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We establish the correct mathematical relationship between the Schwinger and Kohn variational principles for
scattering theory and show that the Schwinger principle is one rank higher than the Kohn principle. If the same trial
scattering wave function is used in these two principles, the Schwinger method should hence give superior results.
Application of the Schwinger and Kohn variational principles to scattering by a simple model potential gives results

which clearly illustrate this relationship.

I. INTRODUCTION

Kohn-type variational principles have been ap-
plied far more extensively to col.lision problems
than the Schwinger variational principle. Histori-
cally, this has been due to the occurrence in the
Schwinger variational principle of the term
(4& '

~
VGDV ~4')') which has generally been re-

garded as difficult to evaluate in applications to
realistic systems. This consideration seems to
have outweighed some distinct advantages which
the Schwinger variational principle is known to
have. '2 Recent appl. ications' ' have shown that
the Sehwinger variational principle is an effective
approach to the el.ectron-molecule collision prob-
lem. These applications to electron-molecule col-
lisions and to a model two-channel problemg also
demonstrated the very favorable convergence
characteristics of the Schwinger method. For the
model two-channel problem where a comparison
with Kohn variational calculations was possible,
our results revealed a superior convergence for
the Schwinger method over the Kohn-type meth-
ods. ' However, based on calculations for two
model potential. s, Thirumalai and Truhlar' and
Callaway' recently concluded that the Kohn-type
methods show much better convergence to accur-
ate results than the Schwinger method. These re-
sults certainly suggest that it would be construc-
tive to clarify the relationship between the Kohn
and Schwinger variational methods and to inter-
pret the results of these recent calculations ''
in the light of this relationship.

One of the objectives of this paper is to estab-
lish the explicit mathematical relationship be-
tween the Kohn and Sehwinger variational princi-
ples since this relationship has not yet been well
established. Katos connected the Schwinger prin-
ciple with the Bubinow method, which to our
knowledge is the only direct relationship estab-

lished between. these two groups of variational
principles. However, Kato' drew no conclusion
concerning the relative convergence characteris-
tics of these methods. Delves'0 commented brief-
ly on the relationship between the Schwinger and
Kohn methods, but we will show that the implied
relationship between these two principles, which

was assumed by Delves, is mathematically incor-
rect. In the next section we will derive a simple
relationship between these two variational princi-
ples which shows that the Schwinger principle is
one rank higher than the Kohn principle and,
hence, with the same trial scattering wave func-
tions will in general yield a superior result.

%e will also present numerical results for scat-
tering by the same model potential as that used
in Ref. 7, but for which the same trial function is
used in both the Schwinger and Kohn principles.
These conclusions agree with the mathematical.
relationship which we will establish between these
two methods. In the studies presented here the
trial wave functions included long-range continu-
um functions since such functions are required
in Kohn calculations. These continuum functions
are oot necessarily required in the Schwinger
trial scattering function and, in fact, were not in-
cluded in the model calculations of Refs. 7 and 8.
Hence, their conclusion' that the Kohn method
gives results superior to those of the Schwinger
principle was based on model calculations in which
different trial scattering wave functions were used
in the different variational principles. An under-
standing of the role of continuum functions in trial
scattering functions in the Schwinger method is
necessary in the interpretation of these results.
Calculations on a model potential will show that
the range of the scattering potential determines
the role of these continuum functions in Schwinger
variational calculations.
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II. RELATIONSHIP BETWEEN THE KOHN
AND SCHWINGER VARIATIONAL PRINCIPLES

—,'[ ]„=&CIHIC&-&elvis

-&s
I
v lc& —&s I v Is&, (2)

where H =E -H, S is the regular sol.ution of the
unperturbed Hamiltonian H p

=H —V, and 4 is the
trial wave function which can be written as

4 =C+8,
with

C =XC+Q a;tI, .

In Eq. (4) for s-wave scattering

k '~'cos(kr} as ~ —~

0 as r-0,
and g, is a discrete basis function. One can gen-
eralize the functional in Eq. (2) and write

I(@ g}=&a IH le&
—

&4 I
V Is&

-&slvlg& -&s lvls&.

A systematic way to select the trial wave func-
tions Q and g is as follows. The exact function C
of Eq. (4} satisfies a Lippmann-Schwinger equa-
tion of the form'

C =GpVS + GpVC

This integral equation can be solved by the itera-
tive procedure' "

C ~ [ =GpVS + G()VC ~ ~

We select C& to be given by the expansion in Eq.
(4) and insert this function into the variational
functional of Eq. (6). Then we have

(6)

[y]» = 1(C2, ,C, ) .

Therefore the functional 2I(C&, C&} is just the tan-
gent of the phase shift as given by the Kohn varia-
tional principle. Next, we consider the higher-
rank variational functional I(C, ,C2). Some simple
manipulation shows that

To our knowledge, an explicit quantitative re-
lationship between the Kohn and Schwinger varia-
tional principles has not yet been established. To
compare the convergence characteristics of these
variational principles, we will first discuss some
mathematical relationships between them.

The usual Kohn variational functional for the
tangent of the phase shift g,"

[y]» =y + 2&4 I
H

I 4)

can be written in the bilinear form'

I(c„c,}=&4,I(v-vG, v) l~, &

-&4' Ivls&-&slvle & (10)

where 4t —S+Ct. The right-hand side of Eq. (10)
is just the bilinear form of the Schwinger varia-
tional functional. Therefore we have.

[y]s =2I(C, ,C, ) . (11)

If the trial function C& is good enough so that the
iterative procedure converges montonically, a
higher-rank functional I(C,C„) should give a more
accurate result than any lower-rank functional.
Since the functionals I(C t, C2) and I(C &,C t) corre-
spond to the Schwinger and Kohn variational prin-
ciples, respectively, this shows that for a given
trial function, the Schwinger variational principle
yields a more accurate result than does the Kohn
principle. Explicitly one can examine the second-
order terms arising in the functional I($,$) when

Q and g are varied about their exact values and
show that these terms are smaller for the
Schwinger functional than for the Kohn functional.

Some years ago Delves' stated without any
proof that the output from the Schwinger principle
[X]s with the trial function 4'" is identical with
the output from the Kohn principle [X]» with the
trial function 4 ' ', whe re

y(2) S + G Vy(i) (12)

Although the realization of the relationship Eq.
(12) is important, the statement itself is not cor-
rect. The output from the Kohn principle with 4 ' '

corresponds to the functional I(C2, C2) and not

I(C„C2) in our proof. In fact, I(C2,C2) is equiva-
lent to a higher-order functional

Ig' IVGOV Is)(s I VG, V 14&

&O'IVGqv —VG, VG, VI%)

which we have discussed previously and has also
been stated by Newton. '4 Finally, we note that
some of the functionals I(C,C „) for m, n ~ 2 cor-
respond to different steps in the iterative Schwing-
er method. 4

These arguments rigorously establish the math-
ematical relationship between the Kohn and
Schwinger variational principles. Some additional
insight into the relative convergence character-
istics of these two methods can be obtained by
looking at the approximations implied in the so-
lution of the I.ippmann-Schwinger equation for the
K matrix in these two methods. Although some of
these relationships are well known, a brief dis-
cussion of them here is very relevant. The
Schwinger variational expression for the tangent
of the phase shift is equivalent to the exact solu-
tion of the I.ippmann-Schwinger equation for the
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K operator"

If = V+ VGoff, (14)

have better convergence characteristics than the
Kohn principle.

with V replaced by the finite-rank approximation

f =Z —V, (16)

v =g v I xo&(u )u&x& I V, (15)
&of

where u, &
——(}t, I

V
I X&& and x, is a basis function. It

is well known that the separable form of the poten-
tial in Eq. (13) is exact within the space spanned
by the functions (X,j, i.e. ,

v' IX g&
=v I xi& (16)

On the other hand, the Kohn variational expression
for the tangent of the phase shift is equivalent to
solving a variant of the I.ippmann-Schwinger equa-
tion'2

f = VGpV + VGpf

with

III. DIRECT COMPARISON OF THE KOHN
AND SCHWINGER VARIATIONAL PRINCIPLES

To give a numerical. comparison of the conver-
gence of the Kohn and Schwinger variational prin-
ciples we have carried out calculations on the

same model system as that used by Thirumalai
and Truhlar. ~ However, in contrast to their
studies, we have used the same trial scattering
wave function in the two variational principles.

The scattering potential is the attractive expon-
ential potential

V(r)=-e ' (22)

and we consider only s-wave scattering. All com-
parisons are made in terms of the K matrix ele-
ment, i.e. , tan6p, The trial scattering function
used in both the Schwinger and Kohn variational
principles in these studies is

using the finite-rank Qreen's function

Gp= X] & '
gyXg

where

(19)

4 (t}=X"(r)/r,
with the function X(r) of the form

X"(r}= no sinkr + n&(1 —e P'}coskr

(23)

IIgq = (}t& IGp
'

Ixq&
= (xi I(& -&o) Ixy& (2O}

+ C,r' exp(-ur),
a~

(24)

This finite-rank Qreen's function does not satisfy
the relationship which V satisfies in Eq. (16},
l.e. ,

Go Ixo&«o Ix)&.

Finite-rank approximations to operators which
obey the relationship given in Eq. (16) are gener-
ally expected to be better approximations to the
operator than those finite-rank approximations
which do not have this property. Further, we note
that this approximation to the Qreen's function in
the Kohn principle is the origin of its spurious
singularities. ' These observations again suggest
that the Schwinger variational principle should

where if n =0, no discrete basis functions are in-
cluded in the trial function. In all results pre-
sented here we also choose n =2.5 and P =1.0.'

In Tables I-III we compare the results obtained
with the trial function of Eq. (24) in the Schwinger
variational principle with the results of several
other variational methods considered by Thirum-
alai and Truhlar. These include the anomaly-free
(AF)" and optimized anomaly-free (OAF) adapta-
tions of the Kohn methods" and the minimum-
norm-Kohn (MNK), minimum-norm-inverse-
Kohn (MNR), ""'and optimized-minimum-norm
(OMN) versions of the Harris-Michels-type
methods. From the results at these three ener-

TABLE I. Ratio of variational K matrix elements to the accurate value for k =0.55 a.u.

OAF MNR OMN Schwinger d

0.9735
0.9968
0.9999

0.9733
0.9940
0.9970

0.9733
0.9902
0.9910

0.9735
0.9969
0.9999

0.9733
0.9941
0.9970

0.9972
0.9999
1.0000

Accurate value is Kp=2.200 382 7.
The number of discrete basis functions in the trial function [see Eq. (24)). For n =0 no dis-

crete basis functions are included in the trial function.
The results in the AF, OAF, MNK, MNR, and OMN columns are from Ref. 7 except those

for n =0 which are from Ref. 11(a).
Results from the Schwinger variational pririciple.
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TABLE II. Ratio of variational K matrix elements to the accurate value for k =0.35 a.u„

AF OAF MNR OMN Schwinger

0.9879
0.9980

0.9858
0.9978

0.9622
0.9878

0.9902
0.9980

0.9861
0.9978

0.9765
0.9999
1.0000

Accurate value is K0= 9.091 809 5. See also footnotes in Table I.

gies the Schwinger variational principle clearly
yields superior results to those of the Kohn and
Harris-Michels methods. These results are not
unexpected and are consistent with the mathe-
matical relationship between these variational
principles which we established in the previous
section of this paper.

A comparison of the results of Ref. 7 in which
only discrete basis functions were used in the
Schwinger calculations and the present results
shows that the inclusion of continuum functions in
the Schwinger trial function can be very effective.
For example, with a trial function containing only
two discrete basis functions in the Schwinger
principle at k =0.55 a.u. , Thirumalai and Truhlar~
obtained a ratio of the tangent of the phase shift to
the accurate value of 0.6063. If the continuum
functions sinks and coskr are added to this two
term basis, the Schwinger variational principle
yields a value of 0.9999 for this same ratio.
From Table 3 of Ref. 7, about 12 to 14 discrete
functions are required to obtain such an accurate
value if the continuum functions are not included
in the trial function. In our previous studies of
the scattering of electrons by molecules with long-
range potentials we also find that the inclusion of
continuum functions in the trial, function can be
very effective. '5 We have developed the iterative
Schwinger variational method4 as one way to sys-
tematically include continuum trial functions in
the Schwinger variational principle when neces-
sary.

We believe that such continuum functions play
their most important role in the region inter-
mediate between the short-range region, where
discrete basis functions are very effective, and
in the asymptotic region. This would suggest that

the need to include continuum functions in the
Schwinger method is affected by the relationship
between the range of the potential and the effec-
tive range of the L functions included in the trial
scatte ring function.

To obtain some insight into these relationships
we look at s-wave scattering in the following cut-
off potential:

-exp(-r), r & R~.(r) =
0, r&R.

In Table IV we present the results of calculations
for this potential in which the cutoff distance R is
systematically increased. The K matrix elements
in this table are obtained with a trial function con-
taining only four discrete basis functions. These
results show that, for R & 4 a.u. , this purely L
basis set gives results within 1% of the accurate
values which were obtained by direct numerical
integration. For values of R greater than R =4
a.u. , which we loosely define as the beginning of
the intermediate region for this basis set, the re-
sults show that this same basis can no longer pro-
vide an adequate representation of the scattering
function. For all the cutoff potentials shown in
Table IV, a trial function containing the continuum
functions in addition to these four L functions,
i.e. , X4(r) of Eq. (24) gives the accurate values.
These results show that the regular and regular-
ized irregular continuum functions together can
provide an accurate representation of the wave
function in the intermediate region.

IV. CONCLUDING REMARKS

Our main purpose has been to clarify the rela-
tionships between the Kohn and Schwinger varia-

TABLE III. Ratio of variational K matrix elements to the accurate value for k =0.15 a.u.

AF OAF MNR OMN 8chwinger

1.0005
1.0006

1.0009
1.0004

1.0004
1.0002

1.0010
1.0005

1.0009
1.0004

1.0124
1.0000
1.0000

Accurate value is K0=-1.7449393. See also footnotes in Table I.
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TABLE IV. s-wave Schwinger K matrix elements for
the potential of Eq. (25) at 4 =0.55 a.u.

R(a.u.)
~ Kb

Q KQ/KQ

1.0
2.0
3.0
4.0
5.0
6.0

20.0

0.262 65
1.449 33
2.028 61
2.047 80
2.039 75
2.038 53
2.038 43

1.0000
0.9991
0.9968
0.9935
0.9711
0.9447
0.9264

Value of the cutoff radius in the potential. of Eq. (25) .
Schwinger variational result of four discrete basis

functions with a =2.5.' Ratio of the K matrices in the preceding column with
accurate values.

tional principles. We have obtained the explicit
mathematical relationship between these two
stationary principles which shows that the Schwin-
ger variational principle is one rank higher than
the Kohn principle and hence, if the same trial
scattering wave function is used in these two
principles, the Schwinger principle should lead
to a superior result. We have also shown that the
relationship between these principles stated

earlier by Delves' is incorrect. We have carried
out calculations on the same model potential as
Thirumalai and Truhlar' and have shown that these
results confirm the relationship that the Schwin-
ger principle is of a higher rank. We have also
shown that the accuracy of a Schwinger calcula-
tion with a basis containing only discrete functions
is strongly affected by the range of the potential.
Thus a comparison of the Kohn and Schwinger
principles with different trial functions will also
depend on the range of the potential.
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