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Sixth-order term of the gradient expansion of the kinetic-energy density functional*
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A generalization of Hodges's method of obtaining the gradient expansion is derived pnd then employed to
determine the sixth-order term. The formula for it is as follows: T6[p] = (3m') "'/45 360 p '"[13(++'p/p)'+
2575/144(&'p/p )' + 249/16(&p Ip )'(&'p Ip) + 1499/18(&p Ip )'(&'p Ip )' — 1307/36(gp Ip )'(gp g& p Ip') . +
343/18 (Qp gQp/p')' + 8341/72(~'p/p)(~p/p)' —1 60049 5/2 592(~p /p)']d'r. For atomic densities, T,[p] is
divergent near the nucleus and at large distances.

I. INTRODUCTION

T[ ]=Tolp]+T.[ ]+T.[p]+ "
where T,[ p] is given by the well-known Thomas-
Fermi kinetic-energy functional

&.Ipl= Hr (~ "~"'fP'"&'"

T,[p] is given by one-ninth"' of the correction
determined by von Weizsacker, "

(2)

T,[p] = +s d'r,(vp)'
(3)

and Hodges" determined the fourth-order correc-
tion to be

The Hohenberg-Kohn' proof that the ground-state
energy of a system is a universal functional of the
ground-state single-particle density forms the
theoretical basis of the area of research now known
as density functional theory. The Hohenberg-Kohn
theorem is an existence proof and does not in-
dicate the form of this universal functional, but
certain limiting forms are known. ' '

Lieb and Simon' have shown that the Thomas-
Fermi' energy functional is exact in the limit
g -~. Some attempts to add corrections to the
Thomas-Fermi functional have led to gradient
expansions —so named because successive terms
in the series involve higher and higher order gra-
dients of the density. Gradient expansions exist
for both the kinetic energy' "and the exchange-
correlation energy. "' Density functionals for
the exchange energy have been successfully em-
ployed in the calculation of the orbitals of nu-
merous systems. ""

It follows that if one wishes to perform calcula-
tions involving only the density of a system and
bypass any reference to orbitals and .wave func-
tions, a principal concern must be the functional
for the kinetic energy T[p]. Derivations of the
gradient expansion of the kinetic-energy functional
show that it can. be written in the form"

(3rs)-2/3
540

P —— —+- —d'r .
(4)

Empirical studies" "to determine the quality of
the kinetic-energy functional defined by Eqs. (1)-
(4) have demonstrated that the gradient expansion
can reproduce the Hartree-Fock kinetic energy
within 1% for most atoms when Hartree-Fock
atomic densities are employed.

The present paper presents the theoretical basis
of the gradient expansion and a sketch of Hodges's
method of evaluating individual terms of the series.
An operator is developed which represents a gen-
eral term generated by Hodges's procedure, and
the sixth-order correction to the kinetic-energy
functional is explicitly obtained. Finally, some
observations are made on the gradient expansion,
and its limitations are discussed.

II. BASIS OF THE GRADIENT EXPANSION

Thomas-Fermi theory and the gradient expan-
sion can be derived from the Dirac density matrix.
Results to be found elsewhere" ~ are reviewed
here in order to clarify some points.

The operators used with the density matrix are
reduced to normal form, which results in final
expressions -that have a remarkable classical ap-
pearance and interpretation. The normal form
of a quantum-mechanical operator, which is a
function of the momentum and spatial coordinates
of a system, is obtained by commuting functions
of momentum p to the right of functions of posi-
tion. For example, if the operatorO(r", p) is given
by

O(&, p) = pg(r),

where g is any function of 5', then 0(r, p), the nor-
mal form of D(t, p), is given by

O(rP) = iVg(, r)+ g(r)p. —
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The density matrix of a system can, in principle,
be obtained from the density-matrix operator for
that system. The density-matrix operator p(i, P)
is defined by

Expressing p(r, P„}in normal form, taking it under

the integral and allowing the momentum operators
of p(r, P„}to act on the exponential, one obtains

p(r, 0)=f(X}, p(r, r') =, Lim P(r, p)e'P" ' 'd'P.
4m'

(16}

where f is the Fermi-Dirac distribution function,

f(X)= (1+exp[(X —g)/ur] } '. (8)

Here, X is taken to be a single-particle Hamilton-

ian with potential V,

X=BP +V,

where V is treated as a local potential, but for a
system of interacting electrons, V is the self-
consistently determined potential of the system
under consideration.

One may write the eigenvalue equation

p(r, P)A(= a(A;,

where P; is the ith eigenfunction of X and

(x, =(1+exp[(E; —p}/kT]}

with E, being the energy eigenvalue associated
with P, . Notice that in the limit, as the tempera-
ture T goes to zero, the value of a& becomes unity

if E;& p, and zero if E, & p..
The density matrix p(r, r'} is usually written as

a sum over the occupied orbitals of a system. For
the particularly simple case of the ground state of

a closed-shell system of 2e electrons, the density
matl 1X ls

(12)

where the coefficient 2 indicates that each spatial
orbital is doubly occuyied.

With an appropriate value for the chemical po-
tential ii of Eq. (8), Eq. (12}may be written

Here the operators r and y„have been reylaced by
the variable r and p, and p(r, p) corresponds to a
classical phase-space distribution.

Quantities of interest are obtained from the
density matrix of Eq. (16) in the usual manner.
For example, the single-particle density p(r} is
given by the diagonal of the density matrix

p(r) = 3„,(2[p —V(~)]}'".

IH. HODGKS'S METHOD

Hodges" has developed a method, suggested by
Kirzhnits, ' for obtaining the normal form of the
density-matrix operator as a series in ascending
powers of the gradient operator, in the limit of
zero temperature.

First, f(X) is expressed as a Fourier integral

f((() ft:(v) exp=( mldr' (19}

The exponential is placed in normal form by writ-
1ng

p(r) = p(r, r}= 4, lim p(r, p}(f'p.
4m

The explicit form of p(r, p) is a series involving

products of the momentum y and gradients of the

potential V of the Hamiltonian of Eq. (9). Neglect-
ing all but the zeroth-order term of p(r, p}, i.e. ,
the term involving no gradients of V, and carrying
out the integration indicated in Eq. (17), the
Thomas-Fermi relationship between the density
and potential is obtained,

p(r, r ') = 2 lim p(i, j„)Q 4,*(r')4,(r), exp(i7X) = exp(is V)Kexp(i7P'/2), (20)

where P„ indicates that the momentum operator
acts only on functions of r and not of r'. However,
in Eq. (13), it is not necessary to restrict the

summation to the occupied orbitals. Extending the
summation to include all the virtual orbitals and

continuum functions of the system results in

and a differential equation for the normal form of
E is obtained,

BE
—, = (o, +o,)sc.

Here

g 4 g(r') 4,(r) = 6(r - r '), (14)
O, =ip (V+XVV),

0, = —[v'/2+ x(v2V/2+ v V v)

(22)

where 5(r r') is the—Dirac delta function.
Representing the delta function in terms of the

free-particle states, Eq. (13) becomes

p(r, r')=2 limp(i, p,), e'P"' ")d'P. (15}' (2v)'

X=iv.

In Eqs. (21)-(23), P, V, and X are written as

(23)

(24)
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6K= 0+ 0, 0„ (25)

and the fourth-order term is given by

variables rather than operators because all quan-
tities are now in normal form.

An expression for K is obtained by iteration of
Eq. (21); the leading term of K= 1 may be obtained

by taking the classical limit of Eq. (20). The re-
sulting expression is a series of terms of various
orders in &, which can be arranged into a series
in ascending order of the gradient operator by
making use of 0, being first order in &, while 0,
is second order. For example, the second-order
term in the expansion for K, 6, K, is given by

duces a factor of S/SE acting on f(E).
In general, the integral of the corrections to the

density are not zero, so that if the chemical po-
tential p. remains constant then the normalization
of the density changes as quantum corrections are
added to p. This requires that corrections to the
free energy

p'
()O —pN , —=+ V —p)p(r, p)d Pd'r', (27)

be calculated in order to determine the change in
the total energy with the number of particles fixed.

Next, the kinetic-energy functional T[p] is writ-
ten as a series

64K= 02 02 + 02 O~ O.~+. O~ 02 0)

+ O~ 0~ 02+ O~ 0)- O~ O~

T[P]= T.[P]+T.[P]+ T.f Pl+ ",
where TJ(p] indicates a functional involving j
powers of V'. The density p is written as

(28)

(26)

Quantities of interest are obtained by averaging
p(r, p) over p [Eqs. (10) and (17)), which results in
there being no contribution from the terms of
p(r, p} involving odd powers of p and V, so only the
even order terms of p(r, p) and K need be calcu-
lated. Once the normal form of K has been deter-
mined, P(r, p) is obtained from Eq. (19) by noticing
that each power of A. in the expansion of K intro-

p= pp+ 6P y (29)

P=Pp
= p —1'(r), (30)

where T,[p] is given by Eq. (2), the relation

where pp is the Thomas-Fermi density given by
Eq. (18). Equation (29) is substituted into Eq. (28),
which is then expanded about pp. Using the fact
that

(O'T
p . 3 ~ 6'TpT+ V —p, 6pd'r=T p, +~,' 6p'd'r+3 3 6p'd'r+ ~ ~ ~ +T, p,

OWp PWp

6T (62T &6T, ~
+ ' (6p)d'r+~

I
2' (6p)'d'r+ ~ ~ ~ +Td[pol+ I

'
I

6pd'r+
I 6p),.„

(31)

(32)

is obtained. By writing 6p=6,p+64p+ ~ ~, where 6,p is the ith-order correction to the density, and
equating terms of order j in V, an expression for Tg p, ] is obtained. For example,

T.[ p,] = 2, (OO —pN) —;f ('*':) (pp) d r f( , ']'p—,pd'r. '
PWp p

Any gradients of the potential present on the right-hand side of Eq. (32) can be related to gradients of the
density through the use of Eq. (18).

IV. GENERALIZATION

Hodges's method shows that the correction to E of order 2l, 6»K, is given by the sum of all possible
products of 0, and 0, operators which have an overall order of 2l. A typical term involving n0, operators,
located at the positions q(1), q(2},. . . , q(n} in the product, may be represented by P„(q(1),q(2), . . . , q(n)},

Pgq(1), q(2), . . . , q( )) f&)& %& '."fO]*"'""-»""fO«' "fO&;» " . f&)«,'"""&"-.

Ot. q( Olq( )- 3. ~ ~ O(l)
2 (33)

Evaluation of the integrals indicated in Eq. (33) is facilitated by expressing g and 0, in terms of simpler
operators. The operator 0, may be written
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3 2

0, =i QP(k) gX~ 'P(j, k)=EX~ 'p(k)P(j, k),
k»1

where the index k indicates the kth vector component of a quantity

(s4)

P(l, k) = (35)

y(2, k) = (s6)

For brevity, the summations over j and k have been made implicit in the last step of Eq. (34). Similarly,

0,= ——,'6(k(1), k(2))X~'"+~'" '$(j(2), k(2)}Q(j(1},k(1)}. (37)

Expressing Eq. (33) in terms of the Q operators and evaluating the indicated integrals, one finds

lan n 1 a( )-24.i

)„(t)(1),t)(2), . . . , q(n))=( —))' —
~

1)[ A(q())) p(k(y)))l "4,
2] i' y»e( i- &)+i

where
q (i )-24 i

A(q(f)}= 5[k(q(f)+ z},k(q(z)+ i —1)][B(q(z)+ f) —f] Q [B(y) —f+ 1]
y~(i-1)+i

A(q(n+ 1))= Q [B(Y)-n] ',
y» a (n)+ n+&

y

B(r)=g j(~),
fg»g

2= B(2l),

q(0}-=0,
q(n+ 1)-=2l+ 1 —n,

and 4 is the product of )t) operators given by

4 = g j(2l), k(2l)) Q( j(2l —1),k(2l —1})~ ~ ~ ))))(j(1),k(1)) .

(38)

(39}

(40}

(41}

(42}

(43)

(44)

(45)

Since the )t) operators do not in general commute, the product in Eq. (45} must be maintained in the stated

order. Here the convention is being used that

5& a

y»a
g(y) =1. (46)

One can more easily understand the structure of the right-hand side of Eq. (38) by noticing that the factor

A(i) contains information about the products of 0, and 0, operators of Eq. (33}occupying the positions

q(i —1)+ 1 to q(i). The Kronecker delta occurring in Eq. (39) originated in Otm"'", while factors such as

[B(y) -n] result from the integration of X raised to the power j(l)+j(2)+ ~ ~ ~ + j(y) -n —1. The values of

the indices of the Kronecker delta, and the other factors making up Eq. (39), are shifted from what one

might first expect; this results from taking into account that a single 0, operator is replaced by two ))))

operators.
The task now at hand is to sum P„(q(1), . . . ,q(n}}over all allowable values of the q's. Since q(i) is the

position of the ith 0, operator in Eq. (33}, then necessarily q(i)) q(f —1). Also, the largest value q(i) may

obtain is 2l —2n+i, so that the allowed range of q(i) is

q(i —1)+ & q(i) ~ 2l —2n+ i . (47)

Equation (38) shows that the part of P„(q(1),. . . ,q(n)), which is dependent on the values of the q(i), may

be written as a product of factors, each of which depends on a single q(i). Summations over such a product

may be written
n

g IIf(g(f))=/f(g(1)}g f(g(2)} ~ g f(g(&)}=g gf(g(&)}.
C(&) C(2) C(n) c(x) c(2) c (n) i»& c(i)

(48)
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Finally, summing P„(q(1),q(2), . . . , q(n)) over all values of n, one obtains
A)4 1 q (i )-24 i

II., K= (-()' I (-,')"]I g A(q(i)( 11 (t(k(i')))&' "I,
ff »0 i=1 q (i ) y» q (i-1)4 i

(49)

where the range of q(i) is given by Eqs. (43}-(47).
As mentioned in Sec. III, 5»p(r, p) is obtained from 5»K by replacing A. "by B"f(E)/BE". The 2lth-order

correction to the density 5»p(r) is obtained by integrating 5»p(r, p) over the momentum. The only factors
of 5„p(r,p) which depend on the momentum are the derivatives of f and the components of momentum which
are explicitly present in the expression for 5„p(r,p). The required integrals are given by2'

a+1 q(i)-2+i

p ky ~„dp= KT —2l —5 l/& k
i»l y» q (i-1)+i (50)

where gF is the local Fermi momentum

~~ = [2(p —V)]'",
for a positive integer C:

(2C —1)!!= (2C —1)(2C —3)(2C —5) ~ ~ ~ (3)(l),
and 4(fk)) is a function of the set of k's present in the integrand of Eq. (50),

(51}

(52}

(k)=(k(1},k(2), . . . , k(q(1) —1),k(q(1)+2), . . . , k(q(i) —2+i)

xk(q(i}+i+1), . . . , k(q(n) —2+n), k(q(n)+n+1), . . . , k(2l)}. (53)

One may represent &((k)) by the sum of all possible products of Kronecker deltas, which can be formed
from the 2l —2n elements of (k). When &((k)) is a function of only two arguments, it is the Kronecker delta,
h(a, b) =5(a, b), while

h(a, b, c, d) = 5(a, b) 5 (c, d) + 5 (a, c)5 (b, d) + 5 (a, d) 5(b, c) . (54)

In general, when &((k)) is a function of 2a arguments, it consists of a sum of (2a —1)!!terms. For the
case of (k) being the null set, i.e., when n = l, &(( )) is set equal to 1.

The final result obtained for 5„p(r) is

f1pl

5„p(r) =—, (--')" jg g A(q(i)) &((k}) (2J —2l —5)!!~»"'~4 .
fl a(i) (55)

In an analogous manner, 5»((Ãj —pl(]) may be evaluated, and an expression similar to that for 5„p(r)
is obtained. In fact, the expression for 5»((+ —pÃ) may be obtained from the right-hand side of Eq. (55)
by multiplying the factor (——,)" by (I+n -J), replacing (2J —2l —5)!!with (2J-2l —7)!!and replacing

~4( with ~g + ~4 d y'F
The expressions obtained here for 5»p(r) and 5»((3O —pÃ) must be treated as operators for the quan-

tities indicated because of the pending operations in C. Expressions involving derivatives of the potential
are obtained by applying these operators to the constant 1, the leading term in the expansion of E. Also,
5»p(r) consists of more terms than are explicitly present in Eq. (55), because of the implicit summations
over the j 's and k's present in A(q(i)), &({k}),J, and 4.

In the derivations of 5„p(r) and 5»((Q —pÃ}, the quantities (2J —2l —5) and (2J-2l —7) were assumed
to always be positive. This assumption is valid for l ~ 2 for corrections to p(r) and for l~ 3 for correc-
tions to ( —pÃ. Equation (55) can be made valid for all l(~ 1) by replacing the factor (2J —2l —5)!!with
(2J-2l —3)t!/(2l+3 —2J). Similarly, the expression for 5»((3@—pÃ) is correct for all l when (2J —2l
—7)!!is replaced by (2J —2l —3)!!/(2l+5 —2J)(2l+3 —2J).

V. THE SIXTH-ORDER CORRECTIONS

The operators described in the last section were employed to determine 5,p(r) and 5,((3C) —pÃ). The
sixth-order correction to the density is given by
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1,V9V 17
( )

V2VV V 3 y y 4 (V,VdV V) (0202V) ~ (0209V V)}~
~ 2240 " 2688 192 448 448 112 . j

+KF9 VV 2V4V+ V2V ~ VV lv + V. V2V 2+ V2V v Vyv

(fdpd V) ~ [(V)V21V) ~ (V 50, V)] 0V 0(V V2d V) 3 35

+K-" V'V ' VV '+ —VV 'VV V'V+ —VV ' V,V,V '+ V V '

+
122

v v vVV(vv)
+54

(Orvvrv) (vv 9 vrvrv))

-13 231 'I 5005V'V(VV)'+ 0V 0(VV}' ~+ ~-"(VV)'
512

(56)

The expression for 6,((X) —pÃ), obtained directly from application of the operator for 6,((K) —~}, is ana-
logous to the expression for 5,p(r). However, utilizing Green's identity this may be reduced to1,(VV'V), 11, , (VV)'V'V

v ~ 4480 " 16 128 1792

+ «'( (vv)'(v'v)'+ (vv)'2)v «2 v*v — (ev rv(lv)*)

(57)

This assumes all surface terms vanish for the V under consideration.
Equating terms of order 6 in Eq. (31) results in

V I)p= (5( )25— p)1) —'f (;) p, pp pd'r ——,
' f (

—'
~

(pp) d r, ''
0 P0

5,p d'r —2,'
62p 'd'r — '

62p d'r . (58)

Substituting for 5, ((36}—pÃ), 5,p', and 5,p" and employing Eq. (18), one obtains the final formula

(2«')' ' f, p (VV'p)' 25'15 (Ir pl ' 249 (Vp)''(V'p) 1499 (Vp)'(V'pl
'

$30/ pp 2 &pe Q&2p 343 &pe pQp 2 834$ &2p Qp 4
y 6004g5 (Vp 6

3

(59}

Again following Hodges, "we note that the sixth-order term predicted by linear response theory is

13(3v2}-4/2 (
~ VV2p 9

]= p dr. (60)

VI. DISCUSSION

For atomic densities, T,[ p] becomes divergent
at both large distances and near the nucleus. This
behavior seems to be a result of employing the
local density approximation in the derivation and
is predictable from scaling arguments. ~ How-
ever, Eq. (59) is still valid in the limit of slowly
varying densities and may be useful in certain

I

problems of solid-state physics.
Other functions that could serve just as well in the
integrand are related to the ones given here
through Green's identity, although surface terms
may contribute in particular cases. Of course,
the value of Tg p] or T,[ p] is unique in any prob-
lem in which the functional. is fully applicable.

Although Eq. (59) may be of limited applicability,
the density matrix from which it is derived would
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at first appear to be quite general, and some in-
teresting results may be obtained with it. Start-
ing with Eq. (16}, the Thomas-Fermi theory is
recovered by retaining only the lowest-order term
of P(r, p)." This term corresponds to treating
the p and V operators of Eq. (9} as commuting op-
erators and thus shows the classical nature of
Thomas-Fermi theory. Insertion of the Thomas-
Fermi result p= 0 into P in Eq. (13}results in a
density matrix which indicates that all bound states
of the system are occupied. For an atom, such a
result can be correct only in the limit Z-~ and

this is where Thomas-Fermi theory has been
shown to be exact. '

A sometimes undesirable property of the density
matrix, defined by Eqs. (f) and (8), is that it re-
quires all the states of a degenerate set to be com-
pletely occupied or completely vacant. Therefore,
the density-matrix operator employed here is
sufficient to describe only closed-shell"" (or, more
precisely, closed-subshell) systems.

This feature of Thomas-Fermi theory and the
gradient expansion could help expl, ain the anoma
ious behavior observed in the error curves of
some very recent studies of the gradient expan-
sion.""This problem' is less severe, but still
present, in a spin-polarized formulation of the
gradient expansion. "'" Although the higher-order
terms of the gradient expansion appear to be di-
vergent in certain applications, a closer examina-
tion of the boundary conditions employed may al-
leviate these difficulties. "
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