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Quantum theory of the "classical" intermolecular interaction potential
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The "classical" potential of intermolecular interaction, defining the motion of centers of mass of interacting

molecules and taking into account a mutual dependence on internal and external motions of molecules, has been

determined on the basis of the quantum theory. A semiclassical representation has been introduced into the

quantum theory of interacting molecules and this allows us to obtain the self-consistent semiclassical approximation,

to find its applicability limits, and to take into account the quantum and fluctuation corrections to the semiclassical

.approximations.

I. INTRODUCTION

The use of the "classical" intermolecular inter-
action potential and the semiclassical approxima-
tion results in significant simplification of calcu-
lations in statistical physics of interacting mole-

cules and its applications. ' '
In the present paper the determination of the

classical intermolecular potential has been ob-

tained using the method of transition from the

quantum theory of the interacting subsystem to
the semiclassical one. This method was developed

in quantum electrodynamics' and then it was ap-

plied in statistical physics of interacting mole-

cules. '
The method of the transition to the semiclassi-

cal theory enables one to determine the applicabil-

ity limits of the classical potential in the quantum

theory of the intermolecular interaction, to ob-

tain the self-consistent Hamilton equations, des-
cribing the intermolecular interaction in semi-
classical approximation and to find the applicabil-

ity limits of the semiclassical approximation.
The possibility to use the semiclassical approxi-
mation equations for calculation of the quantum

averages is also discussed.
In Sec. II the classical momentum and coordin-

ate operators are introduced, and their use in the

quantum theory is discussed. Section III is de-

voted to the proceeding to the classical limit of

the quantum theory on the basis of the classical
momentum and coordinate operators. In Sec. IV

the classical intermolecular potential is defined

and the self-consistent Hamilton equations are
derived from the quantum theory. These are the

equations of the semiclassical theory. The semi-
classical representation of the quantum theory is
introduced and a possibility of its using to im-

prove the semiclassical theory is discussed. In

Sec. V the statistical physics of the interacting
molecules, namely, the problem of statistical
description of the external degrees of freedom of

molecules is formulated on the basis of the semi-
classical representation. The generalized Fokker-
Planck equation for the distribution function of the

molecular momenta and coordinates is obtained.
This equation takes into account the quantum and

fluctuations corrections to the semiclassical ap-
proximation description. In Sec. VI we discuss
briefly the possibility of the use of the suggested

approach for solving definite probl. ems of the in-

termolecular interaction. The possibility of tak-

ing into account the influence of the strong elec-
tromagnetic field on the intermolecular interac-
tion is pointed out.

II. OPERATORS OF CLASSICAL MOMENTUM

AND COORDINATE

The quantum-mechanical operators of the mo-

mentum p and the coordinate q can be represented
in the following form:

'=(" j'""-'
g +g

&o)8[0&

Here g and g are the creation and annihilation

operators, obeying the condition [a, atj = 1, m is
the mass of a quantum particle, ~0& is the vacuum

state, and H is the Hamiltonian of the particle.
In the case of the harmonic oscillator (d is the

angular frequency and Eq. (1) gives us well-known

definitions. ' The operators p, q, g, and g are
defined in the Hilbert space&.

For proceeding to the classical limit of the
quantum theory one should use the extended Hil-
bert space ~ =X t3K, where S is the direct pro-
duct sign. In the space 'N the operators p and q
are written as

p =pI, q~ = q I,
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p=(a!p!a) =(2)fm~)'"Ima,

2g t 1/2

q =(a!q Ia& = ! Rea,m»

(5)

!+ ) v-5/2 -la( /2 e()l(+a(R-0(81o(&

8IP},-(l" l'+l8l'»2d2a d P (6)

where I is the unit. operator in K. Now we can
introduce in the space W the commutation opera-
tors p0 and q0, which are connected with the clas-
sical description of the particle

P0=P I—IP,
q, =$8 I+I8q,
Ipo q.]=o

The eigenstates! qf, & of the operators p, and q, can
easily be found" and the system of eigenstates is
complete and orthonormal:

(4)

I 0)„ is the vacuum state from the right-hand X in

iffg, g) is an operator in sc, then the trans-
formation to W according to the rule f~ =f(p, a )
and Eqs. (2) and (9) gives the obvious relation

Tr pf(p, q) = Tr Rf(p, q ). (10}

It should be noted that a similar approach was
used to describe the simultaneous measurement
of the momentum and coordinate of the quantum
harmonic oscillator with the minimum uncertain-
ty. ' The Hilbert space extension for studying the
connection between the classical and the quantum
mechanics was also used by Sudarshan and co-
worker s. '

For description of the transition from the quan-
tum theory to the classical one we represent the
operators p and q in the form'N

P =P0+ '4 q =q0+ +q (11)

where the operators b, p and A, q are determined
by Eqs. (2) and (3} and obey the following commu-
tation relations:

(y, Iq, &
= 5(Rea —Reb) 5(Ima —Imb),

' I@,&(@,Ida=I81, da=dRea dIma. (6)

[p„ap] = [q„aq] = 0,

[q. ~p]=[~q p.l=[~p ~q]= &.

(12}

(»)

o&„(o (9)

where p is the density matrix (the state) in SC and

Here Ic(&, IP&, Ia) are the coherent states and

I
n&, and

I p&, indicate that the state
I
n& is from

the left-hand BC and the state
I
p& is from the

right-hand 3.' in ~ =DC(3)X. The facts that the
eigenvalues of the operators p0 and q, are the
means with respect to the coherent state

I a), and

the existence of complete orthonormal set of
eigenstates !4„& allows to interpret the operators

p0 and q0 as the operators of the classical momen-
tum and coordinate. Now we show that it is possi-
ble to use the operators in the extended Hilbert
space W for solving a quantum problem. For this
purpose we determine the state in ~ as

f(p»q ) =f(p. qd+, " "&p
0

+ sf(p. q2) ~ + . .
eq0

(14)

Here the derivatives sf/sp, and sf/sq, are defined
due to the commutativity of p0 and q0. Substituting
Eq. (14} into Eq. (10) and averaging it, we obtain

It should be noted that the above commutation re-
lations as well as the existence of the operators
p0 and q0 and their propertie s al low the cal cula-
tions to be made without using an explicit form of
the eigenstates !4, &.

Now we insert Eq. (11) into f(p, a ) and expand
'l4' Nf into the power series over Ap and nq:

(f) =Tr R(f(P„Q) r".'" (ro1,(«)'I», r "' ('I, ) («) )*)') + ")
0 0

= dpdqZ, q,q+, ' 0 „&p' 0 „+ ~
2' o „&q 0 +'' (15)

R(p, q) =( q/R
I R!)ITR & .

While deriving Eq. (15) we use the following re
lationship for the averaging in the space ~. If
the operator is of the form ASB, its average
value in accordance with the definition of the
state in~ can be written as

(A8B) = TrwRA8B= Tr&pA(0!„B!0)„. (16)

In the right-hand side of Eq. (15) we rewrite the
trace operation using the properties of the states
!4',&, i.e., Eqs. (7) and (8).
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Taking into account the definitions of 4P and

hq, resulting from Eqs. (11), (1), and (2), and
the definition of e from Eq. (1), it is not difficult
to show that

(0~(np) ~0) =Km&8/2=0(R /X'},

( 0
~ ( &q)

'
~

0) = N/2m ~ = 0(&'},
(17)

where ~ is the de Broglie wavelength in the state
~0}, i.e. , the operators nP and nq describe the
quantum fluctuations. 6 It should be noted that the
same definition of the average, Eq. (15}, can
easily be obtained in the coherent- state represen-
tation, using the procedures of antinormal order-
ing. 9' This fact can easily be understood if we
take into account the following relation:

(e.~R~@,}=R(p, q) =&a~ p~a&,

which results from the property (O~„~q, ) =
~

a).
Here, as above, ~a) is the coherent state and

~0)„ is the vacuum state from the right-hand BC

in' . It should be noted that the properties of
R(p, q} allow one to interpret it as the ordinary
positively definite distribution function in the
phase space. It is known' that the classical limit
of the quantum value is obtained by neglecting the
noncommutativity of the operators p and q, when
the first term in the right-hand side of Eq. (15}
is sufficient for calculating the average value.

Now we see that using the operators of the class-
ical. momentum and coordinate defined in the Hil-
bert space W, and restricting ourselves to
f (P»qo), we obtain from Eq. (15) the usual defini-
tion of the average value in the classical theory.

III. CLASSICAL LIMIT OF QUANTUM THEORY

Now we discuss the use of the operators of the
classical momentum and coordinate for proceed-
ing to the classical limit of the quantum theory.
Consider, for this purpose, the time evolution of
the particle. Let H(P, q) be the Hamiltonian of the
particle and S be the evolution operator, obeying
the Schrodinger equation

BS
iK—=HS, S(t }=1. (18)

Let us make a transition to the space W. In this
case

H wH(p, q ), S =SKI, iK =H S

(19)

In order to determine the operators P~ and q in
the Heisenberg representation it is necessary,
according to Eq. (10}, to determine time evolution
of the operators p„q0, 4p, and 4q. Using Eqs.
(2), (3), (11), and (19), we obtain

S~wpS~ = Sp, S~wqS~ = Sq, (20)

i
S4POSw =Ps(t) =P, +— S~(r) [Hw, P,]Sw(v)dT'

t0

H(ps( } qs( }} g ' B""H(p„q,) (&q)"

0 0

BH(p, ( ),q, ( )}dr+~ B"H(p„q, ) (np)

(21)

(22}

Here BH/Bps= Sw'[BH(p„q, )—/Bp, ]Sw, whose eigenvalues will be the derivatives if pz pzQ„q, }; qz
=qspo, q, }. This is valid if one can restrict oneself by the two first terms in Eqs. (21) and (22) only. In-
troducing the designation

' BH(p.(r), qadi)}
' BH(par), q.(r)}()dq=q+, () (23)

we can rewrite Eqs. (21) and (22) as

P.=P„+&P„, q, =q~+~q- (24)

Here Bpz and BqH denote the differences between pz and pz and qz and qz, respectively. Now we can write
the average value of a certain operator f (P, g) as follows:
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(fg, =TrRfg~+sp, q, +kq)=TrR(fV, q )+ ' &0+
&

&0+ )8 S

g, q~ B a~% ~p+. ..
s7 qual sq p sp

(25)

Taking into account Eqs. (21)-(24) and (17) and
converting in Eq. (25) to the integration over P
and q, we can easily find the conditions, which,
if fulfilled, allow us to truncate Eq. (25) by the
first term. So we have

B2g B p» I/K.
Bq Bq

' (26)

(/& f~u, e)f(=P(0, e(&)&&l 4 .
Here

(27)

p(f) 6(~-» =-&q. lp„(f}I+,&

q(f)5(s —h) =&'po~q„(f) ~4', &

where p and q are given by Eqs. (23). Differentia-
tion of Eq. (22) with respect to f and the above
definition lead to the equation for p(f) and q(t):

~ sH(P(t) q(t)}
sq(f)

(f)
H P(f) q(f)) (0)e(f)-

One can see that Eqs. (28) are the usual Hamilton
equations and the definition of the average value
is identical to that in the classical theory. As a
matter of fact, the conditions (26) which lead to
the definition (27} determine the applicability lim-
its of a classical approximation in the quantum
mechanics. It is clear, that p and q are the can-
onical conjugate variables of the classical mech-
anics. The above analysis shows the way in
which the use of the classical momentum and co-
ordinate operators enables one to solve the prob-
lem of proceeding to the classical limit in the
quantum theory.

It should be noted that we can truncate the ex-
pansion of the Hamiltonian H(p, q ) by the terms

(*„,q ) (h, qs~(* ) s~r~
Qy qQ

Bp BqQ

and obtain the same results, since the rest terms
of the expansion give rise to the appearance of the

Here'U is the potential energy and p is the particle
momentum. When the conditions (26} are fulfilled,
we can rewrite the average value (25} in the form

IV. THE CLASSICAL INTERMOLECULAR
POTENTIAL

The Hamiltonian of the quantum intermolecular
interaction problem can be written in the form'

H H, (x) +H, (P) +H„(q, x) . (29)

Here H, (x} is the Hamiltonian of internal mole-
cular motions and x denotes the set of variables
of the internal degrees of freedom, H, (P) is the
kinetic energy operator of the centers of mass of
the molecules, H» describes the intermolecular
interactions, and P and q denote the sets of mo-
menta and coordinates of the centers of mass of
the molecules. The initial state of the system at
the time moment tQ is determined by the density

values negligible in the classical limit.
Now we can briefly formulate the main rules of

using the classical momentum and coordinate op-
erators to proceed to the classical limit in the
quantum theory as follows.

(1) One has to convert the initial state p and the
operators P and q into the extended Hilbert space
in accordance with Eqs. (2) and (9); one should
expand, using Eq. (11), all the operators f(P, qw)
corresponding to the physical values and the
Hamiltonian of the problem H(Pw, q ) over the
powers of &P and & q and then to restrict one-
self tof=f(P„q0) and

~H(p ) + (POt qo}
&& + (&0~ qo}~

BPQ BqQ

(2) One has to find the operators P, and q, in the
Heisenberg representation with the Hamiltonian
Hw and to calculate the average values off in the
Heisenberg representation in accordance with the
definition (10), using, for i'he trace calculation the
states )@ ) and their properties, Eqs. (4)-(8). As
a result we obtain Eqs. (27) and (28).

It should be noted that the above analysis is of
methodical significance only, and it has been
presented here just to illustrate the use of the
classical momentum and coordinate operators.
But in the case of interacting subsystems, one of
which can be described by the classical mech-
anics, the application of the method of classical
values operators leads to interesting physical
results and allows significant simplification of the
quantum problem of interacting subsystems.
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matrix p =po T where p, is the initial density
matrix for the external degrees of freedom and T
is the initial density matrix for the internal ones.
Further we shall suppose that the applicability
conditions of classical description of motions of
the centers of mass of the molecules are fulfilled.

In order to proceed to the classical limit over
the external degrees of freedom we use the re-
sults of the above sections and extend the Hilbert
space of the external degrees of freedom. . The
initial density matrix of the system is written
now as H =p i3

~
0),(0 j, and the operators P, q

are used in the Hamiltonian (29) instead of the
operators P and q. From the solution of the

Schrodinger equation with the transformed Hamil-
tonian (29) one can note that, as earlier, the
operators &P and &q do not depend on time and
in the classical limit their contribution to the
average value can be neglected. In order to find
time evolution of the operators Po and q, in the
classical limit it is sufficient to take into account
only the terms of the transformed Hamiltonian
(29) expansion involving the first power &P and
6q.

Now the quantum problem can be formulated
using the following relations: The Schrodinger
equation

ilr —= (*i)i+H„(q„X)+ " " aq+ii, (P, )+ * " ki)U, U(i, 'i=l . (30)

The definition of the average values

(f},=Tr&U '(t)f (p„q„x)U(t).

It can easily be understood that to define the classical potential of the intermolecular interaction it is
necessary to transit from the quantum theory of the interacting subsystems to a semiclassical one. For
this purpose we represent the evolution operator U, obeying Eq. (30) in the following form:

U =QQ~,

where the unitary operator Q satisfies the equation

(32)

(33).&eQ sH, (p„)~ se(q, ~y(p„q„, t)) z +
I z sq'(q, ~P)'

Here the operator 4(qo ~rp) is not yet defined and the designation 84 (qo ~qi}/Bqo means that C is differen-
tiated only with respect to q, written to the left of the line. The need for taking into account two kinds
of the dependence of 4 on qp will become obvious later, when we define 4.

Using Eq. (33), we can easily find that the operator Q converts the operators p, and q, into the solutions
of the operator Hamilton equations and does not change the operator g as follows:

~- p.e=p., p.=-""' "', p.(o)=p.
qe (34}

sH, (p.)
qo~ =qa qs=

p
qs(0) =q .

SPa
Equations (34) written for the eigenvalues of p» and q„are the Hamilton equations, describing the clas-
sical motion of the centers of mass of molecules in a- certain potential C (qz ~Q 'yQ). The equation for
the operator Q, can be obtained if we take into account Eqs. (30) and (32)-(34) as follows:

} i" """"' -"" ' '~} - o --q-
1 2 H 12 qH9 ( pq pq

q 2

It can easily be seen that three first terms in the right-hand side of Eq. (35) are the Hamiltonian of the
quantum subsystem (the internal degrees of the molecules) interacting with the classical subsystem (the
centers of mass of the molecules motion in the potential qi). As a consequence, one can separate out from
the operator Q, the evolution operator C which describes the time evolution of the states of the internal
degrees of freedom interacting with certain classical movement of the molecules.

q, =. ce,

ttt —= [H, (&) +H2(ps) +H~2(qz, &)]C, C(to) = 1 .eC
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It is clear that the operator C changes only the operators of the quantum subsystem; and the operators

Po q„p~, q„remain unchanged.
Now we see that the operator 0,

(38)

changes both groups of operators. The operators of the classical subsystem are changed according to the
Hamilton equations (34), while the operators of the quantum subsystem are changed by evolution operator
C. Equations (34) and (37) giveus the mathematical foundation of the approximate semiclassical theory and,

using Eqs. (32), (36), and (38), one can obtain that the evolution operator of the quantum problem U can
be represented as

(39)

The evolution operator e takes into account the quantum correction for the equations of semiclassical
theory [Eqs. (34) and (37)], and obeys the following equation:

&e SH„(q„lx.) SC (q„l@ 'q q). . . eC (q, I q ) (4o)

Now we can determine 4(qzlQ qQ) in such a way that the semiclassical approximation [Eq. (34) and

(37)]will be the best possible approximation that can be obtained on the basis of the quantum theory of the
interacting subsystems. For this purpose we have to require the Hamiltonian in Eq. (40) to describe the
fluctuations only. This gives us

q (qs I e '&e) =».TH»(qs lxc) (41)

It is not difficult to prove that the definition (41}is consistent from the mathematical point of view. This
means that the operators Q, C and, 0 exist and have all the necessary properties used above.

Substituting Eq. (41) into Eqs. (34) and (37), it can easily be seen that this definition of 4 transforms
the semiclassical approximation into the selfconsistent one. Instead of Eqs. (34) and (37) we have

g-gp g ~p p
( 12(qH xc))g

0 Hy H t
8qH

,n=q-qo qa qa

g- „g=e- c=-&„

i ff —= [H, (x) +H»(q», x) +H, (p„)]C .
8C

(42)

(43)

(44)

The semiclassical evolution operator 0 obeys the equation

80 8H 8 H, q C xC „, 8 H„q, QC xC
Po 8qo ~qo

(45)

The set of equations (42)-(44) are the self-con-
sistent Hamilton equations. Equations (42} and

(43) give us the molecular trajectories and Eq.
(44) describes the time evolution of the internal
degrees of freedom of the interacting molecules.
Equations (42}—(44) show us how the mutual de-
pendence of internal and external motions can
be taken into account. Now it is clear that Eq.
(41) defines the classical potential of the inter-
molecular interaction from the point of view of
the quantum theory and that it is this potential
which determines the trajectories of the mole-
cules, see Eq. (42).

The form of Eq. (45) shows that it is too
difficult to use the semiclassical evolution
operator 0 for the direct operator calculations
of d„, q„, and x, . But it should be noted that
such calculations are not necessary because
the semiclassical approximation was introduced
into physics for simplifying the calculations.
The main results which can be obtained using
the existence of the semiclassical evolution
operator 0 are the definition of the classical po-
tential 4, Eq. (41), and the derivation of the set
of self-consistent Hamilton equations (42)-(44).
As a matter of fact, these equations are the cal-
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culating apparatus of the semiclassical theory.
It is necessary to point out that by Eqs. (39) and

(40)-(45) a new representation is introduced to
the quantum theory, which can be called the semi-
classical representation. In this representation
the time dependence of the operators is defined
by the operator Q, namely, by the set of Eqs.
(42)-(44), and the time dependence of the state
is defined by the operator e. Taking into account
Eqs. (41)—(44), one can rewrite Eq. (40) as

. ae se, .(q„(x.) s(B,.(q„lx.)))
at ag„ aq„

a(e,.(q. lee 'xce-')), „Ie (4, &

aqe

Now we can rewrite the average value, Eq. (31),
in the semiclassical representation

(f),= TrR(t)f(p„(t), q„(t),x,),

R(t) =-e(t)Re-'(t) .

(47)

(48)

iX =[H, (x—}+H»(q, x)+ H, (j5)]C,. aC (444)

where p and q are the solutions of the Hamiltonian

uations with a certain given potential u(q). The
I

The definition (47) gives us a possibility to find
the applicability limits of semiclassical theory.
When we wrote Eq. (31), we had omitted usual
quantum corrections to f(p„q„x) which originate
from noncommutativity of the operators p and

q. The similar corrections were discussed in
Secs. II and III. Equation (47) shows us that there
is another kind of quantum correction to semiclas-
sical theory which is due to the use of the tra-
jectories or the classical potential instead of the
appropriate operator. These corrections yield
the time dependence of the density matrix in Eq.
(47). The origin and meaning of these corrections
are clear from the form of the Hamiltonian in
Eq. (46). They are the quantum fluctuations.

It should be mentioned that the scheme for de-
termining the classical potential and the conditions
of its applicability to the description of the inter-
molecular interaction allows one to find the appli-
cability limits of the approximation of given tra-
jectories which is often met in spectroscopy. "

In the approximation of the given trajectories
the Schr'odinger equation is solved for the operator
of semiclassical evolution of the internal degrees
of freedom:

Schrodinger equation can be written for the opera-
tor Q, converting po, qo to p, q..

use ae(a, aq(q„)
)at apc aqc

and the applicability limits of this approach will
be defined by the equation for the operator 6

(33))

(aH„(q I x.) a~(q) g- ~ ~ e
et i aq eq" ""'

where, as previously, Q=QC. It can easily be
seen from Eq. (46)) that all corrections to the
case of the given trajectories can be written in

terms of the solutions of Eqs. (44') and (33').
So we have the calculating method, giving us
the possibility to solve the intermolecular inter-
action problem, based on the known solution of
the given trajectories approximation. We intend

to use this method for taking into account the

change of the trajectories and internal states of
colliding molecules.

(46))

V. THE SEMICLASSICAL REPRESENTATION IN THE
STATISTICAL PHYSICS OF THE INTERACTING

MOLECU LES

Let us consider the density matrix R(t) in the
semiclassical representation which is determined
by Eqs. (46) and (48). We represent R(t) in the
standard form"

R(t)=F(t)T+ 4R, F(t)= Trg(t), (49)

and assume that the time evolution of operators
of the quantum subsystem is described quite ex-
actly by the operator C. So we consider that for
calculating the averages it is sufficient to take

R(t) =F(t)T . (50)

The density-matrix definition in the form of Eq.
(50) is equivalent to an assumption that the sub-
system of internal degrees of freedom, inter-
acting with the classical subsystem of the external
degrees of freedom, is thedissapative subsystem. "

Now it is not difficult to obtain from Eqs. (46),
(48), and (49) the equation for the density matrix
of the external degrees of freedom F(t) as follows:

aF(t) 1
=g2 Tr, [He(t), [He(7'), F(r)T]]de. (51)'

to

Transiting to the matrix elements according to the
states I)i',) and denoting ()I),IR(t)I4,)=F(p, q,t)-
and calculating the commutators in Eq. (41), the
following equation is obtained:

aF(p, q, t) a ' aH„(q (t) Ix,(t}) aH„(q&(r) Ix.(r)) a

at ap ~ aq~(t) ' aq„(r) *ap

SH„q t x t 8 BH„q (52)
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Here gA;B))= ,'-(-AB)+-,' (BA) —(A)(B) is the corre.-
lator of the intermolecular forces, Deriving Eq.
(52), we took into account the fact that the subsys-
tem of external degrees of freedom is classical
which allowed us to omit the terms with nondiag-
onal matrix elements of E(f) in the right-hand
side of Eq. (53).

Equation (52) together with the equations of semi-
classical approximation (42)-(44) makes it possi-
ble to replace the quantum description of inter-
acting molecules by a simpler, from the calcula-
tional point of view, semiclassical one that is
based on the use of the classical potential of in-
termolecular interaction.

It is necessary to add that Eq. (52) is a general-
ized Fokker-Planck equation, and the absence
of usual Liouville term in the right-hand side
of Eq. (52) is due to the use of the semiclassical
representation. It should be noted that usually
in the statistical physics the Fokker-Planck equa-
tion is the approximation of the Boltzmann equa-
tion." Here we have another case. Equation (52)
is that for many-particle distribution function
and the irreversibility origniates from the in-
fluence of the quantum "noise" on the statistical
properties of the molecular motion.

VI. CONCLUSION

The above analysis allowed the determination
of the quantum meaning of the "classical" poten-
tial for interacting molecules. This gives us the

possibility to calculate the potential, e.g. , by
solving the set of Eqs. (33) and (35), using the
method of successive approximations. This po-
tential can be used in the spectroscopy of inter-
molecular interactions or in the thermodynamical
applications.

The self-consistent Hamilton equations can be
used for more precise description of molecular
collisions and for improving the method of the
given trajectories. The semiclassical represen-
tation allows us to find the applicability limits
of the semiclassical approximation in any par-
ticular case and to improve it, if necessary.

Using the Fokker-Planck equation for the dis-
tribution function of momenta and coordinates,
one can easily obtain all the usual approximate
equations for the one-particle distribution function,
in which the influence of internal degrees of free-
dom will be taken into account in a convenient
way. It should be noted that for the molecules
whose dimensions satisfy the long-wave approxi-
mation, the account of interaction with the external
electromagnetic field does not change the inter-
action Hamiltonian structure. Therefore, it is
not difficult to take into account the strong-field
effect both on the potential and on the whole prob-
lem of the intermolecular interaction.

The author considers it a pleasant duty to thank
Professor S. D. Tvorogov for useful discussions
of this paper.
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