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Relativistic two-photon decay rates of 2 s„,hydrogenic ions
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Rates are calculated for the decay of metastable 2s», ions to the ground state by the simultaneous emission of two

photons. The calculation includes all relativistic and retardation effects, and all combinations of photon multipoles

which make significant contributions up to Z = 100. Summations over intermediate states are performed by

constructing a finite-basis-set representation of the Dirac Green's function. The estimated accuracy of the results is

~10 ppm for all Z up to 100. The decay rates are about 20 (aZj'%%uo larger than an earlier calculation by Johnson

owing to the inclusion of higher-order retardation effects. The general question of gauge invariance in two-photon

transitions is discussed.

I. INTRODUCTION

'The simultaneous emission of two electric dipole
(E1}photons is the dominant decay mechanism
to the ground state for the 2sg/2 state of hydrogen.
A number of previous calculations for this process
have been made, beginning with the early esti-
mates of Breit and Teller. ' More accurate non-
relativistic calculations were done by a number of
authors, '~ culminating in the work of Klarsfeld. '
The two-photon decay of neutral hydrogen is dif-
ficult to measure because the rate is only 8.229
sec ' However, the emission has been observed
in an experiment by O'Connel et al. '

In recent years, interest has centered on two-
photon transitions in heavier hydrogenic ions.
Since the decay rate increases as Z' along the
isoelectronic sequence, accurate atomic-beam
measurements of the decay rates become feasible.
Such measurements have been performed for
He', Li+ 0" F ', S' ' and Ar'+ (see Ta.ble
V for references). An accurate value of the two-
photon decay rate is required in experiments to
derive the Lamb shift from the electric-field
quenching rate of the 2si/2 state in ions such as
Ar»+ 6

For these high-Z ions, relativistic corrections
become important. The first relativistic calcula-
tion of the decay rates was done by Johnson. ' His
calculation, in effect, replaces the usual summa-
tions over intermediate states by a numerical
evaluation of the relativistic Green's function for
the electron. The major computational step in

his work is the numerical solution of inhomogen-
eous Dirac equations at each frequency for the
emitted photons. In the present paper, we apply
a relativistic finite-basis-set method described
previously to perform directly the summations
over intermediate states. Except for matrix dia-
gonalizations, the entire calculation is done ana.-
lytically. The method therefore has the advantages

of being very efficient and easy to apply. We also
include some higher-order corrections to the ra-
diative transition operators which are not con-
tained in Johnson's work. Our results, therefore,
differ from his at high Z. 'The new value for Ar'"
alters by a small but significant amount the re-
cent Lamb-shift measurements in Ar'" by Gould

and Marrus. '

II. THEORY OF TWO-PHOTON TRANSITIONS

In this section, we obtain in a computationally
convenient form a general expression for the two-

photon emission rate for arbitrary combinations

of electric and magnetic multipoles, and for an

arbitrary choice of gauge for the electromagnetic
potentials. The basic expression for the differ-
ential emission rate is' (in atomic units}

d««««d, ~, ~ (f lA,*l ««)(n lA,*l i}
der, (2««)'c' ~ E„E,+n, -.

(fl�«*I««}(«« I a*if) dfl dgE„-E,.+ ~, (2.1)

E. -Ei =(d + ~ (2.2)

For photon plane waves with propagation vector
k& and polarization vector e«(e, k, =o), the

operators A&~ in (2.1) are given by

Q* = ««« ~ (Q + Gy )e «i«& ge-«1&. P (2.2}

where G is an arbitrary gauge parameter con-
trolling the contribution from fictitious longi-
tudinal and scalar photon states. One would

expect the final results to be independent of

where i and f denote the initial and final states,
& is the frequency, and dQ& the element of
solid angle for the jth photon. The summation
over n includes integrations over the continua
for both positive and negative energy solutions
to the Dirac equation. The photon frequencies
satisfy the energy-conserving requirement
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[8 ~ Y&»(k)]a& '*
La Nak

e '"' = YL~ k &L~,
LaN

(2.4)

(2.5)

where the YL"„' are related to the vector spheri-
cal harmonics by

Yz&0„'(5)= Yz
z,
„(k),

G from the general requirement of gauge in-
variance. It is explicitly demonstrated in the
Apf&endix that (2.1) is in fact independent of
G, provided that the set of intermediate states
labeled by n is complete and exact. One can
even use different G's for different photons.
The degree to which the results depend on G
is therefore a check on the accuracy of the
calculation.

The integrals over k, and k in (2.1) are most
easily evaluated by making use of the partial-
wave expansions"

( L +1|"'
aia = —

l(2L, 1) gz.&(kr)Yc.z,i,a(r)

)y/2
+I 2~, I g. -&(k )Yz,z-x.a(r) (2 11)

(2L + 1]

@z„=gz(kr)Y~„(r),

gz(kr) = 4«i'j, (kr},

(2.12)

(2.13)

(2.14)

AP = [&~
~ Y~'(k~)]ilzua(r )*,

e&

where && is now an arbitrary polarization vector
(not necessarily transverse) and

(2.15)

and j,(kr} is a. spherical Bessel function. Terms
with X = 1 are electric multipoles and terms with
A. = 0 are magnetic multipoles. The ~= -1 parts
and 4» are the longitudinal and scalar terms,
respectively. Using the fact that

k Y~&„"(k)=Yz„(5),
the operator A&* has the partial-wave expansion

Yz&„'(k)= -ikX Yz&'„&(k},

Yz&„"(k)= kYz„(k),

(2.7)

(2.8)

(„)~ + ~ aL"~, &= 1,0
LN (2.16)

~ L+1~&/&
+~ 2 1) cg, ( rk)Y~ z, „(r); (2.10)

and the coefficients aL"„' and 4» are given by

a.,"„'=g( rk) ,Y, „(r), (2.9)
As shown in the Appendix, the contribution from
A. = -1 vanishes identically if exact wave functions
are used, thereby ensuring gauge invariance sepa-
rately for each partial wave, and nonvanishing
contributions only from transverse polarization
states.

Using these expressions, E&l. (2.1) for the differ-
ential emission rate becomes

I

(Bz s ~ + B &
&z& )a(BzP&&P~)+ BzkP~r )"CzggCzg~qdQ~dQ2 & (2.17)

where

(2.18)

(2.19)

L gNgl, g E„-Et+x

and similarly for CLP~+0, . 'The C coefficients contain complete information on the polarization and angular
correlation of the emitted photons for each combination of multipoles. The summation in (2.17) is over
all superscripts and subscripts on the B and C coefficients.

The total decay rate is obtained by summing (2.17}over 9„&,and integrating over dQ„dQ,. This is
easily accomplished by noting that

L 1&gl
LpNfX$ 1 LgaL$ Spa Ng

with the result that,

(2.20)

(2.21)

Cross terms involving different multipoles for the same photon are present in (2.17), but integrate to zero
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in (2.21).
The reduction to radial integrals of the matrix elements in (2.18) has been discussed by Grant. " The

general matrix element is

4~
(a ((2("'*~P)- ( 1)/~ ~l

I &2 (-i}L+"1(-1}/~ 1/2
(-m M m~ 2L+ 1

where

X [
' ' ]1/2 I(M IB (1 Le)L

X g gO 1 n 1 ~a
2 2

(2.22)

L ~l L+S '"
H(2(t = [(K(2 K2)IL~1+ (L+ 1)IL 1] [(K(2 —K2)IJ 1 -LIL.1)

~(, L) (2L+ 1)
~2' =[L(L+ 1)]1/2 ( a 2}IL e

M~2' '= -G[(2L+ 1)J '+ (K —K2)(I~1+IL 1) -LIL, + (L+ 1)l,],

s+ ga jz

gg+ y )g dx,

g and f are the large and small components of the radial Dirac wave function as defined by Grant, and
tu is the photon frequency. The notation [j,k, ...] means (2j+ l}(2k+ 1}... .

The results can be further simplified by extracting explicitly the summations over magnetic quantum
numbers in (2.21) for intermediate states with total angular momentum j. For this purpose we define the
radial integral part of (2.18) for a particular combination of multipoles to be

S(21}=P '" ' " ' (2 l)
Z„-E,.+ v,

where

(2 1)= K[I1ejejf] (jf L2 I j L1
[L„L,]"' i2 0 -2 2 0 -2

together with the factor

g(2, 1)= (2I + 1)' ' Q (-1) L ' j L
-m~ M~ m) -m) M~ m)

The decay rate summed over m& and averaged over m, is then

Q [eee(2, 15e(2, 1)e()e(1,25e(1, 2)])
1 ( L &1e~111eL2e 2e12eeeef eeee /

Using the sum rules

(2.23)

(2.24)

(2.25)

and

e'(2, 1+' (2, 1)= 6/ ~,.
N~yN 2mI2m)

(2.26)

~ ~8/(2 1+ (1 2} [j je]1/2( 1 )2/ +L1+L2 f 1

j 2

the final expression for the decay rate is

(2.27)

[S/(2, 1)]'+ [S/(1, 2)]'

+ 2 Q (-1)2/'+L1+L2[j j'] f ~S/(2 1)S/'(1 2)
j& j L~)

(2.28)
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The form of Eq. (2.28) is completely general and

applies to any two-photon transition between states
with definite total angular momenta j, and j&. For
transitions in nonhydrogenic systems, only the
definitions of the radial integrals need be altered.

IH. COMPUTATIONAL METHOD

(3.1)

with the corresponding radial Dirac Hamiltonian
(in atomic units)

O' QZ
H = -$0' —+ (T -+

dr "r T r' (3.2)

such that

Since the initial- and final-state solutions to
the Dirac equation are known exactly, the major
computational difficulty is the summation over
complete sets of intermediate states with angular
momentum j in the definition of S (2, 1) [Eq. (2.23)].
We replace the infinite summations (including
integrations over the positive and negative-energy
continua) by finite summations over variationally
determined sets of discrete pseudostates. The
method has been described in detail previously,
and is only briefly summarized. here, as follows.

For convenience, we define a real two-com-
ponent radial spinor by

In the variational procedure, the ith eigenvector
4, is written in the form

f
~e

4)~@~dr =6) ~,
0

(3.8)

l e,'H„e,dr =no, O„,
0

(3.8)

in analogy with the usual nonrelativistic varia-
tional procedure. " We have shown' that for a
Coulomb potential, the e, provide bounds on the
Dirac spectrum, and the 4, satisfy a number of
sum rules to high accuracy. The discrete varia-
tional basis set therefore provides an accurate
description of the complete Dirac spectrum that
systematically improves as the basis set is en-
larged. These basis sets are used in place of
the actual Dirac spectrum in the summation over
intermediate states in (2.21). Only a single di-
agonalization step is required for each 2 and j
for all photon frequencies and combinations of
multipoles. All integrals over spherical Bessel
functions can be evaluated analytically by use of

4,(r)=r" 'e "'g r' sg ~ g~
'~+b,

y~ ~, (34)
&OJ El)

with y ~ (z' —a'Z ')' ' and X is an adjustable para-
meter. For a given i, the a, ~'s and 5, &'s are
2 N linear variational parameters determined by
the conditions

H„4=ATE@. (3.3) the formula
I

e "'r~j ((k r) d r = (v/2k)'k (kl2A)'"kr(y l++1) y+l +1 y+l+2, t k~ '
0 e»r(f +-,') 2 1 2 l 2 l 2 t (3.7)

IV. RESULTS

Although the summations over multipoles and

j,j~ in (2.28) are in principle, infinite, only the
first few terms make significant contributions,
even for high Z. The terms included and the
approximate magnitude of their contributions to
the total decay rates are shown in Table I. The
numerical values give the leading term in an ex-
pansion in powers of (aZ)'. The values for 2E1
and 2M1 agree with those obtained previously. "'
The others have not been calculated before.

The accuracy of the calculations was checked
by investigating the dependence of the results on
both the size of the basis set and the gauge para-
meter. Equation (2.28) for the decay rate, which
was derived from the plane-wave photon states,
depends only quadratically on G since cross terms
between different J-,M, A, states for the same
photon integrate to zero in (2.20). However, a

I.
different gauge transformation canbe applied
instead, directly to the spherical photon states"
by defining matrix elements

cg ~1IL) M~ le L) M ~- leL )
aeB aeB eB

gg (o,L) M (P, L)
aeB aeB

m' '"=o
eIB

(4 1)

(4.2)

(4.3)

Multipoles
Intermediate

states
Nonrelativistic.

contribution (sec- )

2E1
El-M2
2Ml
2E2
2M2
E2-Ml

P i/2~P 3/ 2

P3/2
Sf/2v d3/2
d3/2, d5/2
P 3/2

d3/ 2

8.229 Z
2.537 x10-' Z'
1.380 x10 Z
4.907 x10-'2Z'
4.089 x10 2Z
1.638 x10 Z'4

TABLE I. Terms included in the multipole expansion
of the two-photon decay rate.
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FIG. 1. Variation of the integrated decay rate with
the size of the basis set at Z=92 for two different values
of the gauge parameter G.

and using the 5K's in place of the M's in (2.28).
Since M ',~' ' is linear in G, the final results also
now contain terms linear in G. Since the choices
G =0 and G =V 2 reduce to the dipole velocity and
length forms in the nonrelativistic limit, "al].
calculations were done with the SR matrix ele-
ments. The exact results remain independent of
G since

(- I. )
gg

= ——V@I,jI
(d

(4.4)

(see the Appendix).
Figure 1 shows the dependence of the differential

decay rate on the size of the basis set at Z =92
for G =0 and G =M2. Since the G =M2 results are
more rapidly convergent, this value was used in
all the calculations. With a 2x 14 term basis set,
the differences between the two sets of values
slowly increase from-10 '% at Z =1 to 5x 10 '%
at Z =92. The convergence test suggests that the
G =M2 values are more accurate than these dif-
ferences would indicate. The estimated uncer-
tainty arising from convergence of the basis set
is about +10 ppm.

The results also depend on the parameter X in
(3.4). For an exact eigenfunction, A, is related

3.$991

FIG. 2. Variation of the integrated decay rate with
A, at Z=40 with a 2 x14 term basis set. The value of
X is obtained from Eq. (4.5) for a given g.

to the principal quantum number n by

Z
X(n) =

[n —2(n —
I p( I )( I & I

—y) ~ ]
(4.5)

gW 9~6
210 0( y Z) Ry

dp
(4.6)

where y is the fraction of the energy carried by
one of the two photons. Values of $(y, Z) are
given in Table II for a number of ions. All of the
contributions listed in Table I are included in
these figures. Figure 3 shows the shape of the
spectral distribution at Z =1 and Z =92. Re-
lativistic corrections make the curve more shar-

However, a single representative A, must be chosen
for the complete spectrum of intermediate states.
By varying X, we find a broad region of stability
centered around X(1.5) for the s and P sets of
intermediate states, and X(2) for the d set. Fi-
gure 2 is a typical curve showing how the inte-
grated decay rate depends on X.

To present the results, we express the dif-
ferential decay rate in the standard form'

TABLE II. Frequency distribution of the two-photon decay rate. The function g(y, Z) in Eq.
(4.6) is tabulated.

20 40 60 80 92

0.0625
0.1250
0.1875
0.2500
0.3125
0.3750
0.4375
0.5000

2.032 39
3.157 92
3.844 52
4.284 35
4.569 58
4.748 55
4.847 32
4.878 92

1.944 67
3.08515
3.786 28
4.238 31
4.533 08
4.718 85
4.821 68
4.854 64

1.714 63
2.878 08
3.615 38
4.100 84
4.422 73
4.628 21
4.742 97
4.779 90

1.418 42
2.567 69
3.343 25
3.874 04
4.236 02
4.471 88
4.605 39
4.648 66

1.125 09
2.19190
2.983 40
3.557 33
3.964 68
4.237 60
4.394 88
4.446 29

0.963 67
1.947 84
2.728 39
3.31977
3.752 29
4.048 05
4.220 70
4.277 50
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a'I,'„' = a ~ aP„'*-G(a ai„"-Cf„). (4.8)

0.8- With the choice G = [(L+1)/L]'i', this reduces to

g +1 j. /2 21 +1) 1/2

0.6
&our&ti--xgi.|l —ia &f L+1)I

(4.9)

0.4

0.2

0.5
V

1.0

FIG. 3. Shape of the. spectral distribution function
4 (y ) 8t Z= 1 and Z= 92. The areas under the curves
are normalized to unity.

ply peaked at y =0.5, and reduce the integrated
decay rate. The breakdown of the integrated de-
cay rate W into contributions from different com-
binations of multipoles is shown in Table III for
the same selection of ions. Finally, the total
two-photon decay rates are given in Table IV for
a large number of ions. The results are ac-
curately approximated by the formula

8 [1 + 3.9448(a Z)~ -2.040(a Z) ] (4 7)
[1+4.6019(a Z) ~]

in units of sec ' with an error of +0.05% in the
range 1 +Z (92. This can be used to estimate
the decay rates for ions not listed. The tabulated
results do not include the reduced-mass correc-
tion factor (1 -m/M).

The 2E1 contributions to the decay rates in
, Table III are larger than Johnson's' by about

20(aZ)'%. The reason is as follows. The 3m "~'

matrix elements arise, after angular integrations,
from the operator

Johnson's calculation contains only the first term
of (4.9). The second term, of relative order
(aZ)', accounts for the differences in the results.
We were able to reproduce exactly Johnson's
values by omitting the second term.

The measured decay rates of the 2s, @ state also
contain an additive contribution from single-photon
M1 transitions to the ground state. These rates
have been accurately calculated by Johnson. ' For
low Z, they are given by

Wgj =2.496 x 10 'Z'

in sec '. The total decay rates, including John-
son's M1 values, are compared with the experi-
mental data in Table V. All of the measurements
are in agreement with theory, but are not ac-
curate enough to be sensitive to the 20(aZ)'%
difference between the present results and John-
son' s' calculation. For Fe"',- the difference is
0.75%, which might be large enough to be mea-
surable.

The new two-photon decay rate for Ar"' has a
small effect on the Lamb-shift measurement of
Gould and Marrus. ' They determine the Ar"'
Lamb shift from the rate at which the 2s, @ state
is quenched by a v x B/c electric field. To lowest
order, the total measured decay rate is given by

W„,=W, +W (Vj'/[fi'(S'+W'/4)], (4.10)

where W, and W~ are the natural 2s, i, and 2py/g
decay rates, S is the Lamb shift (in radians/sec)
V=0.992' 3eEs, /Z, and E is the field strength
(in volts/cm). The experimental conditions are
such that the two contributions to (4.10) are
roughly equal in magnitude. For fixed W„„the

'7ABLE III. Contributions from different combinations of multipoles to the integrated decay
rate W (in sec- ).

1
20
40
60
80
92

2E1
z-'V

8.2291
8.1181
7.8096
7.3446
6.7440
6.3097

El-M2
Z 'olo

2.5371
2.5028
2.4156
2.3024
2.1822
2.1118

2M1
Z-'10"W

1..3804
1.4046
1.4778
1.6005
1.7737
1.9030

2E2
Z-''1012K

4.9072
4.8739
4.7724
4.5974
4.3370
4.1290

2M2
Z-"10'2m

4.089
4.098
4.133
4.216
4.392
4.578

E2-M1
Z-"1023m

1.638
1.732
2.046
2.721
4.135
5.752
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TABLE IV. Total two-photon decay rates in sec
for infinite nuclear mass.

TABLE V. Comparison of theoretical and experi-
mental total decay rates of the 2s f/2 state (in sec ).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

8.2291
5.2661 (2)
5.9973(3)
3.3689(4)
1.2847 {5)
3.8347 (5)
9.6654(5)
2.1525{6)
4.3612(6)
8.2010(6)
1.4518(7)
2.4451 (7)
3.9491{7)
6.1547(7)
9.3017(7)
1.3686(8)
1.9668{8)
2.7682 (8)
3.8242 (8)
5.1956(8)
6.9530(8)
9.1785(8)
1.1966(9)
1.5423 (9)

25
26
27
28
29
30
32
34
36
40
42
45
50
56
60
65
70
74
80
85
90
92

100
110

1.9672 (9)
2.4850 (9)
3.1111(9)
3.8628 (9)
4.7592 {9)
5.8217(9)
8.5405 (9)
1.2236(10)
1.7164(10)
3.1990(10)
4.2651 (10)
6.4003 {10)
1.1869(11)
2.2980 {11)
3.4282 (11)
5.4387 (11)
8.3139{11)
1.1404(12)
1.7701 (12)
2.4824 {12)
3.4021 (12)
3.8361 (12)
6.0045 (12)
9.8152 (12)

~ Numbers in parentheses are the powers of 10 by
which the numbers are to be multiplied. Rates for ions
not listed. can be estimated from Eq. (4.7). For the
finite nuclear-mass correction, multiply the results
by 1-m/M.

Ion

He'

Theory

526.61

Experiment

491",4',

p7+

Fs+

s"
Ar"

2.1552 x10s
4.3699x 106
1 3964 xl0s
2.8590 x10s

520 y 21~
525 y 5~

(2.21 p 0.22) x106d

(4.22+ 0.28) x10
(1.37 +0.13) x 1Os

(2 82+0 20) xlOs

vistic calculations of atomic properties. We
believe the results to be correct to the number
of figures quoted within the framework of other
approximations made. The most important cor-
rections not included arise from finite nuclear
size and quantum electrodynamic effects. These
can probably also be treated by perturbation
theory within the framework of finite-basis-set
methods.
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fractional change in the calculated S resulting
from a change in the value of W, used is

4S 82(S~+W2/4) W, 4W,
S 2)V) S Wp W,

2.18x10~~ AW,
E S'~

for Ar"'. Since & W, /W, ~0.0034 is the fractional
correction to the two-photon decay rate, the cor-
rection to the Lamb shift ranges from 0.21% to
0.10% for the different field strengths used in the
experiment. The average correction of 0.14%
for all the runs alters the measured Lamb shift.
from 38.0+0.6 THz to 38.1+0.6 THz. This
slightly improves agreement with the theoretical
values 39.0 +0.16 THz (Ref. 13}and 36.26 +
0.025 THz. '~
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We consider here the gauge invariance of two-
photon transitions. This topic has been pre-
viously disucssed by several authors, but
always within the nonr elativistic electric-dipole
approximation. We show that the argument can
be made completely general.

As is well known, gauge transformations of the
vector and scalar potentials of the form

A'(r, t) =A(r, t) +V@(r, t), (A1)
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V. DISCUSSION

Our results demonstrate that finite-basis-set
methods applied to the Dirac equation provide
a powerful method for performing exact relati-

(A2)

where y, (r, t) is an arbitrary gauge function, leave
the electric and magnetic fields invariant. As-
sume that )t(r, t} has the form
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x(r, t) =x(r)e '"', (A3)
&II, I~ &x'ltI, &= —, &P, l[ff, x*] IP&&

t=t~+tx (AS)

where & is the transition frequency E, -E&. After
performing time integrations, the transition
matrix element for spontaneous emission is

T= &-e, Itic.&'. Ie, &, (A4)

where A, =i/, and the g's are eigenfunctions of
the Dirac Hamiltonian. The transition operator
t = —ipy„A~ can be written in the form

'
&II', IX'l0, &, (A9)

. (E E—)

(t„)g = —(E. -Eg+~) &It. Ix* ling&. (Alo)

which cancels the contribution from the second
term of (AV). It follows from (A9) that an ar-
bitrary matrix element of t„canbe written in the
form

where

(A6)

Two-photon transitions require the evaluation
of quantities of the form

is the transverse part and

t =o. vx*(r)+ —x'(r)X C
(AV)

is the gauge-dependent part. Equation (2.3) of the
text corresponds to the special choice

!&fit 'In)&nl t "'Ii)
n ( E„-Eg++y

(fit "'In)(nit "'Iz')]
E

(A11)

x'(r) = —« "'.
CO

(A6)

Matrix elements of t„vanish if ~ =E, -E& since

In general, we can adopt different gauge functions
and & 2 for different photons in the definitions

of t "and t . Using (AS) and (A10), Q can im-
mediately be written in the form

&f It/'In)&nit&" Ii) &f It/'In)&nit/'Ii&
n Etf E] +~y Eft Eg +(02 )

+ —'P (&f Iti™)ln&&nlx,*li& -&glx,'In&&nit"'Ii&+&f lti"'ln&&nlxf li& -&fix fin)&nit"'li&)
C n

——,
'. Q [&f I x.'(E, -ff+~.) l&&nlx,'li& -&f Ix,'I+&nl(ff -E, +~.)x.* li)],

n

(A12)

where E„hasbeen replaced by H in the last sum-
mation.

The first term of (A12) is the usual form for
the two-photon decay amplitude in the transverse
Coulomb gauge. We denote this term by Q~ and
perform the summations over n in the other two
terms by closure to obtain

e=e,.—,&fl[i,"',x,']+[i,"',x. ]lt&

—~2 &f I [xg, x,*l li&

——,. &f Ix)(E, -li)x;-x,'(E, -If)xf li&.
j.

(A13)

The commutators in (A13) vanish since X
~ and X f

are ordinary scalar functions. The last term
can be rewritten in the form

——,.&fl(E, -ff)xmx| -x,*xg(E, -ff) li&
1

——.&f I[[if,x.*],x,*] Ii&
1

(A14)

for arbitrary gauge functions X, , and X, » provided
that the eigenfunctions are exact, and the set of
intermediate states is complete.

The above derivation is both simpler and more
general than the usual one presented in the non-
relativistic electric-dipole approximation. It
applies separately to each combination of partial
waves if we identify

t (g) .~a (j.)+
Lg N]

(A16)

This also vanishes, provided that &f I and Ii) are
exact eigenvectors. We thus obtain

(A15)
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and

(A1V)

(A18)

f"'=G(Z a.
' "*-C+ ) a=1 2X LjNj L, .Nj

Since a~„'* =(ic/~)V4$„, this corresponds to the
choice of gauge function

and Eq. (A10) remains valid for the matrix ele-
ments of t„.The rest of the derivation follows
exactly as before.

A completely analogous derivation can be written
down for any other two-photon process. It can
also be generalized to higher multiphoton pro-
cesses involving summations over two or more
sets of intermediate states.
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