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A general coupled-cluster method valid for arbitrary multideterminantal reference states
is formulated. The resulting cluster expansion for the wave function is a generalization of
that introduced by Silverstone and Sinanoglu and applied by Sinanoglu and collaborators.
The connected nature of the cluster operators and the effective interaction is proven in the
case when the reference space is complete, i.e., is invariant under unitary transformations
of partly occupied orbitals. For incomplete reference spaces the disconnected terms ap-
pearing in the effective interaction are properly generated by the coupled-cluster theory.
Approximate schemes for solving coupled-cluster equations are proposed and their rela-
tion with perturbation theory is briefly discussed.

I. INTRODUCTION

It is well known that the formal solution to the
closed-shell correlation problem can be obtained by
using the complete configuration-interaction
method. In this method the ¹lectron wave func-
tion 4 is written in the form

E=(4 iH(1+C)4),
(4

~

(H —E)(1+C)4)=0,
(2)

(3)

where N' runs over all excited determinants. If
the orbital basis set used to construct 4 and the
excited determinants 4' were complete (i.e., infin-
ite) then E would be the exact energy of the sys-
tem. When this basis set is finite then Eqs. (2) and
(3) may still provide us with a reasonable approxi-
mation to the exact energy provided that the

0 =(1+Ci+C2+ ' +C~)4,
where C„, n =1,2,. . ., N, is a linear combination of
all possible operators creating n-tuple excitations
out of a closed-shell determinant 4. The linear
coefficients in C„are determined from the varia-
tion principle which leads to the following equa-
tions for the operator C=C&+C2. . . +Cz and
the energy E:

+=e~4, (4)

where T=ln(1+C), then the equations for T

(@ ~e He 4'1=0

dimension of the basis is large enough. Unfor-
tunately, for such orbital basis sets and for systems
with more than a few electrons, the number of
variables in the system of algebraic equations (2)
and (3) becomes enormous and these equations can-
not be handled in practice. Some further approxi-
mations are clearly necessary, the simplest one con-
sisting in limiting C to single and double excita-
tions only. It is known, however, that such an ap-
proximation, albeit satisfactory for small N; be-
comes increasingly poorer with growing N. '

This is due to the fact that the approximate energy
is not size consistent. For extended systems
this would lead to correlation energies which are
not proportional to N. ' Addition of C3 and C4
does not help and, in general, there is no easy way
of simplifying Eqs. (2) and (3) without losing the
size-consistency property.

A general, formally appealing, and computation-
ally practical solution to this problem is given by
the coupled-cluster method. ' If the wave func-
tion + is written as"
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0 =We~4, (7)

where T is fixed by %'o ——e 4 and W is determined

either from the Schrodinger equation or by using

the variation principle. The open-shell coupled-

cluster theory based on Eq. (7) is relatively simple

since the same commutative operator algebra of
particle-hole creation operators as in the closed-

shell case can be utilized. However, the validity of

the ansatz (7) is severely limited to situations in

which a transition from %0 to 4 does not lead to

an extensive reconstruction of the wave function.

Moreover, since the operator W does contain

disconnected terms, special care is needed to obtain

size-consistent results.

A completely general, explicitly connected open-

shell coupled-cluster theory has been proposed by

Mukherjee et al. ' ' in a series of papers started in

1975. These authors considered the wave operator

U transforming a chosen multideterminantal refer-

ence space Mo onto the functional manifold

spanned by the exact solutions of the Schrodinger

equation. They assume that this operator can be

represented in the exponential form

U=e P,

can be simplified by arbitrary truneations of T
without losing the size consistency of the resulting

approximate energy

E=(@~e He 4) .

In atomic and molecular physics the importance of
using (4) was first recognized by Sinanoglu, ' while

the explicit equations from which T can be calcu-
'V

lated in practice were first derived by Cizek. In

fact, Eqs. (5) and (6) form a basis for almost all

size-consistent approximate methods of studying

correlation effects in closed-shell systems. ' ' '
Because of the great success of these method in nu-

clear, "atomic, ' ' molecular, ' ' ' ' and

electron-gas ' applications, there has been con-

siderable interest recently in generalizing Eqs. (5}

and (6) to treat open-shell problems. The straight-

forward approach to write the open-shell wave

function in the form of Eq. (4) with 4 being an

open-shell determinant from a suitable degenerate

reference space is possible but leads to very com-

plicated equations and correlation energies which

are generally not invariant under the choice of 4.
The situation simplifies considerably when 4 is

determined uniquely by symmetry or if 4 is closely

related to some closed-shell state +0. In the latter

case one may write

where P is the orthogonal projection on Mo and T
is given by the second-quantized expression

T=t a'a + — t ~a'a'a a +cx 2) Ps P c (9)

ln Eq. (9) a" and a„, ~ =r,s,a,P, are the usual fer-

mion creation and annihilation operators, a"=a„,
defined for the spin-orbital basis X„used to con-

struct the determinants of Mo. The Einstein con-

vention is employed in (9) and throughout the text,

implying summation over repeated lower and

upper indices. It is also assumed that the indices

a,P, . . . run over core and valence spin-orbitals,

r,s, . . . over virtual and valence spin-orbitals, and

the coefficients t ~ ' are antisymmetric in their

upper and lower indices. The terms carrying

valence labels only are excluded from the summa-

tion. The core, valence, and virtual spin-orbitals

are, by definition, occupied in all, some and none

of the reference determinants, respectively. Equa-

tion (8) represents a reasonable generalization of

Eq. (4}. However, two new very important ele-

ments appear. Firstly, the operator algebra in

which T is represented is not commutative since

the valence particles can be created as well as an-

nihilated in Eq. (9). Secondly, in sharp contrast to
the closed-shell case, the operator T is not uniquely

defined by Eqs. (8) and (9). To see this we note

that if X is given by Eq. (9), with t, ,t ~, . . . re-

placed by x, , x ~, . . ., then XP is not changed by

the transformations like

a a ax„~x, +mc„

ai ai a
xn ~xri cr

(10)

where i runs over all valence spin-orbitals, m is the

number of valence electrons, and c, are arbitrary

constants. Thus, the equation U=(I+X)P has in-

finitely many solutions for X. Since all X are nil-

potent, the operators T=ln(1+X) exist and pro-

vide us with infinitely many solutions to the equa-

tion (8). In particular, the partitioning of T into

one, two, and higher many-body components is not

defined by Eq. (8) alone. We see that some addi-

tional conditions should be imposed on T to make

it well defined. In their third paper ' Mukherjee

et al. must have realized that difficulty since they

assumed that T must also satisfy

U' '=e P' ', k=012, . . . ,m —1

where P' ' and U' ' are the appropriate projector

and wave operator for the ionized system involving
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only k valence electrons. This means that T ap-
plies not only to all states from Mp but also to all
singly, doubly, . . . , etc., ionized states that can be
obtained from Mo. It can be verifiai that Eqs. {8),
(9), and (11) define T uniquely.

A different way of circumventing the problem of
an ill-defined T has been chosen by Coester and
by Offermann, Ey and Kumrnel. These authors
represented the Bloch wave operator ' in the
form

U s s . . . s
( I+@( )}p

(0) (1) (m —1)

where S' ' are defined recursively by

U(p) es p(p)

(12)

(13)

U(k) es( ) s( ). . . s( )(1+@(k))p(k) (14)

for k & 0. The operators S' ' are well defined since
it is assumed that each term in the second-
quantized expression for S' ' contains exactly k
operators annihilating valence particles. It is in-
teresting that the ansatz (12), although completely
general, can be obtained from Eq. (8) if one as-
sumes that

T S(P)+S(1)+.. . +S(m)

and neglects both higher powers of S' ' and non-
commutativity of S' ' operators.

Still another formulation of the open-shell
coupled-cluster theory has been given by
Lindgren. He assumed that

U= I e IP, (15)

where U is the Bloch wave operator, S is of the
form of Eq. (9), and the curly brackets denote the
normal product defined with respect to a certain
reference or "vacuum" determinant' apparently be-
longing to Mp. The ansatz (15) does not define S
properly since Lindgren's Q= [ e ), satisfying
U=QP, is not defined uniquely by U and P [cf. the
discussion around Eq. (10}]. It is not clear from
Lindgren's work how he made S a we11-defined
operator, and, in particular, how he partitioned S
into one, two, and higher many-body components.
Using the normal ordering in the ansatz (15) leads
to additional problems. The whole theory is not
invariant under the arbitrary choice of a vacuum
determinant and, moreover, the use of powerful Lie
algebraic techniques' in developing coupled-cluster
equations is not possible. The development of the
theory relies then heavily on somewhat vague,
graphical arguments.

All the general approaches discussed above share
two common features: (i) the cluster operators T,
S' ', or S are expanded in a noncommutative
operator algebra, and {ii) these operators are ill de-
fined unless we assume that they are universal in
the sense that they represent also the wave opera-
tors for singly, doubly, etc., ionized states. '

In this paper we present another approach to the
general multideterrninantal coupled-cluster theory.
In this approach the cluster operators are
represented with commutative algebras and are
uniquely defined by the ¹lectron wave operator
U only. The coupled-cluster equations are derived
using simple Lie-algebraic methods without involv-
ing any diagrammatic representation. They consist
of the "direct part, "which is the same as in the
closed-shell. theory, and a coupling term charac-
teristic of the open-shell case. The coupling term
generates the "folded" or "backwards" diagrams of
the open-shell many-body perturbation theory.
Our method is independent of the partitioning
H =Hp+ V but the connection with perturbation
theory is as straightforward as in the closed-shell
case. Both degenerate and quasidegenerate situa-
tions can be treated without any changes in the
basic equations. In a particular case, our cluster
ansatz leads to the cluster expansion for the open-
shell wave function which has the same form as
that proposed by Silverstone and Sinanoglu and
used by Sinanoglu and collaborators.

The plan of this paper is as follows. In Sec. II
we present a general derivation of the coupled-
cluster ansatz and the basic equations for cluster
operators. In Sec. III the connectedness of the
cluster operators in the case of a "complete'-' refer-
ence space is proven. In Sec. IV an important case
of an incomplete reference space is considered. It
is shown, that, if necessary, our theory can gen-
erate disconnected contributions to the effective
Hamiltonian. Section V contains a discussion of
possible approximation schemes.

II. COUPLED-CLUSTER METHOD FOR A
COMPLETE REFERENCE SPACE

Let us consider a set of ¹lectron Slater deter-
minants 4&, p=1,2, . . . ,M, constructed from
K+L orthonormal spin-orbitals 7 in such a way
that the first K spin-orbitals referred to as the core
spin-orbitals are occupied in all 4& and the last L, re-
ferred to as valence spin-orbitals, are occupied only
in some of the 4&. We assume that all distribu-
tions of N —K "valence electrons" among L
valence orbitals are allowed. This means that
M =L![(N—K)!(L N+K)!J

'. The ref—erence
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space M, spanned by all 4z functions is then com-

plete, i.e., is invariant under unitary transforma-

tions of valence orbitals. The requirement of the

completeness of Mp in the above sense is essential

but not indispensable, and we shall show later that

it can be relaxed at the expense of admitting dis-

connected contributions to the effective Hamiltoni-

an. The projection operators pn Mp and on its

orthogonal complement Mp are denoted by P and

Q, respectively. We obviously have

(16)

U =U,
U%„=%„.

(22)

(23)

Equations (22) and (23) show that U is essentiauy a

(nonorthogonal) projection on the exact manifold

.W. This projection, usually referred to as the

wave operator, has been introduced by Bloch in

the context of perturbation theory in which case it

has a much simpler structure ' than the usual

orthogonal projection considered by Kato. Using

Eqs. {19),{20), (17), and (23) it is easy to see that

HU= UHU, (24)

(H E„}%q———0 . (17)

The coupled-cluster theory outlined in this section

is aimed at providing a systematic way of improv-

ing this zeroth-order approximation by describing

the electron correlation using two-, three-, and

higher-electron cluster functions. The convergence

of the resulting approximation scheme depends on

the quality of the initial Mp but for the derivation

of the basic formalism it is sufficient to assure only

that no function from M is orthogonal to all of

4&, i.e., that all functions

p=p%'p (18}

are linearly independent. This means that P gen-

erates a one-to-one mapping from M to Mp. The
inverse of this mapping, acting from Al p to M,
will be denoted by U. We extend the domain of
this mapping to the whole Hilbert space by requir-

ing that U is a linear'operator acting as zero on

More precisely, U is defined by

where P„= i 4„)(4& i. In Eq. (16) and in the en-

suing text the summation indices p, v, A, range

from 1 to M.
We assume that the orbitals X are chosen in

such a way that by diagonalizing the Hamiltonian

H in &p we obtain a reasonable zeroth-order ap-

proximation to some M exact eigenfunctions 4&
and eigenvalues E& of H. This means that Mp is a

reasonable zeroth-order approximation to the exact

manifold M spanned by exact solutions to the

Schrodinger equation

or, simpler yet, by diagonalizing the effective Ham-

iltonian

H"=PHU (26)

within the reference space Mp.

H' 4p ——Ep4p . (27)

To apply Eqs. (24), (26), and (27) in a many-body

context, it is necessary to guess a suitable second-

quantized representation for U. Since U can be

written as

U=g
i q„)(a„i, (28)

and since each +& can be uniquely expanded in

terms of single, double, etc., excitations from 4& it

is not difFicult to see that U can be uniquely

represented in the form

U= g(1+F")Pq, (29)

where F" belongs to the commutative algebra r„
generated by those operators of the form a'a for
which a labels a spin-orbital occupied in 4& and r
labels a spin-orbital vacant in 4&. F" can be thus

expanded as

which is the basic equation from which U can be

determined. Once U is known, 4& and E& can be

obtained either by diagonalizing H in M, which is

now spanned by the functions

(25)

and

UC p=q'p. (19)
2

F"=f, {p)a'aa+ —f~~{p)a"a*afsa~+ .

UP=U . (20)

PU=P, (21)

Using Eqs. (19) and (20), it is easy to check that
where the coeilicients f„:'(p) are totally an. -.

tisymmetric in a, P, . . . and r, s, . . . separately,

and are nonzero only if P Pp . . . are occupied
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and P„P„.. . are empty in 4„. Because of the
intermediate normalization

(31)

and the completeness of Mo all coefficients

f ~ "(p,') carrying valence labels only are equal to
zero. In formula (30) and throughout the text the
indices a,P,a~,a2, . . . are used to label core and
valence spin-orbitals and the indices r,s, r &,r2, . . .
to label valence and virtual orbitals. In the follow-

ing, the letters p, o,~ will always label virtual orbi-
tals, i,j,k, l—valence orbitals, and b, c,d~ore or-
bitals only. The indices a, f,co, rl will run over all
single-particle states. It should be emphasized that
all equations in this section are invariant under
separate unitary transformations of core, valence,
and virtual orbitals. Thus, these orbitals need not
be specified in more detail now.

The f coefficients can be determined directly
from Eq. (24}. Inserting (29) into (24), multiplying
by 4& from the right, and projecting against a
basis set in //0 one obtains

&4'
~
H(1+F")@„)

=g&~' ~F"@~&&@„~H(1+F")4"),(32)

where 4* runs over all determinants of the form

n =1,2, . ..,N (33)

except those carrying valence labels only. When
the F" operators are represented with Eq. (30},
then Eq. (32) reduces to a system of coupled qua-
dratic equations for the f coefficients. Assuming
that H=HO+gV, where Ho is a sum of one-electron
operators, and solving this system of equations per-
turbatively around /=0, it is easy to show that the
second-order f coefficients contain disconnected
contributions, i.e., contain terms which can be
represented as products of two factors having no
common indices. Graphically, such terms would
be illustrated by disconnected diagrams. Conse-
quently, there is a lot of cancellation of these
disconnected terms in the evaluation of the matrix
elements of H' . Equation (32) is equivalent to the
complete CI calculations for all states in M, and
hence cannot be solved exactly. Moreover, the
disconnected nature of F makes it very difficult to
devise a sensible scheme to solve it in an approxi-
mate way. For example, neglecting the quadratic
part of Eq. (32) or truncating FI' to the one- and
two-body part FI'+Fg only would lead to a

U=ge Pq . (35)

Because of Eq. (34), T" takes on the same form as
Fl'. In particular,

Tl'=Tf'+TP+ . . +Tg,
where

(36)

'2
r ~nt' "(p)a ' . a "a . an. t n ~n a&

(37)

Similarly, as in the case of the f coefficients, the t
coefficients are antisymmetric and nonzero only if
a&, . . . ,a„ label occupied and r&, . . . ,r„ unoccu-
pied orbitals in 4„. As a consequence of Eq. (31),
a t coefficient is zero if all its indices correspond to
valence orbitals. Since the relation between F" and
Tl' is the same as in the closed-shell theory, the re-
lation between cluster functions generated by F"
and cluster functions generated by TI' is the same,
except for antisymmetrization, as the relation
between moments and cumulants in the probability
theory. 43

The cluster ansatz (35) for U leads to the follow-
ing cluster expansion for the exact wave function:

%„=gc~e

where the coefficients c~ are obtained by diagonal-
izing the effective Hamiltonian H' of Eq. (26). In
a particular case when the set of core orbitals is
empty, K=0, L =N, the above expansion has the
same form as the cluster expansion for the open-
shell wave function proposed by Silverstone and
Sinanoglu. It should be stressed, however, that
the expansion (38) makes sense only if it applies
simultaneously to all M wave functions from the
exact manifold A'. Since the number of all t coef-
ficients in (38) is about M times greater than the

disconnected perturbation expansion for the matrix
elements of H' and, consequently, to not-size-
consistent energies. This difficulty may be over-
come in exactly the same way as in the closed-shell
theory, i.e., by reformulating the whole many-body
theory such that only the logarithm of 1 + F" ap-
pears. Defining

N
( 1)m —1

T"=1n(1+F1')= g (Fl'), (34)
m=i m

where the logarithm series is finite since all ele-
ments of rz are nilpotent, we can replace Eq. (29)
by



24 COUPLED-CLUSTER METHOD FOR MULTIDETERMINANTAL ~ ~ . 1673

dimension of the total ¹lectron Hilbert space, the

T" operators and consequently the cluster func-

tions generated by them cannot be uniquely deter-

mined from the knowledge of only one function +„.
Westhaus and Sinanoglu made an attempt to
solve this problem in the case of a simpler linear

cluster expansion for 4„. It is easy to see, howev-

er, that the action of their "model operator" Q on

the basic determinants DI is not defined by their

Eq. (36). Their cluster functions f remain then

completely arbitrary. Sinanoglu and collabora-

tors ' overcome this difficulty by introducing the

"anonymous parentage" approximation, i.e., by as-

suming that TI' is independent of p.
The system of coupled equations for the cluster

operators T" or the t coefficients can be derived

easily by inserting Eq. (35} into Eq. (24}, multiply-

ing by 4z from the right, by e
" from the left, and

projecting against all functions from Mp. The

result is

(qi ' . . . "(p) ~e He 4p}

= +Hi„(4 '. . . "(p) ~e "e 4i), (39)

(39) vanishes. Equation (39) reduces then to the
well-known equations of the closed-shell coupled-

cluster theory. The left-hand side of Eq. (39) is of
the same form as in the closed-shell case and can

be expanded using the techniques of Refs. 10 and

45. The right-hand side of Eq. (39) is characteris-

tic of the multideterminantal reference state (open-

shell) theory. It takes account of the coupling of
T" operators mith different p, and, after perturba-

tion expansion, leads to the so-called folded or

backwards diagrams. It should be mentioned,

however, that for certain types of open-shell confi-

gurations this coupling may vanish due to sym-

metry. This takes place when Mp contains only

one determinant corresponding to a given set of
good quantum numbers. Such open-shell confi-

gurations have been recently considered from the

point of view of diagrammatic perturbation theory

by the Czechoslovak school.
To end this section we would like to emphasize

that for general open-shell configurations all basic

determinants are treated in Eqs. (39}and (40) on an

equal footing and neither of them is chosen as a
distinguished vacuum state.

where

H~ (4„~e——r Her 4q)

and @ ' . . .,
" (p), n =1,2, . . . ,N are all deter-

minants of the form of Eq. (33}. In deriving Eq.
(40) we made use of the fact that

(TI') 4„=0. (41)

This is true only if the manifold Mp is complete.

In such a case each term in (37) contains at least

one core orbital annihilation operator or virtual or-

bital creation operator which makes Eq. (41}hold

for each p and v.
When the cluster operators T" are represented

by Eqs. (36}and (37), then Eqs. (39}and (40)

reduce to a system of coupled nonlinear algebraic

equations for the t coefficients. This system of

equations is equivalent to complete CI calculations

for all M states from M and, hence, is potentially

exact. As we shall show in Sec. III, the virtue in

using Eqs. (39) and (40} versus Eq. (32} lies in the

fact that Eqs. (39) and (40) can be easily simplified

by neglecting nonlinear terms and higher many-

particle operators in (36) without introducing any

disconnected contribution to H', i.e., without

making the approximate energy not size consistent.

When N =K (closed-shell case) the manifold Mp
is one dimensional and the right-hand side of Eq.

III. CONNECTEDNESS PROPERTY

e "He =H+[H, T"]

(42)

and the commutator of two second-quantized

operators may contain only connected terms.

Analogously, the left-hand side of Eq. (39) is con-

nected if T& is connected. Unfortunately, the cou-

pling term on the right-hand side of Eq. (39) is

not manifestly connected and, hence, the connect-

edness of T" requires a special proof.
To define the desired connected perturbation ex-

pansion for T" we have to partition H into a one-

electron unperturbed operator Hp and a perturba-

tion V,

H=Hp+ V,

where

(43)

In this section we shall show that the perturba-

tion expansion for T" operators contains only con-

nected terms. This means that only connected dia-

grams would appear if a diagrammatic representa-

tion for this expansion were invoked. The connect-

edness of T" guarantees the connectedness of the

matrix elements of H' since e He " can be

expanded as
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KHo (44)

V= 4v„„a"a a&a~ .K N (45)

Equation (44) means that 4&, p=1, . . ., M and all
determinants of Eq. (33) are, eigenfunctions of Ho.
We assumed for simplicity that V is due to a two-
body interaction only. If V also contained a one-
particle screening, its effect could be included by

and V is expressed via antisymmetrized matrix ele-
ments of a two-body interaction V,

appropriately redefining v ~„". .To exclude a possi-
bility of vanishing denominators we assume also
that the energies of the core, valence, and virtual
orbitals are such that the spectra of Ho in Ai'o and

Xi'0 do not have common points. We do not have
to assume that all valence orbitals have the same
energy or that Ho is degenerate in Afo. This
makes our method applicable to quasidegenerate
problems or to systems with more than one open
shell.

Inserting Eq. (43) into Eq. (39) one obtains

[(e,+ ' ' +&, )—(e + . . +e )]r, . . . , "(p,)+(@ ' " (~) ~e
— "Ve "@ )

= g V~(4 ' . . . "(p)
~

"
@~)

~p
where

(46)

(47)V„'„=(4„~e Ve 4„)
are the matrix elements of the effective interaction operator V' =PVU. To derive Eq. (46) one has to make
use of the fact that

'2

[ p, „"]= —[(e,~+ +e, ) (e~—+ . +e~ )]r, ' . .,„"(p)a ' . a "a~ a~ (48)

and

(49)

The double and higher commutators with Hp vanish since [Hp, T"]ET& Formul. a (47) shows that, if T" are
connected, the matrix elements of V' have to be connected as well. For off-diagonal elements, however, a
somewhat stronger result holds. If we assume that 4„is obtained from 4& replacing the spin-orbitals
X;,XJ,. . . by the spin-orbitals Xk, Xl, . . . , i.e., 4„==0„"4„,where

v k l. . .0&——a a . aja;,
then for p,+v Eq. (47) can be rewritten as

V~ = —(4„~ [e "Ve ",a'a~ . alak]4&) . (51)

This shows that if T" are connected then the off'-diagonal elements of V' are not only connected, but also
each term in the connected expansion for V„'& must contain all the indices i,j, . . . and k, l, . . . . We shall
say that V„& is connected with all valence spin-orbitals which distinguish 4„and N&, i.e., which are occu-
pied in 4„and vacant in 4& or vice versa. This property of V~ plays an important role in the proof of the
connectedness of the coupling term in the right-hand side of Eq. (46).

Now, multiplying each of the equations (46) by

~e[(e„+ '+ )e—(e + '+E)] 'a ''. . . a "a . a

and summing over all sets of indices ri. . . r„and a~ . . a„one obtains

TP ~P( Ti V T&) y Veff~y( —Tl e—T"fib,
)

where 0„is defined as the only operator from ~z satisfying 4~——0„4&,and

SF~=9P", +SP12+. . . +gg

(52)

(53)
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is a superoperator playing the role of the reduced resolvent. For an arbitrary operator A the action of 9F„ is
defined precisely as

1

n!

a& ~a2(4 ~a' a "a . a QA4)rn r rn
g 0 ~ t g a 0 ~ 0 g~+ . . +~ —(~,, -f . +~ )

(54)

The projector Q =1 Pa—ppears here in order to remove all terms corresponding to the excitations into the
reference space, i.e., all terms carrying valence indices only. It may be shown that X=SF&(A) is the only

operator from r& satisfying the commutator equation [X,HO]=A and the condition XC&qFMO.
Equation (52) is a convenient starting point for deriving the perturbation expansion of T". When V is

parametrized as V~(V then T and V~ become functions of the variable g and these quantities can be ex-

panded as

oo (m) oo (m)
T"= gg T", V~= gg V~. (55)

m=1 m=1

Inserting (55) into (52) and comparing coefficients at the same power of g we obtain recursive formulas for
T' '" and V~ ' . For m = 1, 2, and 3 these formulas can be written in the following form:

(1)v"=(c„ive„&,
(1)
T I'=ml'(V),
(2) (1)
v"=&e„~[v, T&]e„&,

(2) (1) (1) (1)
T ~=98~([V, TI']} Qvx„9F"—(( T T")0„),—

~PA

(3) (2) (1) (1)
v"=(c„~[v, T&]e„)+-,(e„~ [[v, T~],T~]e„),

(56)

(57)

(5g)

(59}

(60)

(3) (2) (1) (1) (2) (1) (1)
T"=9P"([V, T"])+—,91'"([[V, T"],T"]) g[ V x„9F"—(( T T")Q~)—

A,+p

(61}

Let us examine in more detail the expressions for
T"'", T' '", and T' '". Using Eqs. (57) and (54)
one obtains

I

in Eq. (62}. Symbolically, one may write

(1) (1)T'=+. Tl' (63)

+-1
4

~a a,QV@&)" a'a.
E'~ —6r

(4~
~

a ~ ~ aaa, gQ V@q )
ll ~ apnea ~

e~+ E'P—E'r —eg

(62)

which shows that T"'" is trivially connected. As-
sume now that 4~——a a;4&. It is not difficult to
see that the expression for T"'I' must be exactly
the same as for T'" except that the index i is
everywhere replaced by k and vice versa. It must
be so since the transposition i~k transforms 4„
into 4~ without changing the range of summations

where 9';k performs the transposition i+ k. One
might also say that diagrams for T"' could be ob-
tained from diagrams for T'"I' by interchanging
everywhere the valence line labels i and k. The re-
lation (63) shows that all terms in T'" and T"'I'
which carry neither the label i nor the label k must
be identical. Therefore, in calculating the differ-
ence T"' —T"'", the only surviving terms are
those carrying i, k, or both of these indices. Since

V~ depends on both i and k, the product
V~(T'"~—T'"&) must be connected via these
valence indices. Analogously, one may show that
if N~ is obtained from 4& by a double or higher
substitution, 0&——a a . aj.a;, then
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T"'"=H;I,HJI T" I' and V~ is connected with
T'" —T'""via at least one of the valence indices

i,j, ... and k, l, . . .. Since the summation in Eq.
(59) does not contain the diagonal term it is clear
that T' '" is connected. In view of Eq. (60) V„'&"

must be connected as well.
To prove the connectedness of T' 'I' it is enough

to verify that [T"',T"'I'] and T' '~ T'2'& —are
connected with V~. For the commutator
[T' "~,T' "&] it must be so since the contraction
between T'" and T'"I' can only be performed via

(2) (2) (2) (2)
T = T]+T2+ T3 (64}

where

valence indices which distinguish q&i and qi . For
example, if 0&——a a; then all terms in T"' and
T"'"containing neither k nor i commute and do
not contribute to [T"~~, T'""]. To show that
T ~—T I' is connected with V~ we write T
explicitly in the form

r„
~a &a

T„"=
n e. + . +e —(e+ . +e)

(]) (i) (i)
x &q» la

' . a "a„. a, g[V, T&]q~„)—g&@„la ' ' . a "a„. a„,g(T" T") q„—)& q'~l Vq'&)
8 1 P" N ~n

V

(65)
If T'"" is related to T"'& via Eq. (63) and if Mo is complete (making the v summation inyariant under the
unitary transformation p~~p;, p;~+~}, then it is easy to see that the expression for T' ' can also be obtained
from the expression for T' '& by interchanging the indices i and k, i.e., T' ' =&~;I,T' '". The same argument
as in the first order leads now to the conclusion that T' ' —T' t' must be connected with V~„. Thus, T' '"
and, as a consequence, V~' are shown to be connected.

In an inductive generalization of this argument to higher orders no new elements appear. Due to the
Campbell-Baker-Hausdorff formula

ln(e "e )=T T"+ , [T—, T&]+——,
z [[T,T&],T&]——„[[T,T"],T ]+

I

(66)

e e can be expressed as a polynomial in
T~—T& and in commutators. The commutators
are both explicitly connected and connected with
Vi . The difference Tx T" is connected —with
Vi„because the relation (63) can easily be general-
ized by induction to arbitrarily higher order. Us-
ing the diagrammatic language one might say that,
if 0&——a a . aj.a;, then the diagrams for T can
be obtained from the diagrams for T" by the fol-
lowing relabeling of the valence lines i,k,j,l,. . .
~k,i, l,j, . . . . In forming the difference T —TI'

diagrams containing neither of these labels cancel
out. This completes our proof of the connected na-
ture of the perturbation expansions for T" and for
the matrix elements of V' . The fact that the
latter do not contain any disconnected terms has
been observed for the first time by Brandow and
is usually referred to as the linked. valence
theorem.

It is worthwhile to add here that the connected-
ness of T" operators guarantees the connected na-
ture of all cluster functions entering the cluster ex-
pansion for open-shell wave function given by Eq.
(38).

IV. COUPLED-CLUSTER METHOD FOR AN
INCOMPLETE REFERENCE SPACE

If the valence spin-orbitals 7;, i = 1,2,. . .,L, are
not degenerate the spectrum of Ho within the com-
plete model space Mo consists of several energy
levels distributed usually over a broad energy
range. Under the influence of the perturbation gV
these energy levels split and evolve as complex
curves E„(g) defined by Eq. (17) in which H is re-
placed by HO+(V. Any branching of these curves
among themselves does not affect the convergence
of the perturbation expansion for V' . The conver-
gence breaks down, however, when for

l g l
( 1 one

of Ez(g) merges with the continuum or branches
with a state not evolving from Mo. ' Such an
external state destroying the convergence of the
series (55) is usually referred to as an intruder
state. A likelihood of merging with the continu-
um or branching with an intruder state is consider-
ably reduced by removing highly excited states
from Mo, i.e., by limiting M, to one or very few
suitably chosen eigenspaces of Ho. The simplest
example of such a situation is given by the two
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open shells built up from 1s and 2s spin-orbitals for

the helium atom. The complete reference space

consists then of six determinants corresponding to

three configurations: 1s, 1s 2s, and 2s . Since the

2s state of He is autoionizing, the perturbation

series for V' cannot be convergent in this case.

After removing the 2s determinant from Mp the

merging with the continuum does not occur and

the perturbation expansion for V' may be expect-

ed to converge. We can also reject the 1s deter-

minant and keep only four 1s 2s determinants. The

resulting incomplete reference space then becomes

exactly degenerate. It should be emphasized that

the problems of intruder states, noticed for the first

time in nuclear physics, is equally severe in molec-

ular quantum theory. The well-known difficulties

in constructing a satisfactorily convergent pertur-

bation expansion for molecular interaction energies

may be viewed as being also due to the appearance

of intruder states.
A diagrammatic many-body perturbation theory

for an incomplete model space has been recently

given by Hose and Kaldor. Below we present a

purely algebraic approach based on coupled-cluster

ideas.
Let Mp now be an incomplete reference space

spanned by M functions 4&, p = 1,2,. . ., M. Ai'p

can be extended to a complete reference space M,
by adding all determinants corresponding to miss-

ing occupancies of valence orbitals. The orthogo-

nal complements of Mp and M, will be denoted by

Mp and M, . The projection operators on Mp,

Mp and M, will be denoted by P, P„Q, and

Q„respectively. The wave operator U is defined

by Eqs. (18)—(20) and maps Mp on the manifold

M spanned by the exact solutions 4&, p
=1,2, . . . , M, to the Schrodinger equation (17).

To derive a cluster expansion for U we have to ex-

amine the structure of the ~& algebras in some

more detail. First we note that the bilinear form

B(Ti,T2) =(Ti@&
~
Ti@&) is a positive definite

scalar product in ~&. Let 4'& now be the subalge-

bra of ~& generated by all operators of the form

a'aj. , i.e., all operators carrying valence labels only.

It can easily be shown that the orthogonal comple-

ment 4'& is not only a subalgebra but also an ideal

in ~„. We shall also consider the linear manifold

z&C~& spanned by all operators producing excita-

tions within Mp. The incompleteness of Mp
means that r& and 4'&ex& are not closed under the

multiplication operation, i.e., are not subalgebras of

7p 0

The wave operator U can now be uniquely

Xl'= Wl'+SI'+ TI', (68)

where 8'&E~&, S&E.Ã&6~&, and TI'F 4&. Thus,

as a result of the incompleteness of Mp the cluster

operators X" contain a component producing exci-

tations within the reference space. Moreover, this

component has a purely disconnected character,

i.e., consists of disconnected terms only. To prove

this we note that

~P( w&+s& 1) 0 (69)

where 9'~p is the superoperator of the orthogonal

projection on r& [the operator T" does no. t enter

Eq. (69) since 4'& is an ideal in r&] Expressi.ng

F& and S& in terms of one-, two-, and higher

many-particle operators

W"= W f'+ Wf'+

S"=Sf +Sf +
and using Eq. (69) one obtains

W{'=0,

(70)

(71)

Wg = ——,P~()(S {'Sf'),

wf = +"o(s{'s—f }+, +"o[s{'+—o(s{'s{')1

——,a~(s{'s{'sf') .

(72)

(73)

The above equations demonstrate that 8'& contains

exclusively disconnected terms. If X& operators are

determined from Eqs. (24) and (69), then the

disconnected terms in 8'& produce disconnected

terms in S&, TI', and in V~. Moreover, since

(X") N„ is generally nonvanishing for p+v, the

off-diagonal matrix elements of V' cannot be ex-

pressed via commutators only. This produces

some additional disconnected terms appearing for

the first time in V~' . Nevertheless, the discon-

nected terms represent only a small fraction of all

represented in the form

U =g(1+G"+F&}Pq, (67)

where Gl' E.4'&e r& and F"G @&. It is seen that

G" and F& produce excitations into M, eMp and

M„respectively. If Mp were complete, G" would

vanish and (67) would reduce to (29). In full anal-

ogy with Eq. (35) each term in Eq. (67) can be

represented as exp(X"}P&, where X&=ln(1+ G&

+ FI'). However, since 4'„8~„is not a subalgebra

of ~& the expansion of the logarithm produces terms

belonging to ~& and, consequently, X& must be

written as
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terms contributing to S&, TI', or V~ and it would
be desirable to have a theory which could produce
the connected terms directly without performing
complicated canccllations. Such a theory could be
based on Eqs. (68)—(73}but we found it practically
more convenient to start with the following ansatx:

U =g(1+G")e P„,

where GI'E C'&e ~„and TI'G O'„. This form of U
is entirely general since G" is the same as in Eq.
(67) and Z»=in[1+(1+G») 'F»]. Thenonex-
ponential part of {74)will produce disconnected
terms which must anyway appear in V' . lt is in-
teresting that (74) results directly from Eqs.
(69)—(72) if Mo is the exact degenerate manifold
spanned by thc four determinants obtained by a
single excitation from a doubly-occupied orbital P;
to an unoccupied nondegenerate orbital PI, In thi.s
case S"=SI' and, consequently, 9'»0(S f'S f')
=SI'Sf'. The cluster operator X" now takes the
form

(74)

and

V"=(e„~e-'"Ve'"(I+G")@»),

where 98~0 and 9F& are superoperators playing the
role of the reduced resolvent and defined by Eqs.
(53) and {54),except that Q must now be replaced

by P, Pand Q„resp—ectively. It should be noted
that V~ cannot be expressed solely via commuta-
tors since (G»)t@„is not generally equal to zero.
Equations (76)—(78) are written in such a form
that the perturbation expansion of 6&, TI', and

V~ is straightforward.

X»= ——,Sf'S f'+S f'+ T»=in(1+SI'}+7»,
(75)

and exp(X») reduces to (1+S")exp( T")
General equations for 6& and T" can be derived

in essentially the same way as, Eqs. (52) and (47).
Inserting {74}into (24), applying Eqs. (42) —(44),
and making use of the fact that 4„ is a subalgebra
and 4„an ideal in ~„, one obtains

G»=9P»0{e "Ve "(1+6"})

QSP»0—(e "e (1+G )Q„Vg»,
A.

T»=aP((1+G»}-' — "V "(1+G»))

—g A'»{(1+G») 'e "e (1+G )0„}V@,
AAs

(77)

» b 4c»d 4d 2d 3d
2 U3bU&(U»d+U4d —U2d —U3d )

(e& e3)- (79)

where the summation over core spin-orbitals is im-
plicit. This expression is evidently disconnected
and enters V2»" unless the degeneracy of valence(3)eff

orbitals is not accidental and the integrals in
parentheses cancel each other by symmetry. The
above example shows that a demonstration of the
connectedness of V~ for an exactly degenerate in-

complete Mo is generally not simple and requires a
consideration of symmetries underlying the existing
degeneracy. This observation seems to be in dis-
agreement with the conclusion reached by Hose
and Kaldor 2 who constructed a diagrammatic ex-
pansion for the Bloch wave operator U and the ef-
fective interaction V' =I'VU.

It should be added here that the Bloch V' is
only one of many effective interactions proposed in
the literature. These effective interactions may be
viewed as various methods to make the Bloch
V' Hermitian, and may lead in some cases to less

%hen Mo is complete, GI'=0 and Eqs. (77) and
(78) reduce to Eqs. (52) and (47), respectively.
Thus, all automatic cancellations of disconnected
terms characteristic of Eqs. (52) and (47) are also
taken into account in Eqs. (76)—(78). The discon-
nected terms, due to G&, appear for the first time
in off-diagonal matrix elements of V'2'ff. The
operators G' '" and T' 'I' contain also, in general,
disconnected terms. One may ask if V' can be en-

tirely connected for some incomplete reference
spaces. This is probably the case if Mo is exactly
degenerate and if the degeneracy of valence spin-
orbitals is not accidental. Additional cancellations
of disconnected terms are then possible due to (i)

equality of certain energy denominators, and (ii}

symmetry relations between the integrals u ~„. It
can easily be sho~n that due to (i) the disconnected
terms in V'&" cancel out and V~' becomes en-

tirely connected for any exactly degenerate Mo. In
general, however, (i) is not sufficient to eliminate
disconnected terms from V~' and one must in-

voke (ii) to perform further cancellations. This can
be illustrated by the following example. I.et Mo
consist of four degenerate triplet (S= 1,Ms ——1)
determinants 4» ——a'a 4o 42 ——a a +o,
43——a a 4o, and 44 ——a a 4o built of a core state

4o and a set of four valence spin-orbitals with

spins up and energies e»
——e2 and e3——e4. It is easy

to see then that G»=GI' and that Vq~" contains
the following contribution originating from

(e,
~

VG""e,):
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disconnected expansions. To the authors' know-

ledge, however, for a general quasidegenerate in-

complete reference space the disconnected terms

cannot be entirely removed from the effective in-

teraction.

V. APPROXIMATION SCHEMES

The equations (47) and (52), or (76) and {77),
form a system of extraordinarily complicated, high-

ly nonlinear algebraic equations for the t coeAi-

cients. They can be applied in practice only if one

simplifies them in some sensible way. Three kinds

of simplifications are particularly natural and sug-

gest themselves. Firstly, one can calculate V' per-

turbatively through some low order in gV and im-

prove the results using a suitable Pade approxi-
mant. Secondly, one may neglect higher powers

of TI' and keep only linear or possibly also qua-

dratic terms in T". This leads to the linear and

the quadratic coupled-cluster methods. Thirdly,
we may truncate the second-quantized expression

for T" neglecting higher many-particle operators in

Eq. (36). Obviously, these three kinds of approxi-
mations are interrelated and, particularly the last

two, should be applied simultaneously. In the fol-

lowing discussion we shall assume for simplicity

that the reference space M/0 is complete. The ef-

fective interaction through the third order is given

then by Eqs. (56)—(60). These equations can fur-

ther be expanded in terms of spin-orbitals using the

technique described in detail in Ref. 56. If for
0(g & 1 the states from Al are well separated ener-

getically from the rest of the spectrum, the pertur-

bation theory is expected to converge fast and the

third-order treatment should be accurate enough.

The example of the C + ion shows that the conver-

gence may be much better than in the closed-shell

case and even V+ V' " may give quite reasonable

results. This is due to the fact that the 2s -2p

quasidegeneracy spoiling the convergence in the

closed-shell case is not harmful in two-open-she11

calculations. %'hen for 0 & g (1 the states from Ml

are not well separated energetically from the rest of
the spectrum, the order by order treatment is not

expected to be convergent and some nonperturba-

tive approach must be found. Such an approach
can be obtained by linearizing Eq. (52). The result-

ing linear approximation to Eq. (52} is

Tl'=ul'( V)+ %i*([V, Ti'] )

—g Vx„9P"((T T")Q„) . —

If V' is now calculated from the formula

V: =V +&@.II [V,T"]+-,[[V,T"1 T"]]~',&

(81)

then it is easy to check that the energies calculated

from Eqs. {80)and (81) differ from the exact ener-

gies by terms of the fourth order in gV. Solving

Eqs. (80) and (81) may also be interpreted as a
summation of certain classes of diagrams up to in-

finite order in gV. The linear coupled-cluster

theory is known to be accurate in the closed-shell

case except when a considered state is quasidegen-

erate. ' ' %%en this quasidegeneracy is taken into

account by a proper choice of the reference space
then the linear coupled-cluster method is expected

to be quite accurate also for closed-shell states.
%hen the accuracy of Eqs. (80) and (81) is not suf-

ficient, the quadratic term

~P([[V TP] TP])

~P( I {Tx TP)2+ [Ti, TP] ] fib )
A+p

—g (4i
~
[V,T"]4„)9F"((T~ T")Qx)—

must be added to (80) and the e6ective interaction

should be calculated from Eq. (47) expanded

through terms cubic in T". It can easily be

checked that the energies obtained from such a
quadratic coupled-cluster theory have an error of
the fifth order in gV. Obviously, the linear or qua-

dratic coupled-cluster equations cannot be solved

exactly since T" satisfying Eq. (80) contains all n-

body contributions up to n =¹Further approxi-

mations involving a truncation of the second-
quantized expression for T& are clearly necessary.

Such a truncation is, however, not as obvious as in

the closed-shell case since now there is no unambi-

guous relation between the cluster size and the

multiplicity of the excitation produced by a cluster

operator. For example, only the operators of the

form a~a apa produce genuine double excitations.
The operators of the form a~a'aj. a produce single

excitations from Mo and the operators a a'aja; do
not produce excitations at all. The set of single ex-

citations from Mo is defined as a subset of func-

tions from Mo that can be obtained by replacing a
single spin-orbital in one of the 4& functions. The
linear space spanned by all these single excitations
will be denoted by M&. The subspace of double ex-

citations M2 is defined analogously as a subspace
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of .WOGM& spanned by all determinants that can
be obtained by double substitutions from the deter-
minants of Mo. The triple and higher excitation
subspaces M3, M4, etc., are defined recursively in
the same way. The n-body part of TI' can now be
decomposed as

T"—T&+ T&+ T& (83)

where T„"produces m-fold excitations, i.e.,
~ T„"4&E'M~. It should be remarked here that
also in the coupled-cluster theories of Mukherjee
et al. , of Offermann et al., and of Lindgren
the n-body part of cluster operators produces all

excitations up to the n-tuple ones. Because of the
computational convenience each ~ T„"can be fur-

ther divided into internal, all-external and partly
external {semi-internal) components. The exci-

tation produced by a ' . . a "a~ . . a~ is inter-

nal if r &, . . . ,r„are exclusively valence labels, is
all-external if r &, . . . ,r„are exclusively virtual la-

bels, and is partly external if the set r &, . . . ,r„ is a
mixture of valence and virtual labels. For example,
in the two-body case a'a a,ab is internal, a~a a~a
is external, and a a'a, ab is a partly external
(semi-internal) component of 2T(. The all-external
excitations are most dif5cult to take into account
because their number is the greatest.

By inspecting Eqs. (56)—(61) it is easy to see
that

(1) (1) (1) (2) (2) (2) (2)
T~= T~+ T~ T~= T~+ T~+ T~,

but T' I' contains also a five-body contribution.
This five-body contribution produces, however,
only triple excitations and, in general, one can
show that T'"'" may produce only up to (n + 1)-
tuple excitations.

Using Eqs. (56)—(61) it is easy to prove that the
linear coupled-cluster method is accurate through

the second order in g V if T~ is assumed to consist

of only one- and two-body operators. To obtain a
method accurate through the third order one must

add the three-body single and double excitations,
i.e., assume that

T =,Tf'+, T(+ t Tg+tT)+zT( . (84)

It is seen that all-external three-body operators do
not appear in Eq. (84). Thus, the number of linear

coefficients present in {84) increases only quadrati-

cally with the dimension of the virtual space and

calculations based on Eq. (84), and (80) should be
feasible in practice.

Another significant simplification of the
coupled-cluster equations is obtained if one as-

sumes that the coefficients t ~ '(p) are indepen-

dent of p for some or for all values of the indices
' a, r, P,s, . . . ("anonymous parentage" approxima-

tion). This approximation is a drastic one, howev-

er, since, in general, the resulting energy is not ac-
curate even through the second order in gV. An

approximate coupled-cluster method based on a
variant of the anonymous parentage approximation
combined with the complete neglect of the internal

and semi-internal excitations has been recently con-
sidered in the literature and applied.
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