be verified that

)l)z„—l)z,„,~» 1 and that the factor exp[- 2f()7z,„,
—)7~„)]averages to zero by summation over J and
J' for )n )qh )n' ). A classical trajectory r~„may
still be assigned to elements of the density matrix
which are diagonal (in the helicity representation)
on entering the region g&y, but the classical pic-
ture fails for nondiagonal elements. In other
words at & =&0 the magnetic substate populations

p~„~„are scattered along separate trajectories
y~„but the coherence between substates is lost
owing to trajectory separation. After the depar-
ture from the region y &y„substate mixing starts
again along each separate trajectory. In some
sense the images given in Figs. 2(a) and 2(b} are
valid when the interatomic distance y is, respec-
tively, larger or smaller than &0. To work out
this semiclassical picture, the only needed con-
dition on the le Broglie wavelength has been

4«y, . This condition is not sufficient to regard
the atoms as wave packets of dimension much
smaller than the interaction distance. Thus, in
analogy with JWKB calculations of scattering am-
plitudes, the classical trajectories that we have
mentioned are not really followed by the atoms.
A specific evaluation of y, will be given in a
future work.

Velocity selective laser spectroscopy

In velocity selective laser spectroscopy, the
relevant quantity which describes collisional ef-
fects is the collision kernel W, (v', v). Calcula-
tion of this kernel from Eqs. (30c) and (31) re-
quires the knowledge of products of differential
scattering amplitudes of the form

f qhel (gd g )f hei (qd 'q )

The stringent condition ~g«~y, is needed to ob-
tain a semiclassical approximation of this quan-
tity. We consider still the simple case of purely
repulsive interaction for which a semiclassical
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scattering amplitude has been calculated (Eq. 29).
Since Eq. (29) is valid only if Je„g»1, a supple-
mentary assumption is needed to take into account
small-angle scattering. We suppose that the width
of p „,(F,V, t) in velocity space is much larger
than the velocity change which corresponds to the
deflection angle defined by Je„e=1. Thus, the
collisional transport equation may be written

p .. ., ('&, &, t) f d W '(& ""&,")'', '

~ tl ntttt

Q f d'v'W"„","( W, &)p .„., (&', &', t),
tn" nt t"

(40)

where W, &' ('0', 0) describes collisions which are
such that je„g& 1 and W .& (0', v) describes the
remaining very small-angle collisions. The first
two terms may be calculated in the same way as

m" m"'
7nttnt

The semiclassical approximation of scattering
amplitudes is needed to determine W, & (Ot, 0).

FIG. 5. The scattering of two-substate atoms at angle
8 results from the contribution of two trajectories: the
one which enters the r & ro region in substate 1 at im-
pact parameter (Je + 2)K g) and the onewhichenters the

fr & ~0 region in substate 2 at impact parameter (Je&
+ 2)/K pg. Along each trajectory mixing between sub-
states occurs for r & ro. The trajectories of substate 2
in I and substate 1 in II would lead to scattering at an
angle other thun 0 and are, therefore, not continued in-
to the r& ro region.

As above, two collision regions may be distin-
guished depending on whether J» is larger or
smaller than Jo. When Je„&J„asingle trajectory
is available and one obtains

fe"-"N (g, V)f~"u(g, V }= Je ~e ~e

d8
U t]( dd ( &

+ ) U e t]d( dd& + )
E n sing

, dJe

x exp — dt[V dt. (rt (t)}—V &t. (rt (t))+ V„.(rt (t)) —Vert (t))]
0

(
x exp

~

—i(M"' -M" + M —M')— (41)

for use in Eqs. (30c} and (31). This result contains the product of a semiclassical elastic differential scat-
tering cross section by a factor which accounts for the MM' transitions along this trajectory.

When J~ &J„distinct trajectories corresponding to distinct substates may contribute to scattering at
g(p and

1
fdd" dd'(g& 0')f&d &t(g& &)= e (Jensen')' 'U dt" „(-,ti) "U „"„( , tt )U„„".(tt„-& )*U„.„" ( t„, )

K'm sing „„,
ln'

x etW[-t(tt e„"„,„,—e e„"„„)]ee&(-t(M"'-M' —M" +M)
&

~ t(M' -Mtp)
I

gtp) ye 1/2
X exP[2i(&i, „.-&1, „)+i(Ze. -Ze") g].

8Je„eJe„ ~en '" en" (42)

The last factor in Eq. (42) represents interference
effects between diverging trajectories. Its angu-
lar dependence is given by

d—[ (~t, ~ %e } (~e ' ~e )g]= ~e ~e '.
(43}

This angular dependence leads to oscillations of
W ',

& (7&, t&} as a function of 0 and O'. In

fW ",(v', v)p - -.(v')d'v', the integral over v'
averages to zero for terms with (nje (u')provided
(p/m)u (Je„-J~„.j ' is much smaller than the
width of p .(v) in velocity space, where u is the
active-atom mean speed.

The net effect of scattering in direction ey for
a two-level system in this limit is shown in Fig.
5. The angular momenta ge, (i =1, 2) correspond
to scattering of an atom in state g through the
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angle gy. For r &ra the substates are mixed k)y

the collisional interaction along each of the two
trajectories I and G. For r & r, the two states in
each of trajectories I and G are split by the col-
lisional interaction, but only one trajectory in
each leads to scattering at (gtp). Finally, the
states in a given trajectory are again mixed for
r &r,. 'The internal final state is a combination
of internal states which have experienced the his-
tory shown in Fig. 5. %hen the above conditions
are not fulfilled, no simple picture can be given.
It should be noticed that the phase factox in Eq.
{42) cannot be clearly separated into a "spatial
phase shift" which would represent intex fex ence
effects between diverging trajectories, and an
"internal phase shift" which results from internal
substate mixing and which is present along a com-
mon classical trajectory.

Thus, the xnethods used to calculate y
™and

W „, (0', 0) are perfectly consistent with the
JW'KB and classical trajectory approximations,
respectively, that are used to calculate total and
differential scattering cross sections. Assuming
X «r„ the result for y, can be interpreted in
terms of a large number of partial waves giving
rise to scattering at angle ey with no classical
correspondence between impact parameter and
scattering angle; however, the relevant phase
shifts and substate coupling are calculated along
classical trajectories (just as the g, are calculated
along classical trajectories in the J%KB evalua-
tion of collision cross sections). Under the more
stringent condition WX«v y„ the derived expres-
sion for the kernel W (O', 0) can be interpreted
as arising from collisions having the appropriate
impact parameter to give rise to classical scat-
tex'ing at gy. There may be a number of such im-
pact paxameters reflecting the diffexent inter-
action potentials for the various magnetic sub-
states.

%e have not attempted to give an interpretation
to W„, (V, tl'} under the less restrictive semi-
classical condition X«r„ in this limit the large
number of partial waves contributing to each scat-
texing amplitude leads to a very complicated ex-.
pression when bilinear products of the scattering
amplitudes are taken to form the collision kernel.
Only when gotgl cross sections, such as those
represented by y

I™"',are evaluated does one xe-
gain a result with a simple physical interpretation.

V. SUMMARY

In view of understanding the signal formation in
laser spectroscopic experiments when depolariz-
ing collisions are present, we have developed a
semiclassical theory of these collisions. First

we have shown that single-trajectory approxima-
tion and adiabatic approximation can be combined
to obtain a generally valid expression for the
semiclassical phase shifts (provided «& y, ). An

explicit calculation of this phase shift has been
outlined in the simple case of a continuously de-
creasing difference of the substate dependent in-
teratomic potentials. The conditions of validity
for using a semiclassical scattering amplitude
have been examined and the case of a purely re-
pulsive interaction has been treated in some de-
tail. Using semiclassical approximations to the
scattering amplitudes, we investigated the nature
of the depolarization collision kernels and rates
which enter into laser spectroscopic experiments.
For these two quantities a picture of the scatter-
ing, in terms of classical trajectories, has been
given. In a forthcoming paper, expressions that
we have obtained will be used in a numerical cal-
culation of the corresponding signal profiles which
could be observed in laser spectroscopic experi-
ments.
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APPENMX A: DERIVATION OF THE RADIAL
EQUATION"

A convenient set of commuting observables in
the center-of-mass frame consists of the Hamil-
tonian &, j2, and the total angular-momentum
operators J', J„where g, is taken along a labora-
tory fixed axis of quantization Qz. Th'e corre-
sponding eigenfunctions are 4 ~'"&(F,p) where Mz
is an eigenvalue of J, and p denotes the ensemble
of electronic coordinates of the colliding atoms.
The total Hamiltonian & is

a=a,{p)+—+v(&, p),
2p,

where ff,(p) is the internal Hamiltonian, V(», p}
is the interatomic potential, and

, s' (z'+j' —2J - j}@m —-8 2+Sr r
'The Hamiltonian, without internuclear motion, is

~ 2 2

e, =sr,(o)+2, +&(&,p).
2p, r

its eigenfunctions are ps&, (», p) where M' is the
simultaneous eigenvalue of 4, , and ),, along the
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rotating axis of quantization $. The expansion of
afs~&N(F, p) in terms of y/N(», p), and the wave func-
tion sj) g. (») describing the scattering is"

@""'(I,p) =- $&N*,N (dt)NN/(»}V» (» p»

where g is the rotation which brings $ along Oz.
We substitute this expression into the Schrodinger
equation

O'K'
@""~(&,p) = ff+""~(&,p),

2p,

where K is the magnitude of the relative motion
wave vector. Projection on sp/N2(», p) leads to the
radial equation

( f~ d& I& d I'&K&
-+(M(V(M) &,"(»)

2p. dr' 2p dr 2p,

(M [V[M')Q~„(»),

where

s

equation is determined by the asymptotic form of .

a scattered plane wave which is

eider+- e'"'y„'(p) + fN'N (8, V')a/'N. (,p),
g

where s))„'(p) is the electronic wave function as-
suming that the quantization axis is along R, and
f"",( 8, )P) is the scattering amPlitude in the helicity
representation. The connection between sp'N(p)

and ap/N. (~, p) is

9 N(P} /ANN'+AN'( P}'

Expansion of the plane-wave function in terms of
spherical harmonics leads to

e'"'y1 (p)- — . Q (21+ 1)(2sf + 1)(e'Nv —(- 1)'e '«")1

&iKx,~

(1 j z)(f 1

EO M -Mj Lo M' -M'j

Qr)visa') =(v„( ) ~ ' ' 1')a„„.

I
2 [A,(J, M)A, (j, M)f)NN

2p, p

+A (j,M)l). (Js M)5NN. ~1] s

y, (Z, Ms) =[g(g+1}-M'(M'q1)]'/', and V„(») is
the value of the interatomic potential in substate
M. In the diagonal term, the contributions which
contain w and j(j+1)—2M' may be neglected as
they are of the order of&/», .

The boundary-value condition which is necessary
to select the appropriate solution of the radial

X g) N N, (6t)s'P'„, (~, P).
Summing over f and using Eq. (2) one finally ob-
tains

1 (2++1)[-(-1) '/5N. „e ' "+S„„e'']
2iKx ~~

x (-1}N-N'u'„„', (e)q '„.(,p) .

SinCe ala =Q NA ~/N (0, p), We See that the aSymp-
totic form of the radial wave function is"

»m y /', (») = — (-1)N-N'+/+&2J+1
2iK

x [f) „„.e ' ' —(-1)"'S„N.e' "].

APPENDIX B: STATIONARY-PHASE
CALCULATION

The needed approximation for BNN, (&p, 8, 0) for large J values is given by Brussaard and Tolhoek, "
—.x/a

+~&& (0, g, 0) =
2

sin6)k'(g) sin —+3fp+ &~&&,(g) (B1)

where

and

k(8) = [J' —(M'+ M" —2MM' cos 8)/sin'8]'/'

s

(8) g cos-1[(g2 cos8 MMs)/( J2 M2)1/2(g2 Mv2)1/2]

(B2)

—M cos '[(Mcos8 — M) /isn (8J' M')'/'] —M' cos '[(M' cos8 —M)/sin8(J —M' ) / ].
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This approximation is valid provided W», (e)»1.
This expression is substituted into Eq. (2). The
sum of the term involving g», vanishes ' and one

is left with

f„'„(e,y}= . Q (2Z+1)S~N„,u~s„", ((p, 0, 0),
$K

(84)

yg„'„,(e)]=0 which leads to

ef cos0-MM'; .",")
or, when p)«J,

2 dg.z~ ~ M hi M' M'
J2 & J2 P J2

(86)

(87)

where ps~„, is to be given by Eq. (26). The quanti-
ties U~s"„,(f, f') and exp(jb. ~s",„), appearing in Eq.
(26} are slowly varying functions of g with respect
to exp(2ig». ). Thus, they can be taken out of
the sum over J and evaluated at a point of maxi-
mum contribution to the sum. One may use the
stationary-phase method to calculate

(86)

The stationary-phase condition is d/CT[2q, „„

The classical deQection angle 6 is defined by

where dg~„~/d j satisfies Eq. (87} to first order
in M'/g. A set of angular momenta ge„„may
satisfy Eq. (88). We restrict now our calculation
to the single case of a purely repulsive potential.
Then g=0 and the semiclassical scattering am-
plitude may be evaluated from Eqs. (84), (22},
and (81) using the method of stationary phase.
One obtains

-Z/2 CC II

f (g (p) g ((je ) Uyt~~Ã( y tg)U ~yv(iVgg~~ 1 ) P(f+g g }je'~e g "&

~ 7l px exp -i —-i Af +M —-iJ, g exp -iMqr .
2 ew' (89)

This expression is bound to the validity of the
stationary-phase approximation which requires
that

g2g g g -3/2

~J BJ
(810)

This condition generally reduces to W%«~r, . One

has to also take account of the condition of valid-
ity of the approximation used for 5)~„(0,e, 0). To
first order in M/J the approximation demands
that

[Z„„esine )»1 . (811)

The points of stationary phase for channels M
and M' are well separated provided that

~z„, -z, ,,(» (s e/w)-". (812)

The fulfillment of this cond. ition implies that the
wave packets in channels M and M' do not over-
lap. When condition (812) is not fulfilled the dis-
tinct wave packets coalesce into a single one, but

Eq. (89) is still valid, since Eq. (88) still has
a single solution for a given value of M".
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