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Inhomogeneous relativistic electron gas: Correlation potential
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The correlation energy of a relativistic electron gas based on a sum of ring diagrams in-

cluding the transverse-photon contributions is numerically calculated. From this, a local,

relativistic correlation potential is deduced which appears in the density-functional theory

of inhomogeneous systems where relativistic efFects make important. contributions. Com-

parison with its nonrelativistic counterpart shows that the use of nonrelativistic results is

very poor. The correlation contribution to the potential is found to be about 5%%uo of the

exchange for p=2.5 to about 2.5% for p= l (p=krlm).

I. INTRODUCTION

In a recent paper, one of us (Rajagopal, ' referred

to as I henceforth) presented a relativistic generali-

zation of the Hohenberg-Kohn-Sham theory of the

inhomogeneous nonrelativistic electron gas. In a
local scheme, using the exchange energy of a uni-

form relativistic electron gas, the exchange part of
the effective potential was deduced (see also Mac-

Donald and Vosko ). In this paper, we present the

correlation part of the potential, based on a calcu-

lation of the ground-state energy of the uniform re-

lativistic electron gas, with a ring-diagram sum ap-

proximation which is a generalization of the nonre-

lativistic result of Gell-Mann and Brueckner (GB).
There are several independent derivations of the

properties of relativistic electron gas in the litera-

ture, all of which are equivalent; the reason for the

existence of so many of these works is because this

model problem is of great interest in many

fields —nuclear physics (Chin ), astrophysics (Jan-

covici and Akhieser and Peleteminskii ), many-

electron physics (Fradkin and Bowers et al.s), and

plasma physics (Tsytovich and Bezzerides and

DuBois' ).
The importance of relativistic effects, especially

when heavy-atom systems are involved, in atomic,

molecular, and solid-state physics has been known

for a long time and only recently, because of so-

phisticated computing facilities and methods, actu-

al calculations are being reported. For a review of
these, one may refer to Pyykko" and Desclaux. '

In these applications, it is felt, as in the nonrela-

tivistic theory, a self-consistent density-functional

theory may be a useful scheme. An application of

our relativistic theory with exchange only approxi-

mation has now been shown to yield significant

improvement over the Dirac-Slater (Dirac equation

with Slater p' potential) atomic structure calcula-

tions. ' In the nonrelativistic formalism, it is

known that correlation contribution to the poten-

tial is important and there are several schemes for

setting up this contribution from the uniform non-

relativistic many-electron theory. For a review,

one may see the article of Rajagopal. ' In this pa-

per, we present a correlation potential, based on an

approximation scheme for calculating the ground-

state energy of the electron-gas system. Unlike the

nonrelativistic theory, we have two kinds of contri-

butions arising from the longitudinal and

transverse photon-electron interactions. The latter

term is negligible in the nonrelativistic limit but

makes significant contributions as relativistic ef-

fects become important. This was already evident

in the exchange-energy and potential calculation

presented in I. In the case of atomic systems with

Z & 50, relativistic effects become significant. In

the next section, a brief outline of the theory is

presented, spelling out the approximations and the

resulting renormalizations, etc., as well as the

separate longitudinal and transverse contributions

to the correlation energy and potential. The nu-

merical results are displayed as figures and

representative numerical values are given as tables

in the third section. Comparison with the exchange

contributions are also made. The calculations are

made for values of electron densities appropriate to
condensed-matter systems composed of atoms. In

the final section, a summary of the results with

concluding remarks are given.
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II. THEORY

We use notations as in the book of Bjorken and Drell. ' By a straightforward manipulation, we express

the exchange-correlation energy per unit volume (0 is the volume of the system) of a relativistic electron gas

in terms of the matter current-correlation functions and the electromagnetic-field correlation functions

+ dip
E„',"=—f f d3rieo(P(1)y&P(1)A "(1)),

e2 deo

20
= ' f' ' fd r, d 2Q (12)D&"(21+)

eo

+ ' f',' f d'r, eo( (1(1}ytl(1))(A(I)) .

Here Q+ (12) is the exact matter current-current-correlation function and D&" is the electromagnetic-field

correlation function which obeys the Maxwell field equations in the presence of matter. v,@=0,1,2,3 and the

repeated indices imply sum over them. Using the Coulomb gauge and working to leading order in interac-

tion strength, we obtain (SF is the free-electron Feynman propagator) in momentuin space:

de .
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with (i,j =1,2,3).
Here Qz (k} is the transverse part of Q;~ obtained from (2) by the formula

~ ~

k'k&
Qz (k) = —, 5'J— Q J (k) . (3d)

Explicitly working out the indicated traces and performing the relevant integrals, we obtain finally the

exchange-correlation energy, in a more familiar form:

rings
d

e()

+—f f ln 1 — Qz (q 'co)1 p d q p~ dao 8~e
Q J (2~)3 J —m 2~ q2+~2 (4)

Here we have already converted the frequency integral co~ico. Using

4'+m &F(k) &+m 1
SF(k)= +

ko —Ek+ig ko —Ek —ig 2EI, k E ko+Ek —ig

where Ek=(m +k )', we can then compute QOO, Qz in a straightforward way. In Eq. (5) we have expli-

citly exhibited the fact that the positive energy states are occupied. In obtaining the expressions for the vari-
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ous Q~ upon using Eq. (5} we obtain some terms involving no density (kF}, the Fermi momentum is related
to density n via kF /3/=n), which are just due to the pure quantum electrodynamical renormalizations,
which we incorporate in our scheme by using physical charge and mass of the electron. We concentrate our
attention on the "many-particle" aspect by examining only the density-dependent terms. With this observa-
tion, then, the relevant expressions for Qoo and QT that appear in Eq. (4) are

(Ek+& Ek }—[(Ek+, +E, )' q'] — (Ek+&+Ek)[Ek+& Ek) —q]—
k(k 3F (2m) EkEk+e[(Ek~e Ek) —+a) ] EkEk+e[(Ek+e+Ek) +co ]

{6)

(E„+,—E„)[E„+,Ek —(k q)'/q' —(k q) —m']
Q (q 2 2EkEk+q[(Ek+q Ek) +~ ]

(E„+,+Ek)[Ek+,Ek+(k q)'/q'+(k q)+m']
EkEk+e [(Ek+e +Ek ) +m ]

(7)

The exchange-correlation potential is then given by

BE„'," P BE„',"
Bn kF2 8kF

Separating out the exchange part, which was worked out previously, we may express the correlation parts in
the following form, where we have employed dimensionless units as in I, k =kF x, q =kF y, co=kFuy,
Ek =mE„, with E„=(1+px )', and p=kF/m:

3NkF e — e
E,""s'= f y'dy f du ln 1+,Qoo(y;u) —

2 Qoo(y, u)
8n o —

my ny
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and

k
y,""s'= f y dy f duQOII (y;u)

1

1+(e'P/rry')goo(y;u)
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(10)

where

kF
Q (q;ro) = Q (y;u)

4m. m

and

kF'
Qr(q;co) =— QT(y;u),

4 m
(11a)
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+i (E- - E—„)[(E-+-„+E„)' 13—'y']
Qoo(y;u)= . x dx dp

E„E„+„[(E„+„E„—) +P u y ]
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Qz(y;u}= f x dx f dp

(E- - E„)[E—-+-E„—P (x y} /y —P (x.y) —1]

E-„+-„E„[(E-„+-„E„)+—P u y ]

(E-+-„+E„)[E-„+-E+P (x y) /y +P (x y)+1.]
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BQ[6(q;ru)/BkF kg /4——nmQOO. '(y;u), where

QOO (y;u) is just the p integral of the integrand in

(lib) and x set equal to 1, and BPT(q;co)/BkF
=kF/4dmQr (y;u), where Qr (y;u) is just the P
integral of the integrand in (11c) and x set equal to
1.

Several comments are in order at this stage.
(1) Expressions for Q2„(q;ro) have been derived

in different ways by different authors quoted earlier

who also express them in different forms. A little
bit of algebra is required to show that they are all

equivalent. The above form for the energy was

given by Jancovici.
(2) The longitudinal and transverse parts

separate out neatly. In the nonrelativistic limit,

P« 1, the transverse part is negligible being of or-

der P and the longitudinal part goes over to the

expression derived by von Barth and Hedin' for
the ring-sum contribution to the correlation energy.

(3) We have numerically integrated these expres-
sions and they will be discussed in the next section.
An important point to be mentioned here is that
the numerical evaluation clearly exhibits exactly
when the relativistic effects become comparable to
the nonrelativistic calculation. This happens for

P & —, for correlation energy and potential.

(4) Jancovici has given an approximation for

Qou, QT when y & 1 and r0 &EF, in the same spirit
as Gell-Mann and Brueckner did. The above ex-

pressions then simplify and analytic forms can be
deduced. Jancovici made a further approximation
of this and evaluated the results to order e lne .

The actual results without such an approxima-
tion are given here

E rings
rings

N

3(kF /m)

32~(1+P2) '/2 f dv{ln[1+RL, (u)] —RL (v) —[RL, (u)] [ in[1+Ri (v)] —lnRL (u) I )

3kF
+ f du(ln[1+R„(v)] —R,„(u)—[R„(u)]2I ln[1+R„(u)]—lnR„(v) ) }, (12)

where

4e 2( 1 +P2)1/2
RL (u) = 1 —u tan i1

u
(13a)

2e p 2 (p +1) u(1+p )'/ u (p + I)
~(1+P')'/'(1+u') i3' & P' (P2+ 1 )1/2

(13b)
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and

(14)y rings rings+ K rings
n

C C
3 Qp

C

These integrals are evaluated numerically. For
p « 1, they reduce to the correct nonrelativistic
expressions and e,""g'=e,(GB). Jancovici gave ex-

pressions to order e lne which are obtained by
just keeping only the corresponding terms in Eq.
(12), and thus missed a density-dependent term.
The purpose of the above derivation is to show

that an appproximation in the spirit of GB leads to
the correct nonrelativistic answer for P« 1 as
well as contains Jancovici's result. The actual nu-

merical answers obtained in this way are displayed
in Fig. 1 with the Coulomb and transverse-photon
contributions shown separately for the correlation
energy where the full-line curve represents Eq. (9),
long-dashed curve, Eq. (12), and short-dashed
curve represents the e lne approximation. For
comparison, we have also given the nonrelativistic
von-Barth —Hedin curve. In Fig. 2, only our cal-
culations are given for the correlation potential,
Eq. (10), and Jancovici s approximations lie in a re-

lation similar to the correlation-energy results of
Fig. 1. It should be pointed out that the formal
expressions given above are in relativistic units

l.2—

l.p

0.8

06
—0.3

0 4

0.3

—0.2
Ll

I—O. I

0.0

(4=1=c and ao ——Bohr radius =1), and a Ryd-
berg is —,e (e =1/137.037) relativistic units of en-

ergy.

III. DISCUSSION OF THE RESULTS

FIG. 2. The correlation potential in rydbergs versus

P. V,
' ', V,'"', and vBH stand for Coulomb, transverse-

photon, and von-Barth —Hedin results. The scale on the
right should be used for V,'"'.

0.8—

Q7—

~ 0.6—

0.5— vBH

Q4—

0.3—

0.2—
(tr)
C

Q. I—

0.00

FIG. 1. The correlation energy expressed in rydbergs
versus P (=AkF/mc). e,' ' stands for the Coulomb, e,'"'
for the transverse-photon contributions. The full-line

curves are our results for e,' ' and e,'"', the long-dashed
curves are the result of Eq. (12) and the short-dashed
curves are the the e lne' approximation of lancovici.
The nonrelativistic answer is labeled vBH.

In Fig. 1 we have plotted the correlation energy
contributions as a function of p, when the ring
sums are computed numerically (full-line curves)
and when an approximation due to Jancovici [Eq.
(12)] is used (long-dashed curves). Also given is
the nonrelativistic result evaluated from the expres-
sion given by von Barth and Hedin'6 (vBH) which
corresponds to the nonrelativistic limit of our ex-
pressions. Also given is the result to order e lne
(short-dashed lines) obtained by Jancovici. The
Jancovici schemes are in the same spirit as the
Gell-Mann —Brueckner3 (GB) one involving a
small-q approximation for the go, gz but retaining
the co dependence. The region of our interest
(heavy-atom systems) corresponds to
0.25 & P & 2.75.

(i) In the nonrelativistic case, we have verified
that the GB approximation is poor (20—30% of
the vBH answers) and so the q dependence is im- '

portant. On the other hand, the long-dashed curve
lies 8% above our full-line curve at P=2.75 for
e,' ', crosses it at about p=1.6, and lies 15% below
for P=0.25; but the long-dashed curve lies above
our e,""' in the entire P range, being 17% at
P=2.75. The e lne approximation, on the other
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FIG. 3. The total correlation energy in rydbergs as a
function of inn, where n =density Xao, ao being the
Bohr radius. vBH is the corresponding nonrelativistic
result.

0.0

Inn

FIG. 4. The total correlation potential versus inn;
vBH is the corresponding nonrelativistic. approximation.

hand, lies below our curve for both e~ (8% for
P=2.75 and 3% for P=0.25) and e,'"' (21% for
P=2.75) in the entire P range. Thus, for the indi-

vidual e,' ' and e,'"' as well as for the total e„ the

q dependence does not appear to be as bad an ap-
proximation as with the nonrelativistic case, being
of order'8% in the Jancovici scheme and 10% in

the e lne scheme from ours. Similar remarks ap-

ply to the potential.
(ii) The nonrelativistic result is very different

from the relativistic for P) 0.25, as expected. In
-Fig. 3, the total correlation energy per particle
versus inn is plotted, where n is the electron densi-

ty in atomic units (density multiplied by ao). The
correlation potential as a function of p is given in

Fig. 2, where the individual Coulomb and

TABLE I. The vafues of correlation energy and potential in rydbergs are given for a set of P values of interest to
heavy atom systems. zc+=zc' '+e,'"' and V,' '= V,' '+ V,""'. The superscript (C) and superscript (tr) stand for the
Coulomb and transverse-photon contributions. For comparison we have also given the von-Barth —Hedin (vBH)
results.

(vBH)
C

(c)
C

(tr)
C

(T)
C

(vBH)
C

(c)—VC
(tr)—vC

(P—vC

0.007
0.014
0.25
0.50
0.75
1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75

0.1234
0.1573
0.3252
0.3739
0.4046
0.4269
0 AAA2

0.4581
0.4697
0.4794
0.4878
0.4951
0.5015

0.1235
0.1574
0.3262
0.3924
0.4370
0.4997
0.5546
0.6188
0.6857
0.7545
0.8249
0.8965
0.9690

0.0036
0.0075
0.0369
0.0595
0.0828
0.1062
0.1292
0.1519
0.1740
0.1964
0.2182

0.1235
0.1574
0.3298
0.3999
0.4739
0.5592
0.6374
0.7250
0.8149
0.9164
0.9989
1.0929
1.1872

0.140
0.173
0.347
0.399
0.430
0.453
0.470
0.483
0.494
0.503
0.511
0.518
0.523

0.1389
0.174
0.3453
0.4209
0.4918
0.5721
0.6581
0.7489
0.8336
0.9373
1.0356
1.1339
1.2329

0.0064
0.0131
0.0586
0.0967
0.1218
0.1530
0.1825
0.2119
0.2409
0.2695
0.2979

0.1389
0.174
0.3517
0.4340
0.5504
0.6688
0.7799
0.9019
1.0161
1.1492
1.2765
1.4034
1.5308
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transverse contributions are separately shown as
well as the von-Barth —Hedin answer for compar-
ison. In Fig. 4, the total correlation potential as a
function of inn is given. The departure from the
nonrelativistic result begins at P&0.25 as in the
energy case. It should be pointed out for both en-

ergy and potential, the transverse-photon contribu-
tion though sma11, is found to be significant.

(iii) In Table I, we have given the numerical
values for energy per particles and the potential for
sotne values of P along with the results of von

Barth and Hedin. The separate contributions of
the Coulomb and transverse photons are also given
for completeness . In I, it was found that in the
case of exchange, the two contributions are com-
parable to each other and are of opposite sign. In

contrast to this, the correlation contributions are of
the same negative sign. By a comparison of the or-

ders of magnitude, we may infer that the total
correlation contributions to the potential are about
5% of the total exchange for P =2.5 and 2.5%
for P= l.

(iv) In the past, Freedman et al. ' and Fricke
et al. ' have used the nonrelativistic GB result to
estimate the correlation effects in fermium to be
less than 1 eV. The present work while showing
that the GB result is small in comparison to the
actual relativistic result, leads one to believe that it
is perhaps of the order of 10 eV. Our preliminary
calculations for fm show that the 1s binding energy
is lowered by about 6 eV when correlations are in-

cluded.
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